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I. INTRODUCTION

Systems with unknown inputs have received consid-

erable attention [4–23, 25, 26, 28–30]. The unknown inputs

may represent unknown external drivers, input uncertainty,

or instrument faults. An active research area is state recon-

struction with known model equations and unknown inputs.

Approaches include full-order observers [5, 7, 10, 16, 17, 30],

reduced-order observers [8, 9, 20, 22], geometric approach

[4], and the trial-and-error approach [28]. A widely used

approach is to model the unknown inputs as outputs of a

known dynamic system and incorporate the input dynamics

with the plant dynamics [1, 14]. However, this approach

increases the dimension of the observer and is limited to

specific types of inputs.

In [25, 26] input reconstruction is achieved inverting the

known transfer function. More recently, methods for input

reconstruction using optimal filters are developed in [5, 10,

11, 15, 29]. However, the methods of [5, 10, 11, 15, 25, 26,

29] for state reconstruction and input reconstruction require

knowledge of the model equations.

A related problem is the concept of input and state

observability, which is the ability to reconstruct the inputs

and states using only output measurements. Necessary and

sufficient conditions for input and state observability for

continuous-time systems in terms of the invariant zeros of

the system are presented in [5, 9, 13, 15, 20]. Input and state

observability for discrete-time systems is considered in [15],

while [10] considers a constructive algorithm to determine

the observability of the unknown input and state.

Subspace identification algorithms are used to identify

systems in state space form, and are naturally applicable

to multi-input, multi-output (MIMO) systems [27]. The idea

underlying subspace algorithms is that estimates of the state

sequence in an unknown basis can be computed directly

from input-output observations. Once the state estimates

are available, state space matrices are estimated using least

squares. These methods are computationally tractable and

require no a priori information about the structure or order

of the system.

In this paper, we examine conditions under which both

the input and state can be estimated from the output mea-

surements. We discuss necessary and sufficient conditions

for a discrete-time system to be input and state observable

and derive tests for input and state observability. Since no

assumptions on the input are made, the unknown input can
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be either an unmodeled exogenous signal or an unknown

function of the states.

We then develop a deterministic subspace identification al-

gorithm for systems with arbitrary unknown inputs. When the

conditions for input and state observability and persistency

of excitations are satisfied, we show that the states, the state

space matrices, and the unknown inputs can be estimated

from the known inputs and the output measurements. No

assumptions are imposed on the unknown inputs.

II. INPUT AND STATE OBSERVABILITY: STRICTLY

PROPER CASE

Consider the system

xk+1 = Axk + Hek, (II.1)

yk = Cxk, (II.2)

where xk ∈ R
n, ek ∈ R

p, yk ∈ R
l, A ∈ R

n×n, H ∈ R
n×p,

and C ∈ R
l×n. Without loss of generality, we assume l ≤ n,

rank(C) = l > 0, and rank(H) = p > 0. No assumptions on

the unmeasured signal ek are made. Hence, ek can be either

an exogenous input or a nonlinear, time-varying function of

the present or past states.

Throughout this paper, r denotes a nonnegative integer.

Furthermore, for convenience, every vector or matrix with

zero rows or zero columns is an empty matrix. Define Yr ∈
R

(r+1)l and Er ∈ R
(r+1)p as

Yr
△
=











y0

y1

...

yr











, Er
△
=











e0

e1

...

er











. (II.3)

Definition II.1. Let r ≥ 1. Then the input and state

unobservable subspace Ur of (II.1), (II.2) is the subspace

Ur
△
=

{[

x0

Er−1

]

∈ R
n+rp : Yr = 0

}

. (II.4)

We define Γr ∈ R
(r+1)l×n, Mr ∈ R

(r+1)l×rp, and Ψr ∈
R

(r+1)l×(n+rp) by

Γr
△
=

[

CT (CA)T · · · (CAr)T
]T

, (II.5)

Mr
△
=















0 0 · · · 0
CH 0 · · · 0

CAH CH · · · 0
...

