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Abstract—We address the state-estimation problem for linear
systems in a context where prior knowledge, in addition to the
model and the measurements, is available in the form of an
equality constraint. First, we investigate from where an equality
constraint arises in a dynamic system. Then, the equality-
constrained Kalman filter (ECKF) is derived as the solution
to the equality-constrained state-estimation problem and com-
pared to alternative algorithms. These methods are investigated
in an example. In addition to exactly satisfying an equality
constraint on the system, ECKF produce more accurate and
more informative estimates than the unconstrained estimates.

I. INTRODUCTION
The classical Kalman filter (KF) for linear systems pro-

vides optimal state estimates under standard noise and model
assumptions [7]. In practice, however, additional information
about the system may be available, and this information
may be useful for improving state estimates. Technically
speaking, it is not possible to improve estimates from KF
since these are optimal. Instead, a scenario we have in mind
is the case in which the dynamics and the disturbances are
such that the state of the system satisfies an equality or
inequality constraint. For example, in a chemical reaction,
the species concentrations are nonnegative [13], whereas in
a compartmental model with zero net inflow [4], mass is
conserved. Likewise, in undamped mechanical systems, such
as a system with Hamiltonian dynamics, conservation laws
hold. In the quaternion-based attitude estimation problem, the
attitude vector must have unit norm [5]. Additional examples
arise in optimal control [6], parameter estimation [1], and
navigation [2, 14]. In such cases, we wish to obtain state
estimates that take advantage of prior knowledge of the states
and use this information to obtain better estimates than would
be provided by KF in the absence of such information.
Various algorithms have been developed for equality-

constrained state estimation. One of the most popular tech-
niques is the measurement-augmentation KF (MAKF), in
which a perfect measurement of the constrained quantity is
assumed to be available [2, 14]. In addition, estimate [12]
and system [8] projection methods have been considered.
Regarding inequality constraints, moving horizon techniques
[9], Kalman-based algorithms [13], and probabilistic meth-
ods [10] have been developed.
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In the context of equality-constrained systems, three con-
tributions are presented in this paper. First, we investigate
how a linear equality state constraint arises in a linear system
and present necessary conditions on both the dynamics and
process noise for the state to be equality constrained. In [8],
this problem is stated in the opposite way, that is, given
that a system satisfies an equality constraint, the goal is to
characterize the process noise. In these cases, we show that
an equality-constrained linear system is not controllable from
the process noise and that additional information regarding
the initial condition provided by the equality constraint is
useful for improving the classical KF estimates.
Second, we derive the equality-constrained KF (ECKF)

as the solution to the equality-constrained state-estimation
problem.
Finally, we prove the equivalence between ECKF and

MAKF and show the connections of the former with the
estimate and system projection approaches mentioned above.
We compare these four algorithms using a compartmental
model in which the disturbances are constrained so that mass
is conserved.

II. STATE ESTIMATION FOR LINEAR SYSTEMS
For the linear stochastic discrete-time dynamic system

xk = Ak−1xk−1 + Bk−1uk−1 + Gk−1wk−1, (2.1)
yk = Ckxk + vk, (2.2)

where Ak−1 ∈ R
n×n, Bk−1 ∈ R

n×p, Gk−1 ∈ R
n×q,

and Ck ∈ R
m×n are known matrices, the state-estimation

problem can be described as follows. Assume that, for all
k ≥ 1, the known data are the measurements yk ∈ R

m,
the inputs uk−1 ∈ R

p, and the statistical properties of
x0, wk−1 and vk. The initial state vector x0 ∈ R

n is
assumed to be Gaussian with mean x̂0 and error-covariance
P xx

0 � E
[
(x0 − x̂0)(x0 − x̂0)

