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I. INTRODUCTION

Since the classical Kalman filter provides optimal least-

squares estimates of all of the states of a linear time-varying

system, there is longstanding interest in obtaining simpler

filters that estimate only a subset of states. This objective is of

particular interest when the system order is extremely large,

which occurs for systems arising from discretized partial

differential equations [1].

One approach to this problem is to consider reduced-

order Kalman filters. These reduced-complexity filters pro-

vide state estimates that are suboptimal [2–5]. Alternative

variants of the classical Kalman filter have been developed

for computationally demanding applications such as weather

forecasting [6–9], where the filter gain and covariance are

modified so as to reduce the computational requirements.

A comparison of various techniques is given in [10]. An

alternative approach to reducing complexity is to restrict

the data-injection subspace to obtain a spatially localized

Kalman filter. This approach is developed in [11].

In the present paper we revisit the approach of [2, 12],

which considers the problem of fixed-order steady-state

reduced-order estimation. For a linear time-invariant system,

the optimal steady-state fixed-order filter is characterized

by coupled Riccati and Lyapunov equations, whose solution

requires iterative techniques.

This paper extends the results of [2, 12] by adopting the

finite-horizon optimization technique used in [11] to obtain

reduced-order filters that are applicable to time-varying sys-

tems. This technique also avoids the periodicity constraint

associated with the multirate filter derived in [13]. Related

techniques are used in [14].

In addition to the reduced-order filter considered in [2,

12], we also consider a fixed-structure subspace observer

constrained to estimate a specified collection of states. This

problem is considered in [3, 15]. The difference between the

reduced-order filter and subspace observer is apparent in the

the distinct oblique projectors τ and µ that characterize the

filter and observer gains, respectively.

II. FINITE-HORIZON DISCRETE-TIME OPTIMAL

REDUCED-ORDER ESTIMATOR

Consider the system

xk+1 = Akxk + D1,kwk, (2.1)

yk = Ckxk + D2,kwk, (2.2)

This research was supported by the National Science Foundation, under
grants CNS-0539053 and ATM-0325332 to the University of Michigan,
Ann Arbor, USA. J. Chandrasekar, I. S. Kim, and D. S. Bernstein are with
Department of Aerospace Engineering, University of Michigan, Ann Arbor,
MI, dsbaero@umich.edu

where xk ∈ R
nk , yk ∈ R

pk , and wk ∈ R
dk is a white noise

process with zero mean and unit covariance. We assume for

convenience that D1,kDT
2,k = 0.

We consider a reduced-order estimator with dynamics

xe,k+1 = Ae,kxe,k + Be,kyk, (2.3)

where xe,k ∈ R
ne,k . Define the combined state variance Q̃k

by

Q̃k , E [x̃kx̃T
k ], (2.4)

where x̃k ∈ R
ñk , ñk , nk + ne,k is defined by

x̃k ,
[

(xk)T (xe,k)T
]T

. (2.5)

Consider the cost function

Jk , E

[

(

Lkxk+1 − xe,k+1

)T(

Lkxk+1 − xe,k+1

)

]

, (2.6)

where Lk ∈ R
ne,k×nk determines the subspace of the state x

that is weighted. It follows from (2.4) and (2.5) that Jk can

be expressed as Jk = tr
(

Q̃k+1R̃k

)

, where R̃k ∈ R
n+ne is

defined by

R̃k ,

[

LT
k Lk −LT

k

−Lk I

]

. (2.7)

Note that (2.1) and (2.3) imply that

x̃k+1 = Ãkx̃k + D̃1,kwk, (2.8)

where

Ãk ,

[

Ak 0
Be,kCk Ae,k

]

, D̃1,k ,

[

D1,k

Be,kD2,k

]

. (2.9)

Therefore,

Q̃k+1 = ÃkQ̃kÃT
k + Ṽ1,k, (2.10)

where

Ṽ1,k ,

[

V1,k 0
0 Be,kV2,kBT

e,k

]

, (2.11)

and

V1,k , D1,kDT
1,k, V2,k , D2,kDT

2,k. (2.12)

Partition Q̃k as

Q̃k =

[

Q̃1,k Q̃12,k

Q̃T
12,k Q̃2,k

]

. (2.13)

Hence, it follows from (2.10) that

Q̃1,k+1 = AkQ̃1,kAT
k + V1,k, (2.14)

Q̃12,k+1 = AkQ̃1,kCT
k BT

e,k + AkQ̃12,kAT
e,k, (2.15)

Q̃2,k+1 = Be,k

(

CkQ̃1,kCT
k + V2,k

)

BT
e,k (2.16)

+ Ae,kQ̃T
12,kCT

k BT
e,k + Be,kCkQ̃12,kAT

e,k + Ae,kQ̃2,kAe,k.