...
. . .

...

CAr−1H CAr−2H · · · CH















, (II.6)

and
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Ψr
△
=

[

Γr Mr

]

. (II.7)

Note that M0 is an empty matrix and thus Ψ0 = Γ0 = C.

Next, from (II.1), (II.2), we can write

Yr = Γrx0 + MrEr−1 = Ψr

[

x0

Er−1

]

, (II.8)

so that
Ur = N(Ψr), (II.9)

where N denotes null space. Next, define the positive integer

r0
△
=

{

max{⌈ n−l
l−p

⌉, 1}, p < l,

1, p = l,
(II.10)

where ⌈a⌉ denotes the smallest integer greater than or equal

to a. Note that r0 is not defined in the case p > l.

Proposition II.1. Assume that n ≥ 2 and p ≤ l. Then

r0 ≤ n − 1.

Proposition II.2. Let r ≥ 1. If Ur = {0}, then the

following statements hold:

1) p ≤ l.

2) If p = l, then p = l = n.

3) (A, C) is observable, that is, rank(Γn−1) = n.

4) r ≥ r0.

5) rank(CH) = p.

6) rank(Ψr) = rank(Ψr−1) + p for all r ≥ r0.

Proposition II.3. Assume that either p < l or p = l = n.

Then n + rp ≤ (r + 1)l for all r ≥ r0.

Proposition II.3 implies that if p < l or p = l = n, then,

for all r ≥ r0, the number of columns of Ψr is less than or

equal to the number of rows of Ψr.

Definition II.2. The system (II.1), (II.2) is input and state

observable if Ur = {0} for all r ≥ r0.
Definition II.2 implies that if (II.1), (II.2) is input and state

observable, then, for all r ≥ r0, the initial condition x0 and

input sequence {ei}
r−1
i=0 are uniquely determined from the

measured output sequence {yi}
r
i=0.

Theorem II.1. The following statements are equivalent:

1) (II.1), (II.2) is input and state observable.

2) For all r ≥ r0, Yr = 0 if and only if

[

x0

Er−1

]

= 0.

3) For all r ≥ r0, rank(Ψr) = n + rp.

4) There exists r ≥ r0 such that rank(Ψr) = n + rp.

5) rank(Ψn−1) = n + (n − 1)p.

Proof. From Definition II.1 and Definition II.2 it follows

that 1) ⇒ 2). Using (II.8), 2) ⇒ 3). The result 3) ⇒ 4)
is immediate. To prove 4) ⇒ 5) let n = 1. Then Ψ0 = C

and rank(C) = 1. Now, suppose n ≥ 2. Since rank(Ψr) =
n + rp it follows that rank(CH) = p. Hence, for all r̂ ≥ r0,

rank(Ψr̂) = rank(Ψr̂−1) + p. Hence, since n − 1 ≥ r0, we

have rank(Ψn−1) = n + (n − 1)p. Finally to show 5) ⇒
1), we consider two cases. First, suppose n = 1. In this

case C and H are nonzero scalars, and hence it follows that

rank(Ψr) = n+rp for all r ≥ r0 and hence Ur = {0} for all

r ≥ r0. Next, suppose n ≥ 2. In this case rank(Ψn−1) = n+

(n− 1)p implies that rank(CH) = p and hence rank(Ψr) =
rank(Ψr−1) + p for all r ≥ r0. Next, since n − 1 ≥ r0, it

follows that, for all r ≥ r0, rank(Ψr) = rank(Ψn−1) + (r −
n + 1)p. Thus rank(Ψr) = n + rp for all r ≥ r0 and hence

Ur = {0} for all r ≥ r0.

Theorem II.1 shows that (II.1), (II.2) is input and state

observable if and only if Ψr has full column rank for all

r ≥ r0. In this case the unique solution of (II.8) is
[

x0

Er−1

]

= Ψ†
rYr, (II.11)

where † represents the Moore-Penrose generalized inverse

Ψ†
r = (ΨT

r Ψr)
−1ΨT

r .