T
]
. The process noise wk−1 ∈

R
q, which represents unknown input disturbances, and the
measurement noise vk ∈ R

m, concerning inaccuracies in the
measurements, are assumed white, Gaussian, zero mean, and
mutually independent with known covariance matrices Qk−1

and Rk, respectively. Next, define the cost function

J(xk) � ρ(xk|(y1, . . . , yk)), (2.3)

which is the conditional probability density function of the
state vector xk ∈ R

n given the past and present measured
data y1, . . . , yk. Under the stated assumptions, the maximiza-
tion of (2.3) is the state estimation problem.
The recursive solution x̂k to the state-estimation problem

is given by the Kalman filter (KF) [7], whose forecast step
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is given by

x̂k|k−1 = Ak−1x̂k−1 + Bk−1uk−1, (2.4)

P xx
k|k−1 = Ak−1P

xx
k−1A

T

k−1 + Gk−1Qk−1G
T

k−1,(2.5)
ŷk|k−1 = Ckx̂k|k−1, (2.6)

P
yy

k|k−1 = CkP xx
k|k−1C

T

k + Rk, (2.7)

P
xy

k|k−1 = P xx
k|k−1C

T

k , (2.8)

where P xx
k|k−1 � E

[
(xk − x̂k|k−1)(xk − x̂k|k−1)

T
]
,

P
yy

k|k−1 � E
[
(yk − ŷk|k−1)(yk − ŷk|k−1)

T
]
, and

P
xy

k|k−1 � E
[
(xk − x̂k|k−1)(yk − ŷk|k−1)

T
]
, and whose

data-assimilation step is given by

Kk = P
xy

k|k−1(P
yy

k|k−1)
−1, (2.9)

x̂k = x̂k|k−1 + Kk(yk − ŷk|k−1), (2.10)

P xx
k = P xx

k|k−1 −KkP
yy

k|k−1K
T

k , (2.11)

where P xx
k � E

[
(xk − x̂k)(xk − x̂k)

T
]
and Kk ∈ R

n×m

is the Kalman gain matrix. The notation ẑk|k−1 indicates
an estimate of zk at time k based on information available
up to and including time k − 1. Likewise, ẑk indicates an
estimate of z at time k using information available up to
and including time k. Model information is used during the
forecast step, while measurement data are injected into the
estimates during the data-assimilation step.

III. STATE ESTIMATION FOR EQUALITY-CONSTRAINED
LINEAR SYSTEMS

In (2.1), assume that rank(Gk−1) = q < n, and define
r � n− q, where 1 ≤ r ≤ n. The case r = n indicates that
Gk−1wk−1 is absent. Therefore, there exists Ek−1 ∈ R

r×n

such that rank(Ek−1) = r and

Ek−1Gk−1 = 0r×q. (3.1)

Let T1,k−1 ∈ R
(n−r)×n be such that Tk−1 �

[
T1,k−1

Ek−1

]
∈

R
n×n is invertible. For example, we can choose T1,k−1 �

G
T

k−1. Multiplying (2.1) by T yields[
T1,k−1

Ek−1

]
xk =

[
T1,k−1Ak−1

Ek−1Ak−1

]
xk−1 + (3.2)[

T1,k−1Bk−1

Ek−1Bk−1

]
uk−1 +

[
T1,k−1Gk−1

0r×q

]
wk−1.

Hence, for all k ≥ 1,

Ek−1xk = ek−1, (3.3)

where ek−1 � Ek−1(Ak−1xk−1 + Bk−1uk−1). Note that
ek−1 is not constant even if system (2.1)-(2.2) is time-
invariant. Since rank(Gk−1) < n, Gk−1wk−1 has singular
covariance Gk−1Qk−1G

T

k−1 [6, 8].
Let s be an integer satisfying 1 ≤ s ≤ r, and let Ek−1

be partitioned as Ek−1 �

[
E1,k−1

Dk−1

]
, where E1,k−1 ∈

R
(r−s)×n and Dk−1 ∈ R

s×n. It thus follows from (3.1) that

Dk−1Gk−1 = 0s×q. (3.4)

Note that (3.4) holds, for all Dk−1 ∈ R
s×n, if r = n.