Proposition 2.1: Assume that Ae,k and Be,k minimize
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Jk. Then, Ae,k and Be,k satisfy

Ae,kQ̃2,k = (LkAk − Be,kCk) Q̃12,k, (2.17)

Be,k =
(

LkAkQ̃1,k − Ae,kQ̃
T
12,k

)

C
T
k

(

CkQ̃1,kC
T
k + V2,k

)

−1

.

(2.18)

Proof. Setting ∂Jk

∂Ae,k
= 0 and ∂Jk

∂Be,k
= 0 yields the result.

2

Next, we assume that Q̃2,k is invertible, define Qk, Q̂k ∈

R
nk×nk by

Qk , Q̃1,k − Q̃12,kQ̃−1
2,kQ̃T

12,k, Q̂k , Q̃12,kQ̃−1
2,kQ̃T

12,k,(2.19)

Ṽ2,k ∈ R
pk×pk by Ṽ2,k , CkQkCT

k + V2,k, and Gk ∈

R
ne,k×nk by Gk , Q̃−1

2,kQ̃T
12,k.

Proposition 2.2: Assume that Q̃2,k is positive definite

and Ae,k and Be,k minimize Jk. Then, Ae,k and Be,k satisfy

Ae,k = LkAk

(

I − QkCT
k Ṽ −1

2,k Ck

)

GT
k , (2.20)

Be,k = LkAkQkCT
k Ṽ −1

2,k . (2.21)

Proof. It follows from (2.17) that

Ae,k = (LkAk − Be,kCk) Q̃12,kQ̃−1
2,k. (2.22)

Substituting (2.22) into (2.18) yields (2.21). Finally, substi-

tuting (2.21) into (2.22) yields (2.20). 2

Proposition 2.3: Assume that Ae,k and Be,k satisfy

Proposition 2.2. Then,

LkQ̃12,k+1 = Q̃2,k+1, (2.23)

Q̃12,k+1 = Q̂k+1L
T
k , Q̃2,k+1 = LkQ̂k+1L

T
k . (2.24)

Proof. Substituting (2.20) and (2.21) into (2.15) and (2.16)

yields

Q̃12,k+1 = Ak

[

Q̂k + QkCT
k Ṽ −1

2,k CkQk

]

AT
k LT

k , (2.25)

Q̃2,k+1 = LkAk

[

Q̂k + QkCT
k Ṽ −1

2,k CkQk

]

AT
k LT

k . (2.26)

Pre-multiplying (2.25) by Lk yields LkQ̃12,k+1 = Q̃2,k+1.

Using (2.19) and LkQ̃12,k+1 = Q̃2,k+1 yields Q̃12,k+1 =
Q̂k+1L

T
k and Q̃2,k+1 = LkQ̂k+1L

T
k . 2

Next, define Mk ∈ R
nk×nk by

Mk , Ak

(

Q̂k + QkCT
k Ṽ −1

2,k CkQk

)

AT
k , (2.27)

and define τk, τk⊥ ∈ R
nk×nk by

τk , GT
k Lk−1, τk⊥ , I − τk. (2.28)

Proposition 2.4: Assume that Ae,k and Be,k satisfy

Proposition 2.2. Then, τ2
k+1 = τk+1, that is, τk+1 is an

oblique projector.

Proof. It follows from (2.27) that (2.25) and (2.26) can be

expressed as

Q̃12,k+1 = MkLT
k , Q̃2,k+1 = LkMkLT

k . (2.29)

Hence, (2.28) implies that

τk+1 = MkLT
k

(

LkMkLT
k

)−1
Lk. (2.30)

Therefore, τ2
k+1 = τk+1.