Note that if no unknown inputs are present, that is, p = 0,

then Ψr = Γr, and statement 5 of Theorem II.1 becomes the

standard rank test for observability.

III. INPUT AND STATE OBSERVABILITY: EXACTLY

PROPER CASE

Next, we consider the system

xk+1 = Axk + Hek, (III.1)

yk = Cxk + Gek, (III.2)

where G ∈ R
l×p, while A, H, C, xk, ek, and yk are defined

as in (II.1), (II.2). Without loss of generality, we assume

l ≤ n, rank(C) = l > 0, and rank

[

H

G

]

= p > 0. Due to

Gek, the output yk is directly affected by ek as well as by

the past values of ek. Therefore, we have

Yr = Ψ̄r

[

x0

Er

]

, (III.3)

where Er is defined by (II.3), Ψ̄r
△
=

[

Γr M̄r

]

∈
R

(r+1)l×[n+(r+1)p], and

M̄r =











G 0 · · · 0
CH G · · · 0

...
...

. . .
...

CAr−1H CAr−2H · · · G











. (III.4)

Furthermore, we have the following definition.

Definition III.1. Let r ≥ 0. Then the input and state

unobservable subspace Ūr of (III.1), (III.2) is the subspace

Ūr
△
=

{[

x0

Er

]

∈ R
n+(r+1)p : Yr = 0

}

. (III.5)

The input and state unobservable subspace is given by

Ūr = N(Ψ̄r). Next, if p < l then define

r̄0
△
= ⌈ n

l−p
⌉ − 1. (III.6)

Since n > l − p it follows that r̄0 ≥ 1.

Theorem III.1. The following statements are equivalent:

1) (III.1), (III.2) is input and state observable.

2) For all r ≥ r̄0, Yr = 0 if and only if

[

x0

Er

]

= 0.
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3) rank(Ψ̄r) = n + (r + 1)p for all r ≥ r̄0.

4) There exists r ≥ r̄0 such that rank(Ψ̄r) = n+(r+1)p.

5) rank(Ψ̄n−1) = n(p + 1).

Finally, if (III.1), (III.2) is input and state observable, then

Theorem III.1 implies that Ψ̄r has full column rank for all

r ≥ r̄0. In this case the unique solution of (III.3) is
[

x0

Er

]

= Ψ̄†
rYr. (III.7)

IV. CONNECTIONS WITH MULTIVARIABLE ZEROS

In this section, we reinterpret the input and state ob-

servability conditions for the strictly proper case in terms of

multivariable transmission zeros.

For λ ∈ C, define v(λ) ∈ C
n−1 by

v(λ) =
[

1 λ λ2 · · · λn−2
]T

(IV.1)

and V (λ) ∈ C
[n+(n−1)p]×(n+p) by

V (λ)
△
=

[

−In 0
0 v(λ) ⊗ Ip

]

,

where ⊗ is the Kronecker product.

Lemma IV.1. Assume that (A, C) is observable,

rank(Ψn−1V (λ)) = n + p for all λ ∈ C, and either p < l or

p = l = n. Let λ1, λ2, . . . , λn−1 ∈ C be distinct, then

rank
(

Ψn−1

[

V (λ1) · · · V (λn−1)
])

= n + (n − 1)p.

Outline of Proof. First, using Fact 2.10.24 in [2], we have

rank
(

Ψn−1

[

V (λ1) V (λ2)
])

= n + 2p.

Next, let 2 < k < n − 1 be an integer and assume that

rank
(

Ψn−1

[

V (λ1) V (λ2) · · · V (λk)
])

= n + kp.

