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We extend the inertia-free continuous control law for spacecraft attitude tracking derived
in prior work to the case of three single-axis control moment gyroscopes with spherical gyro
wheels. These CMGs are assumed to be mounted in a known and linearly independent
con�guration with an arbitrary and unknown orientation relative to the spacecraft principal
axes. We demonstrate the performance of the modi�ed control laws for rest-to-rest, motion-
to-rest and spin maneuvers without the need for a seperate steering algorithm.

I. Introduction

In spacecraft applications it is often expensive to determine the mass properties with a high degree of
accuracy. To alleviate this requirement, the control algorithms given in refs.1{3 require no prior modeling of
the mass distribution. These algorithms incorporate internal states that can be viewed as estimates of the
moments and products of inertia; however, these estimates need not converge to the true values, and in fact
do not converge to the true values except in cases of su�ciently persistent motion.

The results of ref.1 are based on rotation matrices4 as an alternative to quaternions as used in refs.3,5, 6

Quaternions provide a double cover of the rotation group SO(3), and thus, when used as the basis of a
continuous control algorithm, cause unwinding, that is, unnecessary rotation away from and then back to
the desired physical attitude.7 To avoid unwinding while using quaternions, it is thus necessary to resort
to discontinuous control algorithms, which introduces the possibility of chatter due to noise as well as
mathematical complications.8{10 On the other hand, rotation matrices allow for continuous control laws
but introduce multiple equilibria. However, the equilibria that do not represent the desired equilibrium are
saddle points of the closed-loop system, and thus the attitude of the spacecraft converges almost globally to
the desired equilibrium.

The inertia-free control law developed in ref.1 was extended in ref.2 to the case of reaction wheel
actuation. The goal of the present paper is to further extend the control law to include control moment
gyroscope (CMG) actuation. We derive coordinate-free equations of motion for a satellite with three single-
axis spherical CMGs and specialize them to the case where the gyro wheels rotate with a �xed angular
velocity and the gimbals are aligned orthogonally with the spacecraft bus. We derive the inertia-free control
law for such actuation, and we demonstrate the performance of the control law for rest-to-rest, motion-to-rest
and spin maneuvers.

The traditional approach to controlling spacecraft with CMG’s is to implement a controller that speci�es
a torque input, and then command the gimbal angular velocities in order to synthesize the requested torque
using a suitable steering algorithm.11 However, the gimbal commands must be chosen to avoid singularities
that can arise from the alignment of the gimbals.12{16 An experiment devoted to singularity avoidance is
described in ref.17 The singularity problem can be avoided by implementing CMG’s with variable gyro wheel
speed.18

In the present paper we consider �xed speed CMG’s, where the adaptive controller directly commands the
gimbal angular velocities. This approach avoids the need to separately synthesize gimbal angular velocities
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from a requested torque. We demonstrate the adaptive controller for rest to rest, motion to rest and spin
maneuvers, where singularity avoidance is also demonstrated.

II. Spacecraft Model with CMGs

In this section we derive the equations of motion for a spacecraft with CMGs, while highlighting the
underlying assumptions on CMG geometry, inertia, and attachment to the bus. Throughout the paper

*
r q=p

denotes the position of point q relative to point p,
*
v q=p=X denotes the velocity of point q relative to point

p with respect to frame FX, and
*
!Y=X denotes the angular velocity of frame FY relative to frame FX. All

frames are orthogonal and right handed.
Def. 1. Let FX be a frame, let B be a collection of rigid bodies B1; : : : ;Bl, and let p be a point. Then,

the angular momentum of B relative to p with respect to FX is de�ned by

*

HB=p=X
4
=

lX
i=1

*

HBi=p=X; (1)

where the angular momentum
*

HBi=p=X of Bi relative to z with respect to FX is de�ned by

*

HBi=p=X
4
=

Z
Bi

*
r dm=p �

*
v dm=p=X dm: (2)

Lemma 1. Let B be a rigid body, let FX and FY be frames, and let p be a point. Then,

*

HB=p=X =
!
I B=p

*
!Y=X +

*

HB=p=Y; (3)

where the physical inertia matrix
!
I B=p is de�ned by

!
I B=p

4
=

Z
B

j*r dm=pj2
!
U �*

r dm=p
*
r
0
dm=p dm; (4)

where
!
U is the second-order identity tensor.

Lemma 2. Let B be a rigid body, let FX and FY be frames, let FY be a body-�xed frame, and let p be
a point that is �xed in B. Then,

*

HB=p=Y = 0 (5)

and

*

HB=p=X =
!
I B=p

*
!Y=X: (6)

Lemma 3. Let FX be a frame, let p be a point, let B be a rigid body with mass mB, and let c be the
center of mass of B. Then,

*

HB=p=X =
*

HB=c=X +
*
r c=p �mB

*
v c=p=X: (7)

We consider a spacecraft consisting of three single-axis CMGs with spherical gyro wheels attached to a
rigid bus. Each CMG is mounted so that its gimbal is free to rotate about an axis passing through the center
of mass of the gyro wheel. For simplicity, the gimbals are assumed to be massless. However, this paper
does not assume that each gimbal’s axis of rotation passes through the center of mass of the bus, nor does
it assume that the CMGs are balanced with respect to the bus in order to preserve the location of its center
of mass. Thus the center of mass of the spacecraft and the center of mass of the bus may be distinct points.