Proposition 2.5: Assume that Ae,k and Be,k satisfy

Proposition 2.2. Then,

τk+1Q̂k+1 = Q̂k+1. (2.31)

Proof. It follows from (2.19) that

Q̂k+1 = Q̃12,k+1Q̃
−1
2,k+1Q̃

T
12,k+1. (2.32)

Substituting (2.29) into (2.32) yields

Q̂k+1 = MkLT
k

(

LkMkLT
k

)−1
LkMk. (2.33)

Hence, pre-multiplying (2.33) by τk+1 and substituting

(2.30) into the resulting expression yields (2.31).

Proposition 2.6: Assume that Ae,k and Be,k satisfy
Proposition 2.2. Then,

Qk+1 = AkQkA
T
k + V1,k − AkQkC

T
k Ṽ

−1

2,k CkQkA
T
k (2.34)

+ τk+1⊥

[

AkQ̂kA
T
k + AkQkC

T
k Ṽ

−1

2,k CkQkA
T
k

]

τ
T
k+1⊥,

Q̂k+1 = τk+1

[

AkQ̂kA
T
k + AkQkC

T
k Ṽ

−1

2,k CkQkA
T
k

]

τ
T
k+1,

(2.35)

τk+1 = MkL
T
k (LkMkLk)−1

Lk. (2.36)

Proof. It follows from (2.23) and (2.26) that

LkQ̂k+1L
T
k (2.37)

= Lk

[

AkQ̂kAT
k + AkQkCT

k Ṽ −1
2,k CkQkAT

k

]

LT
k .

Pre-multiplying and post-multiplying (2.37) by GT
k+1 and

Gk+1, respectively, yields

τk+1Q̂k+1τ
T
k+1 (2.38)

= τk+1

[

AkQ̂kAT
k + AkQkCT

k Ṽ −1
2,k CkQkAT

k

]

τT
k+1.

Hence, (2.35) follows from Proposition 2.5.

Since Q̃12,k+1 = Q̂k+1Lk, (2.25) and (2.28) imply that

τk+1Q̂k+1 (2.39)

= τk+1

[

AkQ̂kAT
k + AkQkCT

k Ṽ −1
2,k CkQkAT

k

]

.

Therefore, (2.35) imply that

τk+1

[

AkQ̂kAT
k + AkQkCT

k Ṽ −1
2,k CkQkAT

k

]

(2.40)

= τk+1

[

AkQ̂kAT
k + AkQkCT

k Ṽ −1
2,k CkQkAT

k

]

τT
k+1.

Hence, Q̂k+1 can be expressed as

Q̂k+1 = AkQ̂kAT
k + AkQkCT

k Ṽ −1
2,k CkQkAT

k (2.41)

− τk+1⊥

[

AkQ̂kAT
k + AkQkCT

k Ṽ −1
2,k CkQkAT

k

]

τT
k+1⊥.

It follows from (2.14) and (2.19) that

Qk+1 = AQkAT + V1,k + AQ̂kAT
− Q̂k+1. (2.42)

Therefore, substituting (2.41) into (2.42) yields (2.34). 2

Note that although Ae,k and Be,k depend on Q̃12,k and

Q̃2,k, it follows from Proposition 2.3 that Q̃2,k and Q̃12,k can

be obtained from Qk and Q̂k. Hence, it suffices to propagate

Qk and Q̂k using (2.34) and (2.35), respectively.

Finally, we summarize the one-step reduced-order Kalman

filter.

State update:

Gk = (LkQ̂kLk)−1LkQ̂k, (2.43)

xe,k+1 = LkAk

(

I − QkCT
k Ṽ −1

2,k Ck

)

GT
k xe,k (2.44)

+ LkAkQkCT
k Ṽ −1

2,k yk.
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Covariance update:

Mk = Ak

(

Q̂k + QkC
T
k Ṽ

−1

2,k CkQk

)

A
T
k , (2.45)

τk+1 = MkL
T
k (LkMkLk)−1

Lk, (2.46)

Q̂k+1 = τk+1

[

AkQ̂kA
T
k + AkQkC

T
k Ṽ

−1

2,k CkQkA
T
k

]

τ
T
k+1,(2.47)

Qk+1 = AkQkA
T
k + V1,k − AkQkC

T
k Ṽ

−1

2,k CkQkA
T
k (2.48)

+ τk+1⊥

[

AkQ̂kA
T
k + AkQkC

T
k Ṽ

−1

2,k CkQkA
T
k

]

τ
T
k+1⊥.