Next, noting that it follows from Fact 5.13.3, p. 211 in [2]

that rank
[

V (λ1) · · · V (λn−1)
]

= n + (n − 1)p, and

since p < l or p = l = n, it follows that

rank
(

Ψn−1

[

V (λ1) · · · V (λk+1)
])

= rank
(

Ψn−1

[

V (λ1) · · · V (λk)
])

+rank (Ψn−1V (λk+1))

− dim
(

R
(

Ψn−1

[

V (λ1) · · · V (λk)
])

∩ (R (Ψn−1V (λk+1)))) .

= n + (k + 1)p.

Setting k = n − 2 yields the result.

Next, define the l by p rational transfer function matrix

L(s) by

L(s)
△
= C(sI − A)−1H. (IV.2)

Furthermore, we assume that (A, H, C) is minimal. Then

λ ∈ C is an invariant zero of the realization (A, H, C) if

[31]

rank

[

λI − A H

C 0

]

< normalrank

[

sI − A H

C 0

]

.

Since (A, H, C) is minimal, the transmission zeros of L are

the invariant zeros of (A, H, C).

Lemma IV.2. The following statements are equivalent:

i) normalrank L = p and L has no transmission zeros.

ii) For all λ ∈ C, rank

[

λI − A H

C 0

]

= n + p.

Note that ii) in Lemma IV.2 implies that (II.1)-(II.2) has

no invariant zeros. The following result provides equivalent

conditions for Theorem II.1 in terms of multivariable zeros.

Theorem IV.1. The following statements are equivalent:

i) Either p < l or p = l = n, and (A, H, C) has no

invariant zeros.

ii) rank (Ψn−1) = n + (n − 1)p.

Proof. To prove i) implies ii), it follows from i) that,

for all λ ∈ C, rank

[

λI − A

C

]

= n, and thus (A, C) is

observable. Hence

rank

[

0 −Il

Γn−1 0

]

= n + l.

Furthermore, noting that

Υ
△
=

[

0 −Il

Γn−1 0

] [

λI − A H

C 0

]

=











−C 0
λC − CA CH

...
...

λCAn−2 − CAn−1 CAn−2H











,

it follows from Sylvester’s inequality (Proposition 2.5.8 in

[2]) that, for all λ ∈ C,

n + p ≥ rankΥ

≥ rank

[

0 −Il

Γn−1 0

]

+ rank

[

λI − A H

C 0

]

− (n + l)

= n + p.

Hence rankΥ = n + p. Next, for all λ ∈ C, we have

n + p = rank











In 0 · · · 0
λIn In · · · 0

...
...

. . .
...

λn−1In λn−2In · · · In











Υ. (IV.3)

Next, using (??), (IV.3) becomes

rank (Ψn−1V (λ)) = n + p.

Finally, let λ1, λ2, . . . , λn−1 ∈ C be distinct. Then, it

follows from Lemma IV.1 and Lemma 2.5.2 [2] that

n + (n − 1)p = rank
(

Ψn−1

[

V (λ1) · · · V (λn−1)
])

≤ rank(Ψn−1). (IV.4)

However, since rank(Ψn−1) ≤ n + (n − 1)p, it follows that

rank(Ψn−1) = n + (n − 1)p.

Next, to prove ii) implies i), suppose there exists λ ∈ C

such that rank

[

λI − A H

C 0

]

< n + p. Then there exist
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x̃0 ∈ C
n and ẽ ∈ C

p such that

[

x̃0

ẽ

]

is nonzero and

(λI − A)x̃0 + Hẽ = 0 (IV.5)

and

Cx̃0 = 0. (IV.6)

Premultiplying (IV.5) by C and using (IV.6) yields

−CAx̃0 + CHẽ = 0. (IV.7)

Next, premultiplying (IV.5) by CA yields

λCAx̃0 − CA2x̃0 + CAHẽ = 0. (IV.8)

Using (IV.7) in (IV.8) yields

−CA2x̃0 + CAHẽ + λCHẽ = 0. (IV.9)

Similarly, premultiplying (IV.5) by CA2, CA3, . . . , CAn−2,

and writing the resulting equations in matrix form yields

Ψn−1

[

x̃0

Ẽn−2

]

= 0, (IV.10)

where Ẽn−2
△
=

[

ẽT λẽT · · · λn−2ẽT
]T

∈ C
(n−1)p.

