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Abstract— We present a discrete-time adaptive control law
that is effective for systems that are unstable, MIMO, and/or
nonminimum phase. The adaptive control algorithm provides
guidelines concerning the modeling information needed for
implementation. This information includes a sufficient number
of Markov parameters to capture the sign of the high-frequency
gain as well as the nonminimum-phase zeros. No additional
information about the poles or zeros need be known. We present
numerical examples to illustrate the algorithm’s effectiveness in
handling nonminimum-phase zeros.

I. INTRODUCTION

Unlike robust control, which fixes the control gains based

on a prior, fixed level of modeling uncertainty, adaptive

control algorithms tune the feedback gains in response to

the true plant and exogenous signals, that is, commands

and disturbances. Generally speaking, adaptive controllers

require less prior modeling information than robust con-

trollers, and thus can be viewed as highly parameter-robust

control laws. The price paid for the ability of adaptive control

laws to operate with limited prior modeling information is

the complexity of analyzing and quantifying the stability

and performance of the closed-loop system, especially since

adaptive control laws, even for linear plants, are nonlinear.

Stability and performance analysis of adaptive control

laws often entails restrictive assumptions on the dynamics

of the plant. For example, a widely invoked assumption in

adaptive control is passivity [1], which is restrictive and

difficult to verify in practice. A related assumption is that the

plant is minimum phase [2, 3], which may entail the same

difficulties. In fact, sampled-data control may give rise to

nonminimum-phase zeros whether or not the continuous-time

system is minimum phase [4]. Beyond these assumptions,

adaptive control laws are known to be sensitive to unmodeled

dynamics and sensor noise [5, 6], which motivates robust

adaptive control laws [7].

In addition to these basic issues, adaptive control laws may

entail unacceptable transients during adaptation, which may

be exacerbated by actuator limitations [8–10]. In fact, adap-

tive control under extremely limited modeling information

such as uncertainty in the high-frequency gain [11, 12] may
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yield a transient response that exceeds the practical limits

of the plant. Therefore, the type and quality of the available

modeling information as well as the speed of adaptation must

be considered in the analysis and implementation of adaptive

control laws. These issues are discussed in [13].

Adaptive control laws have been developed in both contin-

uous time and discrete time. In the present paper we consider

discrete-time adaptive control laws since these control laws

can be implemented directly in embedded code without

requiring an intermediate discretization step with potential

loss of phase margin. Although discrete-time adaptive control

laws are less developed than their continuous-time counter-

parts, the literature is substantial and growing [2, 14–18].

The goal of the present paper is to present a discrete-

time adaptive control law that is effective for nonminimum-

phase systems. In [2], a discrete-time adaptive control law

with stability guarantees was developed under a minimum-

phase assumption. Extensions given in [3] based on internal

model control [19] and Lyapunov analysis also invoke this

assumption. To circumvent the minimum-phase assumption,

the zero annihilation periodic control law [20] uses lifting to

move all of the plant’s zeros to the origin.

The present paper is motivated by the adaptive control

laws given in [3] and [21]. The control law given in [21]

lacks a proof of stability, but is known numerically to be

effective on nonminimum-phase plants without recourse to

lifting. Accordingly, we present an adaptive control law

based on [3] and [21] for systems that are unstable, MIMO,

and/or nonminimum phase. The adaptive control algorithm

provides guidelines concerning the modeling information

needed for implementation. This information includes a

sufficient number of Markov parameters to capture the sign

of the high-frequency gain as well as the nonminimum-phase

zeros. Except for an estimate of the plant order, no additional

information about the plant need be known.