Proposition 3.1: Assume that

Dk−1Ak−1 = Dk−1, (3.5)
Dk−1Bk−1uk−1 = 0s×1, for all k ≥ 1. (3.6)

Then, for all k ≥ 1,

Dk−1xk = dk−1, (3.7)

where
dk−1 � Dk−1xk−1. (3.8)

Proof. It follows from (3.3) that Dk−1xk =
Dk−1(Ak−1xk−1 + Bk−1uk−1) = Dk−1xk−1 = dk−1. �

Corollary 3.1: If (2.1)-(2.2) is time-invariant and (3.4)-
(3.6) hold, then, for all k ≥ 1,

Dxk = d, (3.9)

where d � Dx0.
Note that the case s = r = n is not of practical interest

because it indicates xk = D−1
k−1dk−1.

The next result shows that, if (2.1) is equality constrained,
then it is not controllable from the process noise.

Proposition 3.2: Assume that (3.4)-(3.6) hold, then
(Ak−1, Gk−1) is not controllable.
Proof. Multiplying the controllability matrix

K(Ak−1, Gk−1) �
[

Gk−1 Ak−1Gk−1 . . . A
n−1
k−1Gk−1

]
(3.10)

by Dk−1 yields
Dk−1K(Ak−1, Gk−1) =

[
Dk−1Gk−1 Dk−1Ak−1Gk−1 · · ·

Dk−1A
n−1
k−1Gk−1

]
=

[
0s×q Dk−1Gk−1 · · · Dk−1A

n−2
k−1G

]
= 0s×nq. �

Assuming that, for all k ≥ 1, Dk−1 satisfies (3.4)-(3.6)
and dk−1 is known, the objective of the equality-constrained
state-estimation problem is to maximize (2.3) subject to
(3.7).

IV. EQUALITY-CONSTRAINED KALMAN FILTER
In this section we solve the equality-constrained

state-estimation problem to obtain the equality-constrained
Kalman filter (ECKF).

Lemma 4.1: x̂k maximizes J given by (2.3) if and only
if x̂k minimizes

J (xk) =

[
(xk − x̂k|k−1)

T
(P

xx
k|k−1)

−1
(xk − x̂k|k−1)+

(yk − Ckxk)
T

(Rk)
−1

(yk − Ckxk)

]
, (4.1)

where x̂k|k−1 and P xx
k|k−1 are given by (2.4) and (2.5).

Proof. See [7, pp. 207–208]. �

Theorem 4.1: Let x̂
p
k denote the solution of the

equality-constrained state estimation problem and define the
error covariance P

xxp
k � E

[
(xk − x̂

p
k)(xk − x̂

p
k)

T
]
. Also let

x̂k|k−1 and P xx
k|k−1 be given by

x̂k|k−1 � Ak−1x̂
p
k−1 + Bk−1uk−1, (4.2)

P xx
k|k−1 � Ak−1P

xxp
k−1A

T

k−1 + Gk−1Qk−1G
T

k−1.(4.3)

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrC12.5

6221



Define

d̂k−1 � Dk−1x̂k, (4.4)
P dd

k � Dk−1P
xx
k D

T

k−1, (4.5)

P xd
k � P xx

k D
T

k−1, (4.6)
K

p
k � P xd

k (P dd
k )−1, (4.7)

where x̂k is given by (2.10) and P xx
k is given by (2.11).