Let the spacecraft be denoted by sc, and let c denote its center of mass. Although the spacecraft is
not a rigid body, the spherical symmetry of the gyro wheels implies that c is �xed in both the bus and the
spacecraft. Let ci denote the center of mass of the ith gyro wheel. We assume a bus-�xed frame FB, three
gimbal-�xed frames FGi

whose y-axes are aligned with the rotation axes of their respective gimbals, three
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gyro wheel-�xed frames FWi whose x-axes are aligned with the rotation axes of their respective gyro wheels,
and an Earth-centered inertial frame FE. The angular momentum of the spacecraft relative to its center of
mass with respect to the inertial frame is given by

*

Hsc=c=E =
*

Hb=c=E +

3X
i=1

*

Hwi=c=E; (Def. 1) (8)

where the angular momentum
*

Hb=c=E of the bus relative to c with respect to FE is given by

*

Hb=c=E =
!
I b=c

*
!B=E; (Lemma 2) (9)

where
!
I b=c is the positive-de�nite inertia tensor of the bus relative to the center of mass of the spacecraft,

and
*
!B=E is the angular velocity of FB with respect to FE. The angular momentum

*

Hwi=c=E of gyro wheel
i relative to the center of mass of the spacecraft with respect to the inertial frame is given by

*

Hwi=c=E =
!
I wi=c

*
!B=E +

*

Hwi=c=B (Lemma 1)

=
!
I wi=c

*
!B=E +

*

Hwi=ci=B +
*
r ci=c �mwi

*
v ci=c=B (Lemma 3)

=
!
I wi=c

*
!B=E +

!
I wi=ci

*
!Wi=B; (Lemma 2) (10)

where
!
I wi=c is the positive-de�nite inertia tensor of gyro wheel i relative to the spacecraft’s center of mass,

!
I wi=ci is the positive-de�nite inertia tensor of gyro wheel i relative to its own center of mass ci, and

*
!Wi=B

is the angular velocity of gyro wheel i relative to the bus, and is given by

*
!Wi=B =

*
!Wi=Gi

+
*
!Gi=B; (11)

where
*
!Wi=Gi

is the angular velocity of gyro wheel i relative to the gimbal i, and
*
!Gi=B is the angular

velocity of gimbal i relative to the bus. Thus (8) is given by

*

Hsc=c=E =

 
!
I b=c +

3X
i=1

!
I wi=c

!
*
!B=E +

3X
i=1

!
I wi=ci

*
!Wi=B (12)

Note that
*
!Wi=B has only two degrees of freedom relative to the bus, which can be seen when resolving

*
!Wi=Gi

and
*
!Gi=B in FWi

and FGi
, respectively, that is,

*
!Wi=Gi

���
Wi

=

2664
qi

0

0

3775 ; *
!Gi=B

���
Gi

=

2664
0

pi

0

3775 : (13)

Since FWi is aligned with the principal axes of gyro wheel i, we have

!
I wi=ci

����
Wi

=

2664
�i 0 0

0 �i 0

0 0 �i

3775 : (14)

The repeated entries are due to the spherical nature of the gyro wheels. FWi rotates relative to FGi about
its x-axis. Consequently,

!
I wi=ci

����
Gi

=
!
I wi=ci

����
Wi

: (15)
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Therefore,

Gi�z }| {
!
I wi=ci= 0: (16)

Note that
*
!Wi=Gi

is an eigenvector of
!
I wi=ci with eigenvalue �i, and

*
!Gi=B is an eigenvector of

!
I wi=ci with

eigenvalue �i. That is,
!
I wi=ci

*
!Wi=Gi

= �i
*
!Wi=Gi

and
!
I wi=ci

*
!Gi=B = �i

*
!Gi=B.

III. Spacecraft Equations of Motion

We now derive the equations of motion for a spacecraft actuated with CMGs as described above. It
follows from Newton’s second law for rotation, that

*

M sc=c =

E�
*

H sc=c=E

=

E�z }| { 
!
I b=c +

3X
i=1

!
I wi=c

!
*
!B=E +

E�z }| {
3X
i=1

!
I wi=ci

*
!Wi=B

=

B�z }| { 
!
I b=c +

3X
i=1

!
I wi=c

!
*
!B=E +

*
!B=E �

 
!
I b=c +

3X
i=1

!
I wi=c

!
*
!B=E

+

B�z }| {
3X
i=1

!
I wi=ci

*
!Wi=B +

*
!B=E �

3X
i=1

!
I wi=ci

*
!Wi=B

=

 
!
I b=c +

3X
i=1

!
I wi=c

!
B�

*
!B=E +

3X
i=1

�i

B�
*
!Wi=Gi

+

3X
i=1

�i

B�
*
!Gi=B

+
*
!B=E �

  
!
I b=c +

3X
i=1

!
I wi=c

!
*
!B=E +

3X
i=1

�i

�
*
!Wi=Gi

+
*
!Gi=B

�!
: (17)

Rearranging (17) yields 
!
I b=c +

3X
i=1

!
I wi=c

!
B�

*
!B=E =

  
!
I b=c +

3X
i=1

!
I wi=c

!
*
!B=E +

3X
i=1

�i

�
*
!Wi=Gi

+
*
!Gi=B

�!
�*
!B=E

�
3X
i=1

�i

B�
*
!Wi=Gi

�
3X
i=1

�i

B�
*
!Gi=B +

*

M sc=c: (18)
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To resolve (18) in FB, the following notation is used:

Jb
4
=
!
I b=c

����
B

; Jwi=c
4
=
!
I wi=c

����
B

;

Jwi=ci

4
=
!
I wi=ci

����
B

; Jsc
4
= Jb +

3X
i=1

Jwi=c;

!
4
=

*
!B=E

���
B
; _!

4
=

B�
*
! B=E

�����
B

;

�i
4
=

*
!Gi=B

���
B
; _�i

4
=

B�
*
! Gi=B

�����
B

;

!Wi

4
=

*
!Wi=Gi

���
B
; _!Wi

4
=

B�
*
!Wi=Gi

�����
B

;

�dist
4
=

*

M sc=c

����
B

:

We let the vector �dist represent disturbance torques, that is, all internal and external torques applied to
the spacecraft aside from control torques. Disturbance torques may be due to onboard components, gravity
gradients, solar pressure, atmospheric drag, or the ambient magnetic �eld.