III. TWO-STEP ESTIMATOR

Next, we consider a two-step estimator. The data assimi-

lation step is given by

xda
e,k = Cf

e,kxf
e,k + Df

e,kyk, (3.1)

where xda
e,k ∈ R

ne,k is the reduced-order data assimilation

estimate of Lxk and xf
e,k ∈ R

ne,k is the reduced-order

forecast estimate of xk. The forecast step or physics update

of the estimator is given by

xf
e,k+1 = Ada

e,kxda
e,k. (3.2)

First, we define the combined state and forecast estimate

covariance Q̃f
k ∈ R

ñk×ñk and the combined state and data

assimilation estimate covariance Q̃da
k ∈ R

ñk×ñk by

Q̃f
k , E

[

x̃f
k(x̃f

k)T
]

, Q̃da
k , E

[

x̃da
k (x̃da

k )T
]

, (3.3)

where x̃f
k, x̃da

k ∈ R
n+ne are defined by

x̃f
k ,

[

xk

xf
e,k

]

, x̃da
k ,

[

xk

xda
e,k

]

. (3.4)

Define the data assimilation cost by

Jda
k , E

[

(

Lkxk − xda
e,k

)T (

Lkxk − xda
e,k

)

]

. (3.5)

Hence, (3.3) implies that Jda
k = tr(Q̃da

k R̃k), where R̃k is

defined by (2.7).

It follows from (2.1), (3.1), and (3.4) that

x̃da
k = Ãf

kx̃f
k + D̃f

1,kwk, (3.6)

where Ãf
k ∈ R

ñk×ñk and D̃f
1,k ∈ R

ñk×d are defined by

Ãf
k ,

[

I 0
Df

e,kCk Cf
e,k

]

, D̃f
1,k ,

[

0
Df

e,kD2,k

]

. (3.7)

Therefore,

Q̃da
k = Ãf

kQ̃f
k(Ãf

k)T + D̃f
1,k(D̃f

1,k)T. (3.8)

Hence, Jda
k can be expressed as

Jda
k = tr

[(

Ãf
kQ̃f

k(Ãf
k)T + D̃f

1,k(D̃f
1,k)T

)

R̃k

]

. (3.9)

Finally, partition Q̃f
k as

Q̃f
k =

[

Q̃f
1,k Q̃f

12,k

(Q̃f
12,k)T Q̃f

2,k

]

. (3.10)

so that substituting (3.7) into (3.9) yields

The following result characterizes Cf
e,k and Df

e,k that

minimize Jda
k .

Proposition 3.1: Assume that Cf
e,k and Df

e,k minimize

Jda
k . Then, Cf

e,k and Df
e,k satisfy

C
f
e,kQ̃

f
2,k =

(

Lk − D
f
e,kCk

)

Q̃
f
12,k, (3.11)

D
f
e,k =

(

LQ̃
f
1,k − C

f
e,k(Q̃f

12,k)T
)

C
T
k

(

CkQ̃
f
1,kC

T
k + V2,k

)

−1

.

(3.12)

Proof. Setting
∂Jda

k

∂Cf

e,k

= 0 and
∂Jda

k

∂Df

e,k

= 0 yields the result.

2

Next, we assume that Q̃f
2,k is invertible and define

Qf
k, Q̂f

k ∈ R
nk×nk by

Qf
k , Q̃f

1,k − Q̃f
12,k(Q̃f

2,k)−1(Q̃f
12,k)T,

Q̂f
k , Q̃f

12,k(Q̃f
2,k)−1(Q̃f

12,k)T.
(3.13)

Next, define V f
2,k ∈ R

pk×pk by

V f
2,k , CkQf

kCT
k + V2,k. (3.14)

Also, define Gf
k ∈ R

ne,k×nk by

Gf
k , (Q̃f

2,k)−1(Q̃f
12,k)T. (3.15)

Proposition 3.2: Assume that Cf
e,k and Df

e,k minimize

Jda
k and assume that Q̃f

2,k is positive definite. Then,

Cf
e,k = Lk

(

I − Qf
kCT

k (V f
2,k)−1Ck

)

(Gf
k)T, (3.16)

Df
e,k = LkQf

kCT
k (V f

2,k)−1. (3.17)

Proof. It follows from (3.11) that

Cf
e,k =

(

Lk − Df
e,kCk

)

(Gf
k)T. (3.18)

Substituting (3.18) into (3.12) yields

D
f
e,k = [LkQ̃

f
1,k − LkQ̃

f
12,k(Q̃f

2,k)−1(Q̃f
12,k)TC

T
k (3.19)

+ D
f
e,kCkQ̃

f
12,k(Q̃f

2,k)−1(Q̃f
12,k)TC

T
k ]

(

CkQ̃
f
1,kC

T
k + V2,k

)

−1

.