Since

[

x̃0

ẽ

]

6= 0, it follows that

[

x̃0

Ẽn−2

]

6= 0. How-

ever, since rank(Ψn−1) = n + (n − 1)p, it follows that
[

x̃0

Ẽn−2

]

= 0, which contradicts

[

x̃0

Ẽn−2

]

6= 0. Hence

rank

[

λI − A H

C 0

]

= n + p for all λ ∈ C. Furthermore,

using Proposition II.2, it follows that either p < l or p = l =
n.

Note that i) in the above result is same as the sufficient

condition for input observability presented in [20].

V. STATE ESTIMATION WITH UNKNOWN INPUTS AND

UNKNOWN DYNAMICS

Consider the system

xk+1 = Axk + Buk + Hek, (V.1)

yk = Cxk + Duk + Gek, (V.2)

where xk, yk, ek, A, C, H, G are as in Section 2, uk ∈
R

m, B ∈ R
n×m, and D ∈ R

l×m. Furthermore, uk is a

known input, whereas ek is an unknown signal. The system

(V.1), (V.2) is input and state observable if it is input and

state observable with uk ≡ 0. We consider the problem of

estimating the state sequence using measurements of inputs

uk and outputs yk, while A, B, C, D, H, G, and ek are

unknown. The problem of estimating A, B, C, D, H, G,

and ek is considered in the next section. We assume (A, B)

is controllable, p ≤ l is known, but the order n of the system

is unknown. In this section we assume that G 6= 0 so that

(V.1), (V.2) corresponds to the exactly proper case (III.1),

(III.2). The case G = 0 is discussed later.

Let N + 1 be the number of available measurements, and

let i be an integer such that n ≤ i and 2i − 1 < N . Define

U0|2i−1 ∈ R
2mi×(N−2i+2), Up ∈ R

mi×(N−2i+2), and Uf ∈

R
mi×(N−2i+2) by

U0|2i−1
△
=

























u0 u1 · · · uN−2i+1

...
...

. . .
...

ui−1 ui · · · uN−i

ui ui+1 · · · uN−i+1

ui+1 ui+2 · · · uN−i+2

...
...

. . .
...

u2i−1 u2i · · · uN

























(V.3)

=

[

U0|i−1

Ui|2i−1

]

=

[

Up

Uf

]

. (V.4)

=

[

U0|i

Ui+1|2i−1

]

=

[

U+
p

U−
f

]

, (V.5)

where U+
p ∈ R

(i+1)m×(N−2i+2) and U−
f ∈

R
(i−1)m×(N−2i+2). The subscript p denotes ‘past’ and

the subscript f denotes ‘future’. The output block-Hankel

matrices Y0|2i−1, Yp, Yf , Y +
p and Y −

f are defined as

in (V.3) - (V.5) with u replaced by y. The unknown-

input block-Hankel matrices E0|2i−1, Ep, Ef , E+
p and

E−
f are defined as in (V.3) - (V.5) with u replaced

by e. Furthermore, define the past input-output data

Wp
△
=

[

Up

Yp

]

∈ R
i(m+l)×(N−2i+2) and the future input-

output data Wf
△
=

[

Uf

Yf

]

∈ R
i(m+l)×(N−2i+2). Finally,

define the block-Toeplitz matrix Ωi ∈ R
(i+1)l×(i+1)m by

Ωi
△
=











D 0 · · · 0
CB D · · · 0

...
...

. . .
...

CAi−1B CAi−2B · · · D











, (V.6)

and for 0 ≤ r ≤ 2i define the state sequences Xr ∈
R

n×(N−2i+2) by

Xr
△
=

[

xr xr+1 · · · xN−2i+r xN−2i+r+1

]

. (V.7)

Lemma V.1. If (V.1), (V.2) is input and state observable,

then the row space of Xi is contained in the intersection of

the row space of Wp and the row space of Wf .