Resolving (18) in FB yields the equation of motion for a spacecraft with CMGs, which has the form

Jsc _! =

 
Jsc! +

3X
i=1

�i (�i + !Wi
)

!
� ! �

3X
i=1

�i _�i �
3X
i=1

�i _!Wi
+ �dist: (19)

A. Special Case: gyro wheels rotate with constant angular velocity

We now specialize the equation of motion (19) by assuming that the gyro wheels rotate with a constant
angular velocity. We thus have,

Wi�
*
! Wi=Gi

= 0: (20)

Then,

B�
*
!Wi=Gi

=
Gi�
*
! Wi=Gi

+
*
!Gi=B �

*
!Wi=Gi

=
Wi�
*
! Wi=Gi

+
*
!Gi=B �

*
!Wi=Gi

=
*
!Gi=B �

*
!Wi=Gi

:

(21)
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Substituting (21) into (18) and resolving in FB yields

Jsc _! =

 
Jsc! +

3X
i=1

�i (�i + !Wi
)

!
� ! �

3X
i=1

�i _�i �
3X
i=1

�i (�i � !Wi
) + �dist: (22)

B. Special case: orthogonal gimbals aligned with FB

We further specialize the equations of motion by assuming that the gimbals are mounted orthogonally
to each other, but their rotation axes need not intersect. For further simpli�cation, we align FB with the
rotational axes of the three orthogonal gimbals. However, we do not assume that FB is aligned with the
principal axes of the bus. In this con�guration

OB=G1
e2 =

2664
1

0

0

3775 = e1; OB=G2
e2 =

2664
0

1

0

3775 = e2; OB=G3
e2 =

2664
0

0

1

3775 = e3; (23)

where OB=Gi
2 R3�3 is the proper orthogonal matrix (that is, the orientation matrix) that transforms the

components of a vector resolved in FGi
into the components of the same vector resolved in FB.

Additionally, as we will be directly commanding the gimbal angular rates, we rearrange (18) in order to

group all terms involving
*
!Gi=B, which we now write as ui. We thus have

 
!
I b=c +

3X
i=1

!
I wi=c

!
B�

*
!B=E =

  
!
I b=c +

3X
i=1

!
I wi=c

!
*
!B=E +

3X
i=1

�i

�
*
!Wi=Gi

+
*
!Gi=B

�!
�*
!B=E

�
3X
i=1

�i

�
*
!Gi=B �

*
!Wi=Gi

�
�

3X
i=1

�i

B�
*
!Gi=B +

*

M sc=c

=

  
!
I b=c +

3X
i=1

!
I wi=c

!
*
!B=E +

3X
i=1

�i
*
!Wi=Gi

!
�*
!B=E �

3X
i=1

�i
*
!
�
B=E

*
!Gi=B

+

3X
i=1

�i
*
!
�
Wi=Gi

*
!Gi=B �

3X
i=1

�i

B�
*
!Gi=B +

*

M sc=c

=

  
!
I b=c +

3X
i=1

!
I wi=c

!
*
!B=E +

3X
i=1

�i
*
!Wi=Gi

!
�*
!B=E

+

3X
i=1

�i

�
*
!
�
Wi=Gi

�*
!
�
B=E

�
OB=Gi

e2ui �
3X
i=1

�i

B�
*
!Gi=B +

*

M sc=c: (24)

Expanding the control term in (24) and plugging in (23) yields,

3X
i=1

�i

�
*
!
�
Wi=Gi

�*
!
�
B=E

�
OB=Gi

e2ui

= �1

�
*
!
�
W1=G1

�*
!
�
B=E

�
e1u1 + �2

�
*
!
�
W2=G2

�*
!
�
B=E

�
e2u2 + �3

�
*
!
�
W3=G3

�*
!
�
B=E

�
e3u3

= Y u; (25)
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where

Y
4
=
h
�1

�
*
!
�
W1=G1

�*
!
�
B=E

�
e1 �2

�
*
!
�
W2=G2

�*
!
�
B=E

�
e2 �3

�
*
!
�
W3=G3

�*
!
�
B=E

�
e3

i
; u

4
=

2664
u1

u2

u3

3775 :

Finally, resolving the equation of motion (24) in FB yields

Jsc _! =

 
Jsc! +

3X
i=1

�i!Wi

!
� ! + Y u� J� _u+ �dist; (26)

where,

J� =

2664
�1 0 0

0 �2 0

0 0 �3

3775 : (27)

IV. Spacecraft Model, Assumptions, and Objectives for Control Design

The kinematics of the spacecraft model are given by Poisson’s equation

_R = R!�; (28)

which complements (26). In (28), !� denotes the skew-symmetric matrix of !, and R
4
= OE=B 2 R3�3.

Compared to the case of reaction wheels treated in ref.,2 control moment gyroscope actuation complicates
the dynamic equations due to the term J� _u in (26), as well as the state-dependant, time-varying, and
potentially singular input matrix, Y . The kinematic relation (28) remains unchanged. The torque inputs
applied to each gyro wheel are constrained by current limitations on the electric motors and ampli�ers as
well as angular-velocity constraints on the gimbals. However, these constraints are not addressed explicitly.

Both rate (inertial) and attitude (noninertial) measurements are assumed to be available. Gyro measure-
ments yrate 2 R3 are assumed to provide measurements of the angular velocity resolved in the spacecraft
frame, that is,

yrate = ! + vrate; (29)

where vrate 2 R3 represents the presence of noise in the gyro measurements. Attitude is measured indirectly
using sensors such as magnetometers or star trackers. The attitude is determined to be

yattitude = R: (30)

When attitude measurements are given in terms of an alternative attitude representation, such as quater-
nions, Rodrigues’s formula can be used to determine the corresponding rotation matrix. Attitude estimation
on SO(3) is considered in ref.20

The objective of the attitude control problem is to determine control inputs such that the spacecraft
attitude given by R follows a commanded attitude trajectory given by a possibly time-varying C1 rotation
matrix Rd(t). For t � 0; Rd(t) is given by

_Rd(t) = Rd(t)!d(t)�; (31)

Rd(0) = Rd0; (32)
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where !d is the desired, possibly time-varying angular velocity. The error between R(t) and Rd(t) is given
in terms of the attitude-error rotation matrix

~R
4
= RT

dR;

which satis�es the di�erential equation

_~R = ~R~!�; (33)

where the angular velocity error ~! is de�ned by

~!
4
= ! � ~RT!d:

We rewrite (26) in terms of the angular-velocity error as

Jsc _~! =

 
Jsc(~! + ~RT!d) +

3X
i=1

�i!Wi

!
� (~! + ~RT!d) + Jsc(~! � ~RT!d � ~RT _!d)

+ Y u� J� _u+ �dist: (34)

A scalar measure of attitude error is given by the rotation angle �(t) about an eigenaxis needed to rotate
the spacecraft from its attitude R(t) to the desired attitude Rd(t). This angle is given by19

�(t) = cos�1( 1
2 [tr ~R(t)� 1]); (35)

and referred to as the eigenaxis attitude error.