Then x̂
p
k and P

xxp
k are given by

x̂
p
k = x̂k + K

p
k (dk−1 − d̂k−1), (4.8)

P
xxp
k = P xx

k −K
p
kP dd

k K
p
k

T

. (4.9)
Proof. Using Lemma 4.1, let λ ∈ R

s and define the
Lagrangian L � J (xk) + 2λ

T

(Dk−1xk − dk−1). The
necessary conditions for a minimizer x̂

p
k are given by

∂L

∂xk

=(P
xx −1
k|k−1 )(x̂

p
k
−x̂k|k−1)−C

T

kR
−1
k (yk−Ckx̂

p
k
)+D

T

k−1λ = 0n×1,(4.10)

∂L

∂λ
=Dk−1x̂

p
k
− dk−1 = 0s×1. (4.11)

It follows from (4.10) that

((P
xx
k|k−1)

−1
+ C

T

k R
−1
k Ck)(x̂

p
k
− x̂k|k−1) =

C
T

k R
−1
k (yk − Ckx̂k|k−1) − D

T

k−1λ. (4.12)

From (2.11), using (2.7)-(2.9) and the matrix inversion
lemma [3], we have

P
xx
k = P

xx
k|k−1 − KkP

yy

k|k−1
K

T

k

= P
xx
k|k−1 − P

xx
k|k−1C

T

k (CkP
xx
k−1C

T

k + Rk)
−1

CkP
xx
k|k−1

= ((P
xx
k|k−1)

−1
+ C

T

k R
−1
k Ck))

−1
. (4.13)

Furthermore, from (2.9), using (2.7)-(2.8), we have

Kk = P
xy

k|k−1
(P

yy

k|k−1
)
−1

= P
xx
k|k−1C

T

k (CkP
xx
k|k−1C

T

k + Rk)
−1

= P
xx
k (P

xx
k )

−1
P

xx
k|k−1C

T

k (CkP
xx
k|k−1C

T

k + Rk)
−1

= P
xx
k (C

T

k R
−1
k Ck + (P

xx
k|k−1)

−1
)P

xx
k|k−1C

T

k (CkP
xx
k|k−1C

T

k + Rk)
−1

= P
xx
k C

T

k R
−1
k (CkP

xx
k|k−1C

T

k + Rk)(CkP
xx
k|k−1C

T

k + Rk)
−1

= P
xx
k C

T

k R
−1
k . (4.14)

Substituting (4.13) and (4.14) into (4.12) and multiplying
by P xx

k yields

x̂
p
k = x̂k|k−1 + Kk(yk − Ckx̂k|k−1)− P xx

k D
T

k−1λ. (4.15)

Substituting (4.15) into (4.11) yields

dk−1 = Dk−1x̂k|k−1 + Dk−1P
xx
k C

T

k R
−1
k (yk − Ckx̂k|k−1) −

Dk−1P
xx
k D

T

k−1λ,

which implies

λ = (Dk−1P
xx
k D

T

k−1)
−1

(Dk−1x̂k|k−1 − dk−1) +

(Dk−1P
xx
k D

T

k−1)
−1

Dk−1Kk(yk − Ckx̂k|k−1). (4.16)

Likewise, substituting (4.16) into (4.15) yields
x̂
p
k

= x̂k|k−1 + Kk(yk − Ckx̂k|k−1) −

P
xx
k D

T

k−1(Dk−1P
xx
k D

T

k−1)
−1

(Dk−1x̂k|k−1 − dk−1) −

P
xx
k D

T

k−1(Dk−1P
xx
k D

T

k−1)
−1

Dk−1Kk(yk − Ckx̂k|k−1)

= x̂k|k−1 + Kk(yk − Ckx̂k|k−1) − P
xx
k D

T

k−1(Dk−1P
xx
k D

T

k−1)
−1 ×(

Dk−1x̂k|k−1 − dk−1 + Dk−1Kkyk − Dk−1KkCkx̂k|k−1

)

= x̂k|k−1 + Kk(yk − Ckx̂k|k−1) + P
xx
k D

T

k−1(Dk−1P
xx
k D

T

k−1)
−1 ×[

dk−1 − Dk−1(x̂k|k−1 + Kk(yk − Ckx̂k|k−1))
]

. (4.17)