Therefore, (3.17) follows from (3.13) and (3.14). Finally,

substituting (3.17) into (3.18) yields (3.16). 2

Next, partition Q̃da
k as

Q̃da
k =

[

Q̃da
1,k Q̃da

12,k

(Q̃da
12,k)T Q̃da

2,k

]

. (3.20)

Proposition 3.3: Assume that xda
e,k is given by (3.1), and

Cf
e,k and Df

e,k satisfy (3.16), (3.17). Then,

Q̃da
1,k = Q̃f

1,k, (3.21)

Q̃da
12,k =

(

Q̂f
k + Qf

kCT
k (V f

2,k)−1CkQf
k

)

LT
k , (3.22)

Q̃da
2,k =Lk

(

Q̂f
k + Qf

kCT
k (V f

2,k)−1CkQf
k

)

LT
k . (3.23)

Proof. It follows from (3.8) that Q̃da
1,k = Q̃f

1,k and

Q̃da
12,k = Q̃f

12,k(Cf
e,k)T + Q̃f

1,kCT
k (Df

e,k)T. (3.24)

Substituting (3.16) and (3.17) into (3.24) yields (3.22).
Similarly, it follows from (3.8) and (3.20) that

Q̃
da
2,k = C

f
e,kQ̃

f
1,k(Cf

e,k)T + C
f
e,k(Q̃f

12,k)TC
T
k (Df

e,k)T (3.25)

+ D
f
e,kCkQ̃

f
12,k(Cf

e,k)T + D
f
e,k

(

CkQ̃
f
1,kC

T
k + V2,k

)

(Df
e,k)T.

Finally, substituting (3.16) and (3.17) into (3.25) yields

(3.23). 2

Next, define Qda
k and Q̂da

k by

Qda
k , Q̃da

1,k − Q̃da
12,k(Q̃da

2,k)−1(Q̃da
12,k)T,

Q̂da
k , Q̃da

12,k(Q̃da
2,k)−1(Q̃da

12,k)T.
(3.26)
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Corollary 3.1: Assume that Cf
e,k and Df

e,k satisfy

Proposition 3.2. Then,

LkQ̃da
12,k = Q̃da

2,k, Q̃da
12,k = Q̂da

k LT
k , Q̃da

2,k = LkQ̂da
k LT

k .(3.27)

Next, define Gda
k by

Gda
k , (Q̃da

2,k)−1(Q̃da
12,k)T. (3.28)

Also, define Mda
k by

Mda
k , Q̂f

k + Qf
kCT

k (V f
2,k)−1CkQf

k (3.29)

and define τda
k and τda

k⊥ by

τda
k , (Gda

k )TLk, τda
k⊥ , I − τda

k . (3.30)

Proposition 3.4: Assume that Cf
e,k and Df

e,k satisfy

Proposition 3.2. Then, τda
k is an oblique projector.

Proof. The proof is similar to that of Proposition 2.4. 2

Proposition 3.5: Assume that Cf
e,k and Df

e,k satisfy

Proposition 3.2. Then,

τda
k Q̂da

k = Q̂da
k . (3.31)

Proof. The proof is similar to that of Proposition 2.5. 2

Proposition 3.6: Assume that xda
e,k is given by (3.1), and

Cf
e,k and Df

e,k satisfy Proposition 3.2. Then,

Q̂da
k = τda

k

(

Q̂f
k + Qf

kCT
k (V f

2,k)−1CkQf
k

)

(τda
k )T, (3.32)

Qda
k = Qf

k − Qf
kCT

k (V f
2,k)−1CkQf

k (3.33)

+ τda
k⊥

(

Q̂f
k + Qf

kCT
k (V f

2,k)−1CkQf
k

)

(τda
k⊥)T.

Proof. It follows from (3.23) and (3.27) that

LkQ̂da
k LT

k = Lk

(

Q̂f
k + Qf

kCT
k (V f

2,k)−1CkQf
k

)

LT
k . (3.34)

Pre-multiplying and post-multiplying (3.34) by (Gda
k )T and

Gda
k , respectively, yields (3.32).