V. Controller Design

Let I denote the identity matrix, whose dimensions are determined by context, and let Mij denote the
i; j entry of the matrix M: The following result is given in ref.1

Lemma 4. Let A 2 R3�3 be a diagonal positive-de�nite matrix. Then the following statements hold for
a proper orthogonal matrix R:

i) For all i; j = 1; 2; 3; Rij 2 [�1; 1]:

ii) tr (A�AR) � 0:

iii) tr (A�AR) = 0 if and only if R = I:

For convenience we note that, if R is a rotation matrix and x; y 2 R3; then

(Rx)� = Rx�RT;

and, therefore,
R(x� y) = (Rx)�Ry:

Next we introduce the notation

Jsc! = L(!);

where  2 R6 is de�ned by


4
=
h
J11 J22 J33 J23 J13 J12

iT
and

L(!)
4
=

264 !1 0 0 0 !3 !2

0 !2 0 !3 0 !1

0 0 !3 !2 !1 0

375 :
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Next, let Ĵsc 2 R3�3 denote an estimate of Jsc, and de�ne the inertia-estimation error

~Jsc
4
= Jsc � Ĵsc:

Letting ̂; ~ 2 R6 represent Ĵsc; ~Jsc; respectively, it follows that

~ =  � ̂:

Likewise, let �̂dist 2 R3 denote an estimate of �dist; and de�ne the disturbance-estimation error

~�dist
4
= �dist � �̂dist:

The assumptions upon which the following development is based are now stated.
Assumption 1. Jsc is constant but unknown.
Assumption 2. J� is constant, nonsingular, and known. That is, we have three orthogonal CMGs with

symmetric gyro wheels, and we know the moments of inertia about their spin axes.
Assumption 3. _u, the gimbal accelerations, are neglegible and can be ignored. We will ignore the e�ect

of _u in our derivation of the control law. This treatment of _u is consistent with prior literature.21{23 We
will however, consider it in the actual plant dynamics for simulations and show through numerical examples
that this is a reasonable assumption. Removing _u from (26) yields

Jsc _! =

 
Jsc! +

3X
i=1

�i!Wi

!
� ! + Y u+ �dist: (36)

Two controllers are presented in ref.1 They are now modi�ed, as necessary, for control moment gyroscrope
actuation.

A. Control Law for Slew Maneuvers

When no disturbances are present, the inertia-free control law given by (38) of ref.1 achieves almost
global stabilization of a constant desired attitude Rd, that is, a slew maneuver that brings the spacecraft to
rest. The initial conditions of the slew maneuver may be arbitrary, that is, the spacecraft may have nonzero
initial velocity.

Given a = [a1 a2 a3]
T 2 R3 such that a1, a2 and a3 are positive and distinct, de�ne the vector measure

of attitude error

S
4
=

3X
i=1

ai( ~RTei)� ei; (37)

where, for i = 1; 2; 3; ei denotes the ith column of the 3� 3 identity matrix.

Theorem 1. Let Kp be a positive number and let A = diag(a) be a diagonal positive-de�nite matrix.
Then the function

V (!; ~R)
4
= 1

2!
TJsc! +Kptr(A�A ~R); (38)

is positive de�nite, that is, V is nonnegative, and V = 0 if and only if ! = 0 and ~R = I;.

Proof. It follows from statement 2 of Lemma 4 that tr (A�A ~R) is nonnegative. Hence V is nonnegative.
Now suppose that V = 0: Then, ! = 0, and it follows from statement 3 of Lemma 4 that ~R = I:

Note that (38), which we intend to use as a Lyapunov function, is not positive in all the states, namely,
it makes no use of the relative angular velocity of the gyro wheels or the gimbals since gyro wheel-speed
regulation and gimbal-speed regulation are not goals of the control objective.
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Theorem 2. Let Kp be a positive number, let Kv 2 R3�3 be a positive-de�nite matrix, let A =
diag(a1; a2; a3) be a diagonal positive-de�nite matrix, de�ne S as in (37), and de�ne V as in Theorem
1. Furthermore, consider the control law

u = �Y �1(KpS +Kv!); (39)

and assume that Y is nonsingular. Then,

_V (!; ~R) = �!TKv!; (40)

along the trajectories of (36), is negative semide�nite.

Proof. Noting that

d

dt
tr (A�A ~R) = �trA _~R

= �trA( ~R!� � !�d ~R)

= �
3X
i=1

aie
T
i ( ~R!� � !�d ~R)ei

= �
3X
i=1

aie
T
i

~R(!� � ~RT!�d
~R)ei

= �
3X
i=1

aie
T
i

~R(! � ~RT!d)�ei

=

3X
i=1

aie
T
i

~Re�i ~!

= [�
3X
i=1

aiei� ~RTei]
T~!

= [

3X
i=1

ai( ~RTei)�ei]T~!

= ~!TS;

then

_V (!; ~R) = !TJsc _! +Kp!
TS

= !T

" 
Jsc! +

3X
i=1

�i!Wi

!
� ! + Y u

#
+Kp!

TS

= !T (�KpS �Kv!) +Kp!
TS

= �!TKv!:

Note that �Y is substituted for the input matrix B used in the inertia-free control law (38) of ref.1 but
otherwise the controller requires no modi�cation for the case of control moment gyroscope actuation.

B. Control Law for Attitude Tracking

A control law that tracks a desired attitude trajectory in the presence of disturbances is given by (21) of
ref.1 This controller is based on an additional assumption.