Now using (4.4)-(4.7), (2.9)-(2.11), we obtain

x̂
p
k

= x̂k|k−1 + Kk(yk − ŷk|k−1) + P
xx
k D

T

k−1(Dk−1P
xx
k D

T

k−1)
−1[

dk−1 − Dk−1(x̂k|k−1 + Kk(yk − ŷk|k−1))
]

= x̂k|k−1 + Kk(yk − ŷk|k−1) + K
p
k
(dk−1 − d̂k−1)

= x̂k + K
p
k
(dk−1 − d̂k−1),

which proves (4.8).
Given (2.11) and the symmetry between (4.8) and (2.10),

it follows that P
xxp
k is given by (4.9). �

Note that ECKF is expressed in three steps, namely, the
forecast step (4.2)-(4.3), (2.6)-(2.8), the data-assimilation
step (2.9)-(2.11), and the projection step (4.4)-(4.9), where
the updated estimates are projected onto the hyperplane
defined by the equality constraint (3.7).

Lemma 4.2: Let N (Dk−1) denote the null space of
Dk−1, let W ∈ R

n×n be positive definite, and define

PN (Dk−1) � In×n −WD
T

k−1(Dk−1WD
T

k−1)
−1Dk−1.(4.18)

Then PN (Dk−1) is an oblique projector with rangeN (Dk−1).
For the following two results, let x̂k given by (2.10)

and P xx
k given by (2.11) denote the updated estimate and

updated error covariance of ECKF. Also, let x̂
p
k given by

(4.8) and P
xxp
k given by (4.9) denote the projected estimate

and projected error covariance of ECKF.
Proposition 4.1: Set W = P xx

k in (4.18). Then, the
projection step (4.4)-(4.9) is equivalent to

x̂
p
k = PN (Dk−1)x̂k + dk−1, (4.19)

P
xxp
k = PN (Dk−1)P

xx
k , (4.20)

where dk−1 � P xx
k D

T

k−1(Dk−1P
xx
k D

T

k−1)
−1dk−1.

Proof. Using Lemma 4.2 and substituting (4.4)-(4.7) into
(4.8) and (4.9) yields (4.19)-(4.20). �

Proposition 4.2: Assume that (2.1)-(2.2) is time in-
variant. Also, assume that D in (3.9) satisfies (3.4)-(3.6).
Furthermore, assume that, for a given k−1, Dx̂

p
k−1 = d and

DP
xxp
k−1 = 0s×n. Then Dx̂k = d, DP xx

k = 0s×n, x̂
p
k = x̂k,

and P
xxp
k = P xx

k .
Proof. Multiplying (4.2)-(4.3) by D yields

Dx̂k|k−1 = DAx̂
p
k−1 + DBuk−1 = Dx̂

p
k−1 + 0s×1 = d, (4.21)

DP
xx
k|k−1 = DAP

xxp
k−1A

T
+ DGQk−1G

T

= DP
xxp
k−1A

T
+ 0s×qQk−1G

T
= 0s×nA

T
= 0s×n. (4.22)

With (2.8) and (4.22), multiplying (2.9) by D yields

DKk = DP
xy

k|k−1
(P

yy

k|k−1
)
−1

= DP
xx
k|k−1C

T
(P

yy

k|k−1
)
−1

= 0s×m.(4.23)

With (4.21) and (4.23), multiplying (2.10)-(2.11) by D
yields

Dx̂k = Dx̂k|k−1 + DKk(yk − ŷk|k−1) = d, (4.24)

DP
xx
k = DP

xx
k|k−1 − DKkP

yy

k|k−1
K

T

k = 0s×n. (4.25)

Given (4.24)-(4.25), from (4.19)-(4.20), we have x̂
p
k = x̂k

and P
xxp
k = P xx

k . �

Corollary 4.1:. Assume Dx̂
p
1 = d and DP

xxp
1 = 0s×n.