Proof: From (V.1) and (V.2),

Yp = Γi−1X0 + M̄i−1Ep + Ωi−1Up, (V.8)

Yf = Γi−1Xi + M̄i−1Ef + Ωi−1Uf . (V.9)

Since the system is input and state observable, (V.9) can be

written as
[

Xi

Ef

]

=
[

−Ψ̄†
i−1Ωi−1 Ψ̄†

i−1

]

Wf . (V.10)

The rest of the proof follows along the lines of the proof in

[24].

To calculate the state sequence, we require the following

definition.

Definition V.1. The sequences {uk}
N
k=1 and {ek}

N
k=1 are
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persistently exciting for (V.1), (V.2) if

rank





X0

E0|2i−1

U0|2i−1



 = n + 2pi + 2mi. (V.11)

Theorem V.1. If the system (V.1), (V.2) is input and state

observable and the sequences {uk}
N
k=1 and {ek}

N
k=1 are

persistently exciting, then the intersection of the row spaces

of Wp and Wf is equal to the row space of Xi.

Proof. The proof is similar to the proofs in [24].

Let X̂i denote an estimate of the state sequence Xi. Using

Theorem V.1, we compute X̂i as the intersection of the row

spaces of Wp and Wf . One way to compute this intersection

is by orthogonally projecting the row space of Wp onto the

row space of Wf [27]. Thus

X̂i
△
= WfW

T
p (WpWT

p )†Wp. (V.12)

Note that to calculate X̂i, we use measurements of uk and

yk, however, knowledge of ek is not required.

A numerically efficient way to compute X̂i is to use the

LQ decomposition of

[

Wp

Wf

]

[27] denoted by

[

Wp

Wf

]

= LQT =

[

L11 0
L21 L22

] [

QT
1

QT
2

]

, (V.13)

where L ∈ R
2i(m+l)×2i(m+l) is lower triangular,

L11, L21, L22 ∈ R
i(m+l)×i(m+l), Q ∈ R

(N−2i+2)×2i(m+l)

is orthogonal, and Q1, Q2 ∈ R
(N−2i+2)×i(m+l). Then, the

intersection of row spaces of Wp and Wf is computed as

L21Q
T
1 . An estimate X̂i of the state sequence Xi can then be

obtained by using a singular value decomposition to calculate

a basis for the row space of L21Q
T
1 ,

Similarly, estimates X̂i+1 of the state sequence Xi+1 are

obtained by computing the intersection of the row spaces of
[

U+
p

Y +
p

]

and

[

U−
f

Y −
f

]

.

Next, assume G = 0 in (V.1), (V.2). This case corresponds

to the no-feedthrough case, and the following result considers

state estimation with unknown inputs and unknown dynam-

ics.

Theorem V.2. Assume that (V.1) and (V.2) with G = 0 is

input and state observable. If the input sequences {uk}
N
k=1

and {ek}
N
k=1 are persistently exciting, then the intersection

of the row spaces of

[

Up

Y +
p

]

and

[

Uf

Yf

]

is the row space

of Xi.

VI. SIMULTANEOUS MODEL ESTIMATION AND INPUT

RECONSTRUCTION

In this section we consider the problem of estimating

the state space matrices A, B, C, D, H, G and ek of (V.1),

(V.2) using estimates X̂i of the state sequence Xi and

measurements of uk and yk. To do this we write
[

Xi+1

Yi|i

]

=

[

A B

C D

] [

Xi

Ui|i

]

+

[

H

G

]

Ei|i.