Assumption 4. Each component of �dist is a linear combination of constant and harmonic signals, whose
frequencies are known but whose amplitudes and phases are unknown.

Assumption 4 implies that �dist can be modeled as the output of an autonomous system of the form

_d = Add; (41)

�dist = Cdd; (42)
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where Ad 2 Rnd�nd and Cd 2 R3�nd are known matrices and Ad is a Lyapunov-stable matrix. In this model,
d(0) is unknown, which is equivalent to the assumption that the amplitude and phase of each harmonic
component of the disturbance is unknown. The matrix Ad is chosen to include eigenvalues of all frequency
components that may be present in the disturbance signal, where the zero eigenvalue corresponds to a con-
stant disturbance. In e�ect, the controller provides in�nite gain at the disturbance frequency, which results
in asymptotic rejection of harmonic disturbance components. In particular, an integral controller provides
in�nite gain at DC in order to reject constant disturbances. In the case of orbit-dependent disturbances, the
frequencies can be estimated from the orbital parameters. Likewise, in the case of disturbances originating
from on-board devices, the spectral content of the disturbances may be known. In other cases, it may be
possible to estimate the spectrum of the disturbances through signal processing. Assumption 4 implies that
Ad can be chosen to be skew symmetric, which we do henceforth. Let d̂ 2 Rnd denote an estimate of d; and
de�ne the disturbance-state estimation error

~d
4
= d� d̂:

The attitude tracking controller in the presence of disturbances is modi�ed for CMG actuators below.

Theorem 3. Let Kp be a positive number, let K1 2 R3�3; let Q 2 R6�6 and D 2 Rnd�nd be positive
de�nite matrices, let A = diag(a1; a2; a3) be a diagonal positive-de�nite matrix, and de�ne S as before. Then
the function

V (~!; ~R; ~; ~d)
4
= 1

2 (~! +K1S)TJsc(~! +K1S) +Kptr (A�A ~R) + 1
2 ~TQ~ + 1

2
~dTD ~d (43)

is positive de�nite, that is, V is nonnegative, and V = 0 if and only if ~! = 0; ~R = I; ~ = 0; and ~d = 0:

Proof. It follows from statement 2 of Lemma 4 that tr (A�A ~R) is nonnegative. Hence V is nonnegative.
Now suppose that V = 0: Then, ~! +K1S = 0; ~ = 0; and ~d = 0; and it follows from statement 3 of Lemma
4 that ~R = I; and thus S = 0: Therefore, ~! = 0:

Note that (43), which we intend to use as a Lyapunov function, is not positive in all the states, namely,
it makes no use of the relative angular velocity of the gyro wheels or the gimbals since gyro wheel-speed
regulation and gimbal-speed regulation are not goals of the control objective.

Theorem 4. Let Kp be a positive number, let Kv 2 R3�3; K1 2 R3�3; Q 2 R6�6; and D 2 Rnd�nd

be positive de�nite matrices, assume that AT
dD +DAd is negative semide�nite, let A = diag(a1; a2; a3) be a

diagonal positive-de�nite matrix, de�ne S and V as in Theorem 1, and let ̂ and d̂ satisfy

_̂ = Q�1[LT(!)!� + LT(K1
_S + ~! � ! � ~RT _!d)](~! +K1S); (44)

where

_S =

3X
i=1

ai[( ~RTei)� ~!]� ei; (45)

and

_̂
d = Add̂+D�1CT

d (~! +K1S); (46)

�̂dist = Cdd̂; (47)

so that �̂dist is the disturbance torque estimator. Furthermore, consider the control law

u = Y �1(v1 + v2 + v3); (48)

where

v1
4
= �(Ĵsc! +

3X
i=1

�i!Wi
)� ! � Ĵsc(K1

_S + ~! � ! � ~RT _!d); (49)

11 of 26

American Institute of Aeronautics and Astronautics



v2
4
= ��̂dist; (50)

and

v3
4
= �Kv(~! +K1S)�KpS: (51)

Assume that Y is nonsingular. Then,

_V (~!; ~R; ~; ~d) = �(~! +K1S)TKv(~! +K1S)�KpS
TK1S + 1

2
~dT(AT

dD +DAd) ~d; (52)

along the trajectories of (36), is negative semide�nite.

Proof.

_V (~!; ~R; ~; ~d) = (~! +K1S)T(Jsc _~! + JscK1
_S)�KptrA _~R� ~TQ _̂ + ~dTD

_~d

= (~! +K1S)T[(Jsc! +

3X
i=1

�i!Wi)� ! + Jsc(~! � ! � ~RT _!d) + Y u+ �dist + JscK1
_S]

+Kp~!TS � ~TQ _̂ + ~dTD
_~d

= (~! +K1S)T[(Jsc! +

3X
i=1

�i!Wi)� ! + Jsc(K1
_S + ~! � ! � ~RT _!d) + v1 + v2 + v3 + �dist]

+Kp~!TS � ~TQ _̂ + ~dTD
_~d

= (~! +K1S)T[( ~Jsc!)� ! + ~Jsc(K1
_S + ~! � ! � ~RT _!d)]

+ (~! +K1S)T~�dist � (~! +K1S)TKv(~! +K1S)�Kp(~! +K1S)TS

+Kp~!TS � ~TQ _̂ + ~dTD
_~d

= (~! +K1S)T[L(!)~ � ! + L(K1
_S + ~! � ! � ~RT _!d)~]

� (~! +K1S)TKv(~! +K1S)�KpS
TK1S � ~TQ _̂

+ ~dTCT
d (~! +K1S) + ~dTD[Ad ~d�D�1CT

d (~! +K1S)]

= �(~! +K1S)TKv(~! +K1S)�KpS
TK1S � ~TQ _̂

+ (~! +K1S)T[�!�L(!) + L(K1
_S + ~! � ! � ~RT _!d)]~

+ 1
2

~dT(AT
dD +DAd) ~d

= �(~! +K1S)TKv(~! +K1S)�KpS
TK1S

+ ~T[�Q _̂ + (LT(!)!� + LT(K1
_S + ~! � ! � ~RT _!d))(~! +K1S)]

+ 1
2

~dT(AT
dD +DAd) ~d

= �(~! +K1S)TKv(~! +K1S)�KpS
TK1S + 1

2
~dT(AT

dD +DAd) ~d:

Future work will complete the proof for almost global stabilization (that is, Lyapunov stability with
almost global convergence) of spacecraft tracking using CMGs. The proof will rely on partial stability
theory and invariance theorems.