Next, it follows from (3.22), (3.27), and (3.30) that

τda
k Q̂da

k = τda
k

(

Q̂f
k + Qf

kCT
k (V f

2,k)−1CkQf
k

)

. (3.35)

Therefore, Proposition 3.4 and (3.32) imply that

τda
k

(

Q̂f
k + Qf

kCT
k (V f

2,k)−1CkQf
k

)

(3.36)

= τda
k

(

Q̂f
k + Qf

kCT
k (V f

2,k)−1CkQf
k

)

(τda
k )T.

Hence, Q̂da
k can be expressed as

Q̂da
k =Q̂f

k + Qf
kCT

k (V f
2,k)−1CkQf

k (3.37)

− τda
k⊥

(

Q̂f
k + Qf

kCT
k (V f

2,k)−1CkQf
k

)

(τda
k⊥)T.

Finally, note that (3.21) implies that Qda
k = Q̃f

1,k − Q̂da
k .

Hence, using (3.37) yields (3.33). 2

Next, we define the forecast cost J f
k by

J f
k , E

[

(

Lkxk+1 − xf
e,k+1

) (

Lkxk+1 − xf
e,k+1

)T
]

. (3.38)

Hence, it follows from (3.3) that J f
k = tr

(

Q̃f
k+1R̃k

)

. It

follows from (2.1) and (3.2) that

x̃f
k+1 = Ãda

k x̃da
k + D̃da

1,kwk, (3.39)

where Ãda
k ∈ R

ñk×ñk and D̃da
1,k ∈ R

ñk×d are defined by

Ãda
k ,

[

Ak 0
0 Ada

e,k

]

, D̃da
1,k ,

[

D1,k

0

]

. (3.40)

Therefore,

Q̃f
k+1 = Ãda

k Q̃da
k (Ãda

k )T + D̃da
1,k(D̃da

1,k)T. (3.41)

Proposition 3.7: Assume that Ada
e,k minimizes J f

k, and

assume that Q̃da
2,k is positive definite. Then

Ada
e,k = LkAk(Gda

k )T. (3.42)

Proof. Setting
∂J f

k

∂Ada

e,k

= 0 yields the result. 2

Proposition 3.8: Assume that Ada
e,k satisfies (3.42).

Then,

LkQ̃f
12,k+1 = Q̃f

2,k+1, Q̃f
12,k+1 = Q̂f

k+1L
T
k , (3.43)

Q̃f
2,k+1 = LkQ̂f

k+1L
T
k . (3.44)

Proof. The proof is similar to that of Proposition 2.3. 2

Next, define M f
k by M f

k , AkQ̂da
k AT

k and define τ f
k and

τ f
k⊥ by τ f

k , (Gf
k)TLk−1, τ f

k⊥ , I − τ f
k.

Proposition 3.9: Assume that Ada
e,k satisfies (3.42).

Then, τ f
k+1 is an oblique projector, that is, (τ f

k+1)
2 = τ f

k+1.

Proof. The proof is similar to that of Proposition 2.4. 2

Proposition 3.10: Assume that Ada
e,k satisfies (3.42).

Then,

τ f
k+1Q̂

f
k+1 = Q̂f

k+1. (3.45)

Proof. The proof is similar to that of Proposition 2.5. 2

Proposition 3.11: Assume that Ada
e,k satisfies (3.42).

Then,

Q̂f
k+1 =τ f

k+1AkQ̂da
k AT

k (τ f
k+1)

T, (3.46)

Qf
k+1 =AkQda

k AT
k + V1,k (3.47)

+ τ f
k+1⊥

(

AkQ̂da
k AT

k

)

(τ f
k+1⊥)T.

Proof. The proof is similar to that of Proposition 2.6. 2

IV. FINITE-HORIZON DISCRETE-TIME OPTIMAL

SUBSPACE ESTIMATOR

Next, we consider reduced-order estimator that focuses

on a specific subspace of the state. Without any loss of

generality, we partition the system (2.1), (2.2) as
[

xr,k+1

xs,k+1

]

=

[

Ar,k Aus,k

0 As,k

] [

xr,k

xs,k

]

+

[

D1r,k

D1s,k

]

wk, (4.1)

yk =
[

Cr,k Cs,k

]

[

xr,k

xs,k

]

+ D2,kwk, (4.2)

we seek a reduced-order subspace estimator

xe,k+1 = Ae,kxe,k + Be,kyk, (4.3)

ye,k = Ce,kxe,k, (4.4)

that minimizes

J(Ae,k, Be,k, Ce,k+1) (4.5)

, E

(

[Lk+1xk+1 − ye,k+1]
T

Rk [Lk+1xk+1 − ye,k+1]
)

.