The novel feature of this adaptive control law is the use

of a retrospective correction filter (RCF). The RCF provides

an inner loop to the adaptive control law by modifying the

sensor measurements based on the difference between the

actual past control inputs and the recomputed past control

inputs based on the current control law. This technique is

inherent in [21] in the use of the estimated performance

variable but is more fully developed in the present paper.
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The goal of the present paper is to develop the RCF

adaptive control algorithm and demonstrate its effectiveness

in handling nonminimum-phase zeros. Extensive numerical

examples given in [22] illustrate the response of the algo-

rithm under conditions of uncertainty in the relative degree

and Markov parameters, measurement noise, and actuator

and sensor saturation. Basic command following, disturbance

rejection, and model reference adaptive control examples are

also included in [22]. These numerical studies show that

the RCF adaptive control algorithm is effective for handling

nonminimum-phase zeros under minimal modeling assump-

tions. These studies also provide guidance into the choice

of the learning rate α for stable response and acceptable

transient behavior. This guidance can provide the basis for

future Lyapunov-based stability and performance analysis.

II. PROBLEM FORMULATION

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) + Bu(k) + D1w(k), (1)

y(k) = Cx(k) + D2w(k), (2)

z(k) = E1x(k) + E0w(k), (3)

where x(k) ∈ R
n, y(k) ∈ R

ly , z(k) ∈ R
lz , u(k) ∈ R

lu ,

w(k) ∈ R
lw , and k ≥ 0. Our goal is to develop an adaptive

output feedback controller under which the performance

variable z is minimized in the presence of the exogenous

signal w. Note that w can represent either a command signal

to be followed, an external disturbance to be rejected, or

both. For example, if D1 = 0 and E0 6= 0, then the

objective is to have the output E1x follow the command

signal −E0w. On the other hand, if D1 6= 0 and E0 = 0,

then the objective is to reject the disturbance w from the

performance measurement E1x. The combined command

following and disturbance rejection problem is addressed

when D1 and E0 are block matrices. More precisely, if D1 =
[

D̂1 0
]

, E0 =
[

0 Ê0

]

, and w(k) =

[

w1(k)
w2(k)

]

, then

the objective is to have E1x follow the command −Ê0w2

while rejecting the disturbance w1. Lastly, if D1 and E0 are

empty matrices, then the objective is output stabilization, that

is, convergence of z to zero.

Model reference adaptive control (MRAC) is a special case

of (1)–(3), where the performance variable z is the difference

between the measured output of the plant and the output of

the reference model. For MRAC, the exogenous command

w is available to the controller as an additional measurement

variable, as shown in Figure 1.

III. CONTROLLER CONSTRUCTION

In this section we formulate an adaptive control algorithm

for the general control problem represented by (1)–(3). We

use a strictly proper time-series controller of order nc, such

that the control u(k) is given by

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=1

Ni(k)y(k − i), (4)

Fig. 1. Model reference adaptive control problem.

where, for all i = 1, . . . , nc, Mi ∈ R
lu×lu and Ni ∈ R

lu×ly

are given by the adaptive law presented below. The control

can be expressed as

u(k) = θ(k)φ(k), (5)

where

θ(k)
△
=

[

N1(k) · · · Nnc
(k) M1(k) · · · Mnc

(k)
]

is the controller parameter block matrix, and the regressor

vector φ(k) is given by

φ(k)
△
=





















y(k − 1)
...

y(k − nc)
u(k − 1)

...

u(k − nc)





















∈ R
nc(lu+ly). (6)

For positive integers p and µ, we define the extended

measurement vector Y (k), the extended performance vector

Z(k), and the extended control vector U(k) by

Y (k)
△
=







y(k)
...

y(k − p + 1)






, Z(k)

△
=







z(k)
...

z(k − p + 1)






,

U(k)
△
=







u(k)
...

u(k − pc + 1)






, (7)

where pc
△
= µ + p.