VI. Modi�cation to avoid singularities

A di�culty encountered with CMGs is that the torque they are able to generate may sometimes lie in a
plane perpendicular to the demanded torque. When this condition takes place they are considered to be in
a singular state, and gimbal angular velocities that synthesize the requested torque do not exist. Much of
the work on CMGs has thus been to develop steering laws, that is, laws that modify the controller requested
torque to either avoid these singular states, or steer the controller through them

While Theorems 2 and 4 do not use an explicit steering law to synthesize a desired torque, the matrix
Y , which is assumed to be invertible in these theorems, plays a similar role and is sometimes not invertible.
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Borrowing ideas from the steering law literature, we therefore examine two practical, albeit approximate,
methods for inverting Y . Section VI.A discusses a modi�ed version of the pseudoinverse, while section VI.B
discusses the singularity-robust (SR) inverse.24 Other methods such as the singular-direction avoidance
(SDA) inverse22 are left for future study.

A. Saturated pseudoinverse method

We consider taking the saturated pseudoinverse of Y . We de�ne the saturated pseudoinverse as

Y +sat = V ��1satUT ; (53)

where U 2 R3�3 and V 2 R3�3 are orthogonal matrices obtained from the singular value decomposition of
Y , which is given by

Y = U�V T; (54)

where � 2 R3�3 is a diagonal matrix with singular values of Y on the diagonal,

� =

264 �1 0 0

0 �2 0

0 0 �3

375 ; (55)

and ��1sat is de�ned as

��1sat =

264 min(�1
�1; c�11 ) 0 0

0 min(�2
�1; c�11 ) 0

0 0 min(�3
�1; c�11 )

375 ; (56)

where c1 > 0 is a saturation limit. Note that unlike the standard pseudoinverse of a matrix approaching
rank de�ciency, whose matrix norm grows quite large until the matrix is within some tolerance of singularity
and then becomes singular, the saturated pseudoinverse is always full rank and is saturated at c�11 .

Using the saturated pseudoinverse, control laws (39) and (48) become

u = �Y +sat(KpS +Kv!): (57)

and

u = Y +sat(v1 + v2 + v3): (58)

Additionally, if the saturated pseudoinverse based controllers (57), (58) specify inputs with magnitudes larger
than umax, let

usat = umax
u

jjujj
: (59)

We use (59) only when ��1 6= ��1sat in order to prevent _u from becoming arbitrarily large. Note that (57),
(58) reduce to (39),(48) when Y is nonsingular.

B. Singularity Robust inverse method

One technique used in steering laws is the singularity robust (SR) inverse.25 The idea behind the SR
inverse is that it trades o� between introducing torque errors in the vicinity of a singularity and the feasibility
of the solution - feasibility indicating that the gimbal angular velocities remain bounded, unlike the case of
the Moore-Penrose inverse.

The SR inverse is derived from the following optimization problem,

minimize eTWe (60)
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where e =
h
� � Y u u

iT
, � is the desired torque in a steering law formulation of the CMG problem, and

W = diag(W1;W2) is a block diagonal weight matrix.
The SR inverse is thus given by

Y # = W�12 Y T
�
YW2Y

T +W�11

�
: (61)

Note that di�erent values of W1 and W2 yield di�erent SR inverses and that by selecting W1 = 0 and W2 = I
one recovers the Moore-Penrose inverse.

We consider the SR inverse for the inversion of Y in (39) and (48). Since the SR inverse introduces error
into the inversion, we test both control laws ability to compensate for this disturbance. The control laws
thus become

u = �Y #(KpS +Kv!): (62)

and

u = Y #(v1 + v2 + v3): (63)

In the simulations below we do not modify the weight matrices W1 and W2 based on the distance of Y from
singularity.

VII. Simulation

Simulation results are used to illustrate the e�ectiveness of controllers (57), (58), (62) and (63) in con-
trolling the spacecraft attitude and angular velocity using CMG actuators. To simulate the rest-to-rest,
motion-to-rest and spin maneuvers, the following spacecraft parameters are assumed. The bus inertia ma-
trix Jb is given by

Jb =

264 5 �0:1 �0:5

�0:1 2 1

�0:5 1 3:5

375 kg-m2; (64)

with principal moments of inertia 1:4947; 3:7997; and 5:2056 kg-m2. Jb is unknown to the controller. The
axes of rotation of the three CMGs are aligned with the spacecraft body-�xed frame unit vectors, and we
assume that the gyro wheel inertias in their home position with respect to their own centers are given by
Jw1 = diag(0:3; 0:3; 0:3) kg-m2, Jw2 = diag(0:3; 0:3; 0:3) kg-m2, and Jw3 = diag(0:3; 0:3; 0:3) kg-m2. The
gyro wheels are assumed to be running at a constant speed of 20 rad/sec. Let Kv = I3, and let Kp be given
by

Kp =
�

trA
: (65)

Illustrative rest-to-rest, motion-to-rest and spin maneuvers are considered below.

A. Rest-to-Rest Maneuver using Control Laws (57) and (62)

We use controller (57) for a rest-to-rest maneuver, where the objective is to bring the spacecraft from
the initial attitude R0 = I3 to the desired �nal orientation

Rd =

264 0:4536 0:8912 0

�0:8912 0:4536 0

0 0 1:0000

375 ; (66)

which represents a rotation of 1.1 radians about the z-axis. We assume that the gimbals are initially at rest
relative to the spacecraft, that is,

u(0) =
h

0 0 0
iT

rad/sec:
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The initial gimbal angles are �1 = 0 rad, �2 = 0:419 rad, �3 = 3:14 rad. Let c1 = 2 and umax = 3.
Figures 1(a)-(f) show, respectively, the attitude error, angular velocity components, gimbal angles, gimbal

angular velocity control inputs (u), gimbal angular accelerations ( _u) and singular values of Y . The spacecraft
attitude and angular velocity components are brought close to the desired values in about 10 sec. It can
be seen from Figure 1(e) that the control input derivatives decrease to zero in about 0.5 sec. Figure 1(f)
con�rms that the controller is successfully able to avoid singularities during this maneuver.
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(d) Control input to the gimbals.
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(e) Control input derivatives of the gimbals.
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(f) Singular values of the matrix Y .