We use a two-step procedure to estimate A, B, C, D, H,

and G. First we estimate the matrices A, B, C, and D by

solving the least squares problem

argmin
A,B,C,D

∣

∣

∣

∣Ri|i

∣

∣

∣

∣

2
, (VI.1)

where the residuals Ri|i are defined as

Ri|i
△
=

[

X̂i+1

Yi|i

]

−

[

Â B̂

Ĉ D̂

] [

X̂i

Ui|i

]

. (VI.2)

Although

[

Xi+1

Yi|i

]

is a linear combination of

[

Xi

Ui|i

]

and Ei|i, the term due to Ei|i is ignored in the least

squares problem (VI.1). Thus Ei|i is interpreted as noise,

and hence unbiased estimates of the state space matrices are

not guaranteed. However, if

[

xk

uk

]

and ek are uncorrelated

then unbiased estimates of A, B, C, and D are obtained

using (VI.1). Next, we estimate

[

H

G

]

and Ei|i by forming

the singular value decomposition

Ri|i = UΣV T ≈ U Σ̂V T = (U Σ̂1/2)(Σ̂1/2V T)

=

[

Ĥ

Ĝ

]

Êi|i, (VI.3)

where Σ̂ contains the p dominant singular values from Σ,

while

[

Ĥ

Ĝ

]

△
= U Σ̂1/2 and Êi|i

△
= Σ̂1/2V T.

Furthermore, consider the case in which ek is a nonlinear

function of the states, that is, ek = h(xk), where h : R
n →

R
p. We then assume that h(xk) can be expanded in terms of

basis functions as h(xk) = θfh(xk), where fh : R
n → R

s

are basis functions, and θ ∈ R
p×s are unknown coefficients

of the basis-function expansion. Next, we estimate θ by

solving the least squares problem

argmin
θ

∣

∣

∣

∣

∣

∣
Êi|i − θfh(X̂i)

∣

∣

∣

∣

∣

∣

2
. (VI.4)

When noise terms are present in (V.1) and (V.2) the states

are estimated by obliquely projecting the row space of Yf

along the row space of Uf into the row space of Wp similar to

the procedure presented in [27]. The least squares problems

for calculating the state space matrices remain the same as

(VI.1), (VI.3) and (VI.4).

VII. EXAMPLE

We consider a system comprised of n = 6 compart-

ments or subsystems that exchange energy through mutual

interactions [3]. Applying conservation of energy yields, for

i = 1, . . . , n,

xk+1,i = xk,i − βxk,i + α(xk,i+1 − xk,i) − α(xk,i − xk,i−1),

where 0 < β < 1 is the loss coefficient and 0 < α <

0 is the flow coefficient. In addition, we assume that a

known input enters compartment 1, while an unknown input

enters compartment 2. The outputs are the energy states in
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compartments 2 and 3. It then follows that

xk+1 = Axk + Buk + Hek, (VII.1)

yk = Cxk, (VII.2)

where A ∈ R
n×n, B ∈ R

n×1,H ∈ R
n×1 and C ∈ R

2×n

are defined as

A
△
=











1 − β − α α 0 · · · 0
α 1 − β − α α · · · 0
...

. . .
. . .

...

0 · · · 0 α 1 − β − α











,

B
△
=

[

1 0 · · · 0
]T

, H
△
=

[

0 1 · · · 0
]T

,

C
△
=

[

0 1 0 · · · 0
0 0 1 · · · 0

]

.

It can be verified that (VII.1), (VII.2) is input and state

observable.

To generate data for identification, we set α = 0.3 and β =
0.1, and corrupt the system equations with process noise and

measurement noise with standard deviation 0.1. The known

input is a realization of a white noise process, while the

unknown input is a realization of a white noise process with

impulses at time 20s and 80s. In Figure 1 the actual unknown

input and the reconstructed unknown input is shown.

VIII. CONCLUSIONS

In this paper, we introduced the concept of input and

state observability, that is, conditions under which both

the unknown input and state can be estimated from the

output measurements. We discussed sufficient and necessary

conditions for a discrete-time system to be input and state

observable. Next, we developed a subspace identification

algorithm that identified the state space matrices and recon-

structed the unknown input using output measurements and

known inputs.
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Fig. 1. The actual unknown input and the reconstructed unknown input.
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