From (5), it follows that the extended control vector U(k)
can be written as

U(k)
△
=

pc
∑

i=1

Liθ(k − i + 1)φ(k − i + 1), (8)

where

Li
△
=





0(i−1)lu×lu

Ilu

0(pc−i)lu×lu



 ∈ R
pclu×lu . (9)

We define the surrogate performance vector Ẑ(θ̂(k), k) by

Ẑ(θ̂(k), k)
△
= Z(k) − B̄zu

(

U(k) − Û(k)
)

, (10)

where Û(k)
△
=

∑pc

i=1 Liθ̂(k)φ(k − i + 1), θ̂(k) ∈
R

lu×nc(lu+ly) is the surrogate controller parameter block
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matrix, and the block-Toeplitz surrogate control matrix B̄zu

is constructed below.

Taking the vec of (10) yields

Ẑ(θ̂(k), k) = f(k) + D(k)vec θ̂(k), (11)

where f(k)
△
= Z(k) − B̄zuU(k) and D(k)

△
=

∑pc

i=1 φT(k −
i + 1) ⊗ B̄zuLi. Note that

Û(k) =

pc
∑

i=1

Liθ̂(k)φ(k − i + 1) = M(k)vec θ, (12)

where M(k)
△
=

∑pc

i=1 φT(k − i + 1) ⊗ Li.

Now, consider the surrogate cost function

Ĵ(k)
△
= ẐT(θ̂(k), k)R1(k)Ẑ(θ̂(k), k) (13)

+ ÛT(θ̂(k), k)R2(k)Û(θ̂(k), k)

+ tr

[

(

θ̂(k) − θ(k)
)T

R3(k)
(

θ̂(k) − θ(k)
)

]

,

where R1(k) = RT
1 (k) > 0, R2(k) ≥ 0, and R3(k) =

RT
3 (k) > 0. Substituting (11) and (12) into (13) yields

Ĵ(k) = c(k) + bT(k)vec θ̂(k) +
(

vec θ̂(k)
)T

A(k)vec θ̂(k),

where (14)

A(k)
△
= DT(k)R1(k)D(k) + MT(k)R2(k)M(k)

+ R3(k) ⊗ Inc(lu+ly), (15)

b(k)
△
= 2DT(k)R1(k)f(k) − 2R3(k) ⊗ Inc(lu+ly)vec θ(k),

(16)

c(k)
△
= fT(k)R1(k)f(k) + tr

[

θT(k)R3(k)θ(k)
]

. (17)

Since A(k) is positive definite, Ĵ(k) has the strict global

minimizer

θ̂(k) = −
1

2
vec−1(A−1(k)b(k)). (18)

The update law is given by

θ(k + 1) = θ̂(k). (19)

For all future discussion, we specialize (15)–(17) with

R1(k)
△
= Iplz , R2(k)

△
= 0pclu , R3(k)

△
= α(k)Ilu ,

(20)

where α(k) > 0 is a scalar, yielding

A(k) = DT(k)D(k) + α(k)I, (21)

b(k) = 2DT(k)f(k) − 2α(k)vec θ(k), (22)

c(k) = fT(k)f(k) + α(k)tr
[

θT(k)θ(k)
]

. (23)

Fig. 2. Closed-loop system including adaptive control algorithm with the
retrospective correction filter (dashed box) for p = 1.

IV. MARKOV PARAMETER-BASED UPDATE

The novel feature of the adaptive control algorithm (5),

(18), and (19) is the use of the retrospective correction

filter (RCF) (10), as shown in Figure 2 for p = 1. The

RCF provides an inner loop to the adaptive control law

by modifying the performance variable Z(k) based on the

difference between the actual past control inputs U(k) and

the recomputed past control inputs Û(k) based on the current

control law.

Consider the time-series representation of (1)–(3) from u

to z, given by

z(k) =
n

∑

i=1

−αiz(k − i) +
n

∑

i=d

βiu(k − i), (24)

where α1, . . . , αn ∈ R, βd, . . . , βn ∈ R
lz×lu , and the

relative degree d is the smallest positive integer i such

that the ith Markov parameter Hi
△
= E1A

i−1B is nonzero.