Figure 1: Rest-to-Rest maneuver with CMGs using control law (57).

We now use controller (62) for the same maneuver. Let W1 = diag(7; 8; 9) and W2 = diag(14; 15; 6). The
initial gimbal angles in this case are �1 = 0 rad, �2 = 0:897 rad, �3 = 1:744 rad. All other initial conditions
are the same as in the previous maneuver.

Figures 2(a)-(f) show, respectively, the attitude error, angular velocity components, gimbal angles, gimbal
angular velocity control inputs (u), gimbal angular accelerations ( _u) and singular values of Y . The spacecraft
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attitude and angular velocity components are brought close to the desired values in about 10 sec. It can be
seen from Figure 2(e) that the control input derivatives decrease to zero in about 1 sec. Figure 2(f) con�rms
that the controller is successfully able to avoid singularities during this maneuver.
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(b) Spacecraft angular-velocity components.
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(c) Gimbal Angles.
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(d) Control input to the gimbals.
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(e) Control input derivatives of the gimbals.
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(f) Singular values of the matrix Y .

Figure 2: Rest-to-Rest maneuver with CMGs using control law (62).

B. Motion-to-Rest Maneuver using Control Laws (57) and (62)

We now consider a motion-to-rest maneuver, where the spacecraft is initially spinning with an angular
velocity

!0 =
h

0:5 �0:5 �0:5
iT

rad/sec;
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and initial attitude Rd(0) = I3, where the objective is to bring the spacecraft to rest at the desired �nal
orientation Rd as given above. The initial gimbal angles are �1 = 0 rad, �2 = 0:419 rad, �3 = 3:14 rad. Let
c1 = 1 and umax = 15.

Figures 3(a)-(f) show, respectively, the attitude error, angular velocity components, gimbal angles, gimbal
angular velocity control inputs (u), gimbal angular accelerations ( _u) and singular values of Y . The spacecraft
attitude and angular velocity components are brought close to the desired values in about 5 sec. It can be
seen from Figure 3(e) that the control input derivatives decrease to zero in about 0.8 sec. Figure 3(f) con�rms
that the controller is successfully able to avoid singularities during this maneuver.
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(b) Spacecraft angular-velocity components.
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(c) Gimbal Angles.
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(d) Control input to the gimbals.
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(e) Control input derivatives of the gimbals.
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(f) Singular values of the matrix Y .

Figure 3: Motion-to-Rest maneuver with CMGs using control law (57).

We now use controller (62) for the same maneuver. Let W1 = diag(7; 8; 9) and W2 = diag(14; 15; 6). The
initial gimbal angles in this case are �1 = 0 rad, �2 = 0:897 rad, �3 = 1:744 rad. All other initial conditions
are the same as in the previous maneuver.
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Figures 4(a)-(f) show, respectively, the attitude error, angular velocity components, gimbal angles, gimbal
angular velocity control inputs (u), gimbal angular accelerations ( _u) and singular values of Y . The spacecraft
attitude and angular velocity components are brought close to the desired values in about 2.5 sec. It can
be seen from Figure 4(e) that the control input derivatives decrease to zero in about 0.3 sec. Figure 4(f)
con�rms that the controller is successfully able to avoid singularities during this maneuver.
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(b) Spacecraft angular-velocity components.
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(c) Gimbal Angles.
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(d) Control input to the gimbals.
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(e) Control input derivatives of the gimbals.
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(f) Singular values of the matrix Y .

Figure 4: Motion-to-Rest maneuver with CMGs using control law (62).
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C. Rest-to-Rest Maneuver using Control Laws (58) and (63)

We use controller (58) for a rest-to-rest maneuver, where the objective is to bring the spacecraft from
the initial attitude R0 = I3 to the desired �nal orientation

Rd =

264 0:0707 0:9975 0

�0:9975 0:0707 0

0 0 1:0000

375 (67)

which represents a rotation of 1.5 radians about the z-axis. We assume that the gimbals are initially at rest
relative to the spacecraft, that is,

u(0) =
h

0 0 0
iT

rad/sec:

The initial gimbal angles are �1 = 0 rad, �2 = 0:419 rad, �3 = 3:14 rad. The parameters of controller
(58) are chosen to be K1 = I3; � = 1, A = diag(1; 2; 3), D = I3; and Q = I6. Let c1 = 1 and umax = 1.

Figures 5(a)-(g) show, respectively, the attitude error, angular velocity components, gimbal angles, gimbal
angular velocity control inputs (u), gimbal angular accelerations ( _u), singular values of Y and inertia estimate
errors. The spacecraft attitude and angular velocity components are brought close to the desired values in
about 15 sec. It can be seen from Figure 5(e) that the control input derivatives decrease to zero in about
6 sec. Figure 5(f) con�rms that the controller is successfully able to pass through singularities during this
maneuver.

We now use controller (63) for the same maneuver. Let W1 = diag(7; 8; 9) and W2 = diag(14; 15; 6).
The initial gimbal angles are �1 = 0 rad, �2 = 0:897 rad, �3 = 1:744 rad. All other initial conditions and
controller parameters are the same as in the previous maneuver.

Figures 6(a)-(g) show, respectively, the attitude error, angular velocity components, gimbal angles, gimbal
angular velocity control inputs (u), gimbal angular accelerations ( _u), singular values of Y and inertia estimate
errors. The spacecraft attitude and angular velocity components are brought close to the desired values in
about 15 sec. It can be seen from Figure 6(e) that the control input derivatives decrease to zero in about
5 sec. Figure 6(f) con�rms that the controller is successfully able to pass through singularities during this
maneuver.