In this formulation the plant state xk is partitioned into

subsystems for xr,k and xs,k of dimension nr,k and ns,k,

respectively. The state xr,k may contain the components of

xk of interest. Furthermore, the matrix state weighting matrix

Lk is partitioned as Lk , [Lr,k Ls,k], where Lr,k and

Ls,k are qk × nr,k and qk × ns,k matrices, respectively. The

order ne,k of the estimator state xe,k is fixed to be equal to
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the order of the nr,k-dimensional subspace for xr,k. Thus,

the goal of the optimal reduced-order subspace estimator

problem is to design an estimator of order nr,k that yields

least-squares estimates of specified linear combinations of

the states of the system.

Next, we define the error state zk , xr,k −xe,k satisfying

zk+1 = (Ar,k − Be,kCr,k)xr,k − Ae,kxe,k (4.6)

+ (Aus,k − Be,kCs,k)xs,k + (D1u,k − Be,kD2,k)wk.

By constraining Ae,k = Ar,k − Be,kCr,k, (4.6) becomes

zk+1 =(Ar,k − Be,kCr,k)zk + (Aus,k − Be,kCs,k)xs,k

+ (D1u,k − Be,kD2,k)wk. (4.7)

Furthermore, the explicit dependence of the estimation error

in (4.5) on the xr,k subsystem can be eliminated by con-

straining Ce,k = Lr,k. Now, from (4.1)-(4.4) it follows that

x̃k+1 = Ãkx̃k + D̃kwk (4.8)

where

x̃k ,

[

zk

xs,k

]

, Ãk ,

[

Ar,k − Be,kCr,k Aus,k − Be,kCs,k

0 As,k

]

,

D̃k ,

[

D1r,k − Be,kD2,k

D1s,k

]

. (4.9)

Then, the problem can be restated as finding Be,k that

minimizes J(Be,k) = tr
(

Qk+1R̃k+1

)

, where R̃k+1 ,

LT
k+1RkLk+1 and Qk is the n × n state-error covariance

defined as Qk , E
[

x̃kx̃T
k

]

.

Following the procedure in Section 2, we obtain the
finite-horizon discrete-time optimal reduced-order subspace
estimator given by

xe,k+1 = ΦkAk(I − QkC
T
k V̂

−1

k Ck)FT
k xe,k (4.10)

+ ΦkAkQkC
T
k V̂

−1

k yk,

Qk+1 = AkQkA
T
− AkQkC

T
V̂

−1

k CkQkA
T
k + V1,k (4.11)

+ µk+1⊥AkQkC
T
V̂

−1

k CkQkA
T
k µ

T
k+1⊥,

where µk⊥ , I − µk, V̂k , CkQkCT
k + V2,k, Fk ,

[

Inr,k
0nr,k×ns,k

]

,

Φk , [Inr
(LT

r,kRkLr,k)−1(LT
r,kRkLs,k)], (4.12)

µk , F
T
k Φk =

[

Inr
(LT

r,kRkLr,k)−1(LT
r,kRkLs,k)

0 0

]

. (4.13)

Furthermore, defining the data-assimilation cost Jda
k and

the forecast cost J f
k separately such that

Jda
k , E

(

[

Lkxk − yda
e,k

]T
Rk

[

Lkxk − yda
e,k

]

)

, (4.14)

J f
k , E

(

[

Lkxk − yf
e,k

]T
Rk−1

[

Lkxk − yf
e,k

]

)

, (4.15)

we obtain the following two-step finite-horizon discrete-time

optimal subspace estimator:

Data assimilation step:

x
da
e,k = Φk(I − Q

f
kC

T
k V̂

−1

2,k Ck)FT
k x

da
k (4.16)

+ ΦkQ
f
kC

T
k V̂

−1

2,k yk,

Q
da
k = Q

f
k − Q

f
kC

T
V̂

−1

2,k CkQ
f
k (4.17)

+ µk⊥Q
f
kC

T
V̂

−1

2,k CkQ
f
kµ

T
k⊥,

V̂2,k = CkQ
f
kC

T
k + V2,k, µk = ΦkF

T
k . (4.18)

Fig. 1. Mass-spring-dashpot system.