The transfer function matrix Gzu(z) from u to z can be

equivalently represented by

Gzu(z)
△
=

1

p(z)

(

βdzn−d + βd+1zn−d−1 + · · · + βn

)

, (25)

where p(z)
△
= zn + α1zn−1 + · · · + αn. Note that βd = Hd.

Replacing k with k − 1 in (24) and substituting the re-

sulting relation back into (24) yields the 2-MARKOV model.

Repeating this procedure µ−1 times yields the µ-MARKOV

model from u to z of (1)–(3)

z(k) =
n

∑

i=1

αµ,iz(k − µ − i + 1) +

µ
∑

i=d

Hiu(k − i)

+
n

∑

i=2

βµ,iu(k − µ − i + 1), (26)

where, for i = 1, . . . , n, the coefficients αµ,i ∈ R and βµ,i ∈
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R
lz×lu are given by

α1,i
△
= −αi, β1,i

△
= βi,

αµ,i
△
= αµ−1,1α1,i βµ,i

△
= αµ−1,1β1,i

+αµ−1,i+1, +βµ−1,i+1,

αµ,n
△
= αµ−1,1α1,n, βµ,n

△
= αµ−1,1β1,n.

(27)

Note that Hµ = βµ,1.

Equation (26) can be equivalently represented as the µ-

MARKOV transfer function

Gµ,zu(z) =
1

pµ(z)
(28)

·
(

Hdzµ+n−d−1 + · · · + Hµ−1zn + βµ,1zn−1 + · · · + βµ,n

)

,

where pµ(z)
△
= zµ+n−1+αµ,1zn−1+ · · ·+αµ,n. This system

representation is nonminimal, overparameterized, has order

n + µ− 1, and the coefficients of the terms zn+µ−2 through

zn in the denominator are zero.

The Laurent series expansion of Gzu(z) about z = ∞ is

Gzu(z) =
∞
∑

i=d

z−iHi. (29)

Truncating the numerator and denominator of (28) is equiv-

alent to the truncated Laurent series expansion of Gzu(z)
about z = ∞, given by

Ḡµ,zu(z)
△
=

µ
∑

i=d

z−iHi. (30)

Finally, the surrogate control matrix B̄zu ∈ R
plz×pclu is

B̄zu
△
=













0lz×lu · · · 0lz×lu Hd · · ·

0lz×lu

. . .
. . .

. . .
...

. . .
. . .

. . .

0lz×lu · · · 0lz×lu 0lz×lu · · ·

· · · Hµ 0lz×lu · · · 0lz×lu

. . .
. . .

. . .
...

. . .
. . . 0lz×lu

· · · 0lz×lu Hd · · · Hµ













. (31)

The leading zeros in the first row of B̄zu account for the

nonzero relative degree d. The advantage in constructing B̄zu

using the Markov parameters Hi, i = d, . . . , µ, as opposed

to using all of the numerator coefficients of Gµ,zu is faster

convergence and ease of identification. The algorithm places

no constraints on either the value of d or the rank of Hd

or B̄zu. In the particular case z = y, using the surrogate

performance variable ẑ in place of y in the regressor vector

(6) results in faster convergence.

The weighting parameter α introduced in (20) is called

the learning rate since it affects convergence speed of the

adaptive control algorithm. As α is increased, a higher weight

is placed on the difference between the previous control

coefficients and the current control coefficients, and, as a

result, convergence speed is lowered. Likewise, as α is

decreased, converge speed is raised.

V. SMITH-MCMILLAN-BASED UPDATE

If information about the plant’s nonminimum-phase zeros

is known, an alternative construction for B̄zu is available. We

first represent Gzu in Smith-McMillan form. We then define

the surrogate transfer function matrix Ĝzu to be identical

to Gzu in Smith-McMillan form except that the minimum-

phase transmission zeros of Gzu are replaced by transmission

zeros at the origin. Thus Ĝzu has the form

Ĝzu(z)
△
=

1

p(z)

(

β̄dzn−d + β̄d+1zn−d−1 + · · · + β̄n

)

, (32)

where β̄d, . . . , β̄n ∈ R
lz×lu are the surrogate numerator

coefficients. We redefine pc
△
= n + p, and B̄zu is given by

B̄zu
△
=













0lz×lu · · · 0lz×lu β̄d · · ·

0lz×lu

. . .
. . .