D. Motion-to-Rest Maneuver using Control Laws (58) and (63)

We now consider a motion-to-rest maneuver, where the spacecraft is initially spinning with an angular
velocity

!0 =
h

0:5 �1 �0:5
iT

rad/sec;

and initial attitude Rd(0) = I3, where the objective is to bring the spacecraft to rest at the desired �nal
orientation Rd as given above. Likewise, the controller parameters are as given in the previous section. The
initial gimbal angles are �1 = 0 rad, �2 = 0:419 rad, �3 = 3:14 rad. Let c1 = 1 and umax = 1.

Figures 7(a)-(g) show, respectively, the attitude error, angular velocity components, gimbal angles, gimbal
angular velocity control inputs (u), gimbal angular accelerations ( _u), singular values of Y and inertia estimate
errors. The spacecraft attitude and angular velocity components are brought close to the desired values in
about 25 sec. It can be seen from Figure 7(e) that the control input derivatives decrease to zero in about
0.1 sec. Figure 7(f) con�rms that the controller is successfully able to pass through singularities during this
maneuver.

We now use controller (63) for the same maneuver. Let W1 = diag(7; 8; 9) and W2 = diag(140; 150; 60).
The initial gimbal angles are �1 = 0 rad, �2 = 0:897 rad, �3 = 1:744 rad. All other initial conditions and
controller parameters are the same as in the previous maneuver.

Figures 8(a)-(g) show, respectively, the attitude error, angular velocity components, gimbal angles, gimbal
angular velocity control inputs (u), gimbal angular accelerations ( _u), singular values of Y and inertia estimate
errors. The spacecraft attitude and angular velocity components are brought close to the desired values in
about 20 sec. It can be seen from Figure 8(e) that the control input derivatives decrease to zero in about
10 sec. Figure 8(f) con�rms that the controller is successfully able to pass through singularities during this
maneuver.
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E. Spin Maneuver using Control Law (63)

We use controller (63) for a spin maneuver, where the objective is to bring the spacecraft from rest to a
spin of

!d =
h

0:005 �0:005 0:003
iT

rad/sec;

We assume that the gimbals are initially at rest relative to the spacecraft, that is,

u(0) =
h

0 0 0
iT

rad/sec:

Let W1 = diag(7; 8; 9) and W2 = diag(14; 15; 6). The initial gimbal angles are �1 = 0 rad, �2 = 0:897
rad, �3 = 1:744 rad. All other controller parameters are the same as in the previous section.

Figures 9(a)-(g) show, respectively, the attitude error, angular velocity components, gimbal angles, gimbal
angular velocity control inputs (u), gimbal angular accelerations ( _u), singular values of Y and inertia estimate
errors. The spacecraft attitude and angular velocity components are brought close to the desired values in
about 70 sec. It can be seen from Figure 9(e) that the control input derivatives decrease to zero in about 20
sec. Figure 9(f) con�rms that the controller is successfully able to avoid singularities during this maneuver.

VIII. Conclusion

We extended the control laws of ref.1 to the case of control moment gyroscope actuation with gimbal
velocity commands. We carefully derived the equations of motion of a spacecraft with three linearly indepen-
dent CMG actuators with spherical gyro wheels, whose gimbal axes of rotation are not necessarily aligned
with the principal axes of the spacecraft bus, do not necessarily pass through the spacecraft’s center of mass,
and are not necessarily mass balanced in order to preserve the location of the spacecraft’s center of mass. We
do not require knowledge of the spacecraft’s inertia, only the inertia of the gyro wheels. These results have
practical advantages relative to previous controllers that 1) require exact or approximate inertia information
or 2) are based on attitude parameterizations such as quaternions that require discontinuous control laws or
fail to be physically consistent (that is, specify di�erent control torques for the same physical orientation).

We discussed two singularity avoidance methods in this paper, namely, the saturated pseudoinverse and
the singularity robust (SR) inverse. We simulated the controllers for rest-to-rest, motion-to-rest, and spin
maneuvers that pass through CMG singularities using both methods. We found that the spacecraft achieves
the desired orientation and spin.
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(a) Eigenaxis attitude error.
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(b) Spacecraft angular-velocity components.
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(c) Gimbal Angles.
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(d) Control input to the gimbals.
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(e) Control input derivatives of the gimbals.
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(f) Singular values of the matrix Y .
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(g) Inertia-estimate errors.

Figure 5: Rest-to-Rest maneuver with CMGs using control law (58).
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(b) Spacecraft angular-velocity components.
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(c) Gimbal Angles.
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(d) Control input to the gimbals.
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(e) Control input derivatives of the gimbals.
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(f) Singular values of the matrix Y .
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Figure 6: Rest-to-Rest maneuver with CMGs using control law (63).
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(b) Spacecraft angular-velocity components.
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(c) Gimbal Angles.
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(d) Control input to the gimbals.
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(e) Control input derivatives of the gimbals.
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(f) Singular values of the matrix Y .
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Figure 7: Motion-to-Rest maneuver with CMGs using control law (58).
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(b) Spacecraft angular-velocity components.
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(d) Control input to the gimbals.
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(e) Control input derivatives of the gimbals.
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(f) Singular values of the matrix Y .

0 5 10 15 20 25 30
−15

−10

−5

0

5

Time, sec

In
er

tia
−

E
st

im
at

e 
E

rr
or

s,
 k

g−
m

2

 

 
J̃1

J̃2

J̃3

0 5 10 15 20 25 30
−10

−5

0

5

10

Time, sec

In
er

tia
−

E
st

im
at

e 
E

rr
or

s,
 k

g−
m

2

 

 
J̃4

J̃5

J̃6

(g) Inertia-estimate errors.

Figure 8: Motion-to-Rest maneuver with CMGs using control law (63).
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(b) Spacecraft angular-velocity components.
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(d) Control input to the gimbals.
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(e) Control input derivatives of the gimbals.
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(f) Singular values of the matrix Y .
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(g) Inertia-estimate errors.

Figure 9: Spin maneuver with CMGs using control law (63).
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