Forecast step:

xf
e,k+1 = ΦkAkFT

k xda
e,k, (4.19)

Qf
k+1 = AkQda

k AT
k + V1,k. (4.20)

V. ASYMPTOTICALLY STABLE MASS-SPRING-DASHPOT

EXAMPLE

We consider a zero-order hold discretized model of the

mass-spring-dashpot structure consisting of 10 masses shown

in Figure 1 so that n = 20. For i = 1, . . . , 10, mi = 1.0 kg,

while, for j = 1, . . . , 11, kj = 1.0 N/m and cj = 0.05 Ns/m.

We set the initial error covariance P0 = 100I and assume

that V1,k = I , V2,k = I for all k > 0.

Let qi denote the position of the ith mass so that

x ,
[

q1 q̇1 · · · q10 q̇10

]

. (5.1)

We assume that measurements of position and velocities of

m1, . . . ,m4 are available so that Ck = [I8 08×12] for all

k > 0. Next, we obtain state estimates from the reduced-

order estimator with ne = 8. For the subspace estimator,

we consider a change of basis so that the system has a

block upper-triangular structure. Recall that the costs for

the estimators are defined as (2.6) and (4.5) with Rk = I .

The ratio of the cost Jk to the best achievable cost when

a full-order Kalman filter is used is shown in Figure 2.

As expected, the performance of the reduced-order filter is

never better than the full-order Kalman filter (indicated by

ratios greater than 1). Next, we assume that measurements

of positions and velocities of m1, . . . ,m8 are available so

that Ck = [I16 016×4] for all k > 0. The performance of the

reduced-order estimator with ne = 16 is shown in Figure 2.

The objective in both the cases is to obtain estimates of Lxk,

where for i = 1, . . . , ne, j = 1, . . . , n, the (i, j)th entry of

L ∈ R
ne×(n−ne) is given by

L(i,i) =

{

1, if i = j,

0.05, else.
(5.2)

The plots also demonstrate that the one-step and two-step

estimators are not equivalent.

VI. MASS-SPRING-DASHPOT EXAMPLE WITH

RIGID-BODY MODE

Next, we consider the case in which both ends of

the mass-spring-dashpot structure are free, that is, k1 =
k11 = 0.0 and c1 = c11 = 0.0, and thus the struc-

ture has an unstable rigid-body mode. We consider only

the subspace estimator with xr =
[

q11 q̇11

]

so that

x =
[

q11 q̇11 q1 q̇1 · · · q20 q̇20

]

. We assume
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Fig. 2. Ratios of J to the corresponding full-order costs when the (a)
reduced-order and (b) subspace estimators are applied to the asymptotically
stable mass-spring-dashpot system. (a) and (b) demonstrate the performance
of both estimators for ne = 8, 16. The plots also demonstrate that the one-
step and two-step estimators are not equivalent.

that measurements of the position and velocity of m11 are

available so that Ck =
[

I2 02×18

]

for all k > 0 and L

is given by (5.2) with ne = 4, 8. The performance of the

reduce-order subspace estimator with ne = 4, 8 is shown in

Figure 3. The subspace estimator is effectively able to handle

the unstable modes in the system.

VII. CONCLUSION

Using the finite-horizon optimization, an optimal reduced-

order estimator and optimal fixed-structure subspace esti-

mator have been obtained in the form of recursive update

equations for time-varying systems. These estimators are

characterized by the τ and µ oblique projectors. Moreover,

we derived one-step and two-step update equations for each

estimator. When the order of the each estimator is equal

to the order of the system, the oblique projections become

the identity and the estimators are equivalent to the classical

optimal recursive full-order filter. We demonstrated the per-

formance of the reduced-order and the subspace estimators

0 100 200 300 400 500
1

1.1

1.2

1.3

1.4

1.5

k (time index)
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o
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t
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e
=4

µ proj. (one−step),  n
e
=8

µ proj. (two−step),  n
e
=8

Fig. 3. Ratios of J to the corresponding optimal costs when the
subspace estimator is applied to the unstable mass-spring-dashpot system.
The subspace estimator is able to handle the unstable modes in its filter
structure.

for lumped-structures.
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