. . .

...
. . .

. . .
. . .

0lz×lu · · · 0lz×lu 0lz×lu · · ·

· · · β̄n 0lz×lu · · · 0lz×lu

. . .
. . .

. . .
...

. . .
. . .

. . . 0lz×lu

· · · 0lz×lu β̄d · · · β̄n













. (33)

In the SISO case, the construction of B̄zu requires knowl-

edge of the relative degree d, the first nonzero Markov

parameter Hd (which includes knowledge of the sign of

the high-frequency gain), and the number and location of

nonminimum-phase zeros, if any. The MIMO case is more

subtle. The advantage in using the surrogate numerator coef-

ficients β̄d, . . . , β̄n of Ĝzu as opposed to the actual numerator

coefficients βd, . . . , βn of Gzu is faster convergence.

For all future discussion, we will use the Markov-

parameter-based construction of B̄zu given by (31).

VI. NUMERICAL EXAMPLES

We now present numerical examples to illustrate the re-

sponse of the RCF adaptive control algorithm. We consider a

sequence of examples of increasing complexity, ranging from

SISO, minimum-phase plants to MIMO, nonminimum-phase

plants, including stable and unstable cases. Each plant can

be viewed as a sampled-data discretization of a continuous-

time plant sampled at Ts = 0.01 sec. All examples assume

z = y.

For simplicity, each example is taken to be a disturbance

rejection simulation, that is, E0 = 0, with unknown sinu-

soidal disturbance given by

w(k) =

[

sin 2πν1kTs

sin 2πν2kTs

]

, (34)

where ν1 = 5 Hz and ν2 = 13 Hz. The RCF adaptive

control algorithm requires no information about w. With

each plant realized in controllable canonical form, we take

D1 =

[

I2

0

]

, and, therefore, the disturbance is not matched.

Example 6.1 (SISO, Nonminimum Phase, FIR, Stable):

Consider an FIR plant of order n = 8 and zeros
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{0.3±0.7,−0.7±0.3, 2±0.5}. We take nc = 15, p = 2,

µ = 8, and α = 25. The closed-loop response is shown

in Figure 3. The control is turned on at t = 2 sec, and the

performance variable reduces to zero within 3 sec. ¥
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Fig. 3. Closed-loop disturbance rejection response for an FIR, nonminimum
phase, SISO plant. The control is turned on at t = 2 sec. The controller
order is nc = 15 with parameters p = 2, µ = 8, α = 25.

Example 6.2 (SISO, Minimum Phase, IIR, Stable):

Consider a plant with poles {0.5 ± 0.5,−0.5 ±
0.5,±0.9,±0.7} and zeros {0.3± 0.7,−0.7± 0.3, 0.5}.

We take nc = 15, p = 1, µ = 3, and α = 25. The

closed-loop response is shown in Figure 4. The control is

turned on at t = 2 sec, and the performance variable reduces

to zero within 1 sec. The control algorithm converges to an

internal model controller with high gain at the disturbance

frequency, as seen in Figure 5. ¥
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Fig. 4. Closed-loop disturbance rejection response for an IIR, stable,
minimum phase, SISO plant. The control is turned on at t = 2 sec. The
controller order is nc = 15 with parameters p = 1, µ = 3, α = 25.

Example 6.3 (SISO, Nonminimum Phase, IIR, Stable):

Consider a plant with poles {0.5 ± 0.5,−0.5 ±
0.5,±0.9,±0.7} and zeros {0.3 ± 0.7,−0.7 ± 0.3, 2}.

We take nc = 15, p = 2, µ = 8, and α = 25. The

closed-loop response is shown in Figure 6. The control is

turned on at t = 2 sec, and the performance variable reduces

to zero within 2 sec. ¥
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Fig. 5. Bode magnitude plot of the adaptive controller at t = 10 sec. The
adaptive controller places poles at the disturbance frequencies ν1 = 5 Hz
and ν2 = 13 Hz. The controller magnitude |Gc(eωTs )| is plotted for ω
up to the Nyquist frequency ωNyq = π

Ts

= 314 rad/sec.
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Fig. 6. Closed-loop disturbance rejection response for an IIR, stable,
nonminimum phase, SISO plant. The control is turned on at t = 2 sec.
The controller order is nc = 15 with parameters p = 2, µ = 8, α = 25.

Example 6.4 (SISO, Minimum Phase, IIR, Unstable):

Consider a plant with poles {0.5 ± 0.5,−0.5 ±
0.5,±1.04, 0.1 ± 1.025} and zeros {0.3 ± 0.7,−0.7 ±
0.3, 0.5}. We take nc = 15, p = 1, µ = 10, and α = 25.

The closed-loop response is shown in Figure 7. The

control is turned on at t = 2 sec, and, after a transient, the

performance variable reduces to zero. ¥

Example 6.5 (MIMO, Nonminimum Phase, IIR, Stable):

Consider a two-input, two-output plant with poles

{−0.5± 0.5,±0.7, 0.3± 0.7,−0.4, 0.9} and transmission

zeros {0.5, 2}. We take nc = 15, p = 2, µ = 8, and α = 1.

The closed-loop response is shown in Figure 8. The control

is turned on at t = 2 sec, and the performance variable

reduces to zero. ¥

Example 6.6 (MIMO, Nonminimum Phase, IIR, Unstable):

Consider a two-input, two-output plant with poles

{−0.5 ± 0.5,±0.7, 0.1 ± 1.025,−0.4, 0.9} and

transmission zeros {0.5, 2}. We take nc = 10, p = 1,

µ = 10, and α = 1. The closed-loop response is shown in

Figure 9. The control is turned on at t = 2 sec, and, after a

slight transient, the performance variable reduces to zero.¥
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Fig. 7. Closed-loop disturbance rejection response for an unstable,
minimum phase, SISO plant. The control is turned on at t = 2 sec. The
controller order is nc = 15 with parameters p = 1, µ = 10, α = 25.
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Fig. 8. Closed-loop disturbance rejection response for an IIR, stable,
nonminimum phase, two-input two-output plant. The control is turned on
at t = 2 sec. The controller order is nc = 15 with parameters p = 2, µ =
8, α = 1.
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Fig. 9. Closed-loop disturbance rejection response for an unstable,
nonminimum phase, two-input two-output plant. The control is turned on
at t = 2 sec. The controller order is nc = 10 with parameters p = 1, µ =
10, α = 1.

VII. CONCLUSIONS

We presented the RCF adaptive control algorithm and

demonstrated its effectiveness in handling nonminimum-

phase zeros through numerical examples. These numerical

studies serve as guidance with regard to the development

of system identification algorithms that can estimate the re-

quired plant parameters with suitable accuracy. Future work

includes the development of such identification algorithms

as well as Lyapunov-based stability and robustness analysis

of the RCF adaptive control algorithm.

REFERENCES

[1] K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems.
Englewood Cliffs, New Jersey: Prentice Hall, 1989.

[2] G. C. Goodwin, P. J. Ramadge, and P. E. Caines, “Discrete-time
multivariable adaptive control,” IEEE Trans. Autom. Contr., vol. 25,
pp. 449–456, 1980.

[3] J. B. Hoagg, M. A. Santillo, and D. S. Bernstein, “Discrete-time
adaptive command following and disturbance rejection with unknown
exogenous dynamics,” IEEE Trans. Autom. Contr., vol. 53, pp. 912–
928, 2008.
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