Then, for all k ≥ 2, Dx̂k = d and DP xx
k = 0s×n.
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Therefore, for time-invariant systems, whenever (3.4)-(3.6)
hold, the projection step of ECKF given by (4.4)-(4.9) is
required only at k = 1, so that, for all k ≥ 2, the updated
estimate x̂k given by (2.10) satisfies Dx̂k = d.

V. CONNECTIONS OF ECKF TO OTHER APPROACHES
We now compare ECKF to three Kalman filtering algo-

rithms whose state estimates satisfy an equality constraint.
First we consider the measurement–augmentation Kalman

filter (MAKF) [2, 14], which treats (3.7) as perfect measure-
ments. In Appendix I, we present the MAKF equations and
prove that MAKF and ECKF estimates are equal.
In Appendix II, in the context of time-invariant systems,

we show the connection between ECKF and the projected
Kalman filter by system projection (PKF-SP) [8], which,
assuming that (3.4)-(3.6) hold, incorporates the information
provided by (3.7) only in filter initialization, that is, k = 0.
Finally, in Appendix III, we briefly review the projected

Kalman filter by estimate projection (PKF-EP) [11, 12],
which projects x̂k onto the hyperplane (3.7) for all k ≥ 1.
Unlike ECKF, the projected estimate of PKF-EP is not
recursively fed back in the next iteration. Fig. 1 illustrates
how the forecast, data-assimilation, and projection steps are
connected for ECKF, PKF-SP, and PKF-EP.

(a)

(b)

Fig. 1. Comparative diagram of (a) the equality-constrained Kalman filter
(ECKF) (. . .) and the projected Kalman filter by estimate projection (PKF-
EP) (−−) and (b) the projected Kalman filter by system projection (PKF-
SP) (−·−). In ECKF, the projection step is connected by feedback recursion.
In PKF-SP, the initial state estimate and the associated error covariance carry
the information provided by the equality constraint.

VI. COMPARTMENTAL SYSTEM EXAMPLE
Consider the linear discrete-time compartmental model

(2.1)-(2.2) [4] whose parameters are given by

A =


 0.94 0.028 0.019

0.038 0.95 0.001
0.022 0.022 0.98


 , B = 03×1,

G =


 0.05 −0.03

−0.02 0.01
−0.03 0.02


 , C =

[
1 0 0
0 1 0

]
, (6.1)

with initial condition x0 = [ 1 1 1 ]
T

and noise co-
variance matrices Qk−1 = σ2

wI3×3 and Rk = σ2
vI2×2. The

free-run simulation of this system is shown in Fig. 2ab for
σw = 1.0 and σv = 0.01. Note that (3.4)-(3.6) hold for

(6.1) such that the trajectory of xk ∈ R
3 lies on a plane

(3.7), whose parameters are given by D =
[

1 1 1
]
,

and d = 3. that is, conservation of mass is verified.

(a) (b)
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Fig. 2. Free-run simulation of the compartmental model. In (a), the state
components are shown evolving with time and, in (b), in state space. In (c),
it is shown the estimate of the total mass (constraint) Dxk using KF (—–)
in comparison with the true value (−−).

TABLE I: Average of percent RMS constraint error, trace of error
covariance matrix, and RMS estimation error for 100-run Monte Carlo
simulation for compartmental system, concerning different levels of process
noise σw = 0, 0.1, 0.5, and 1.0, and algorithms, namely, KF, ECKF,
MAKF, PKF-EP, and PKF-SP.
σw KF ECKF MAKF PKF-EP PKF-SP

Percent RMS constraint error
0 0.12 4.52×10−15 4.24×10−11 4.53×10−15 8.19×10−12

0.1 0.22 4.52×10−15 2.01×10−11 4.52×10−15 4.05×10−12

0.5 0.40 4.50×10−15 0.88×10−11 4.51×10−15 3.92×10−12

1.0 0.62 4.53×10−15 0.50×10−11 4.51×10−15 3.98×10−12

Trace of error covariance matrix (×10−4)
0 0.0996 0.0012
0.1 1.0515 0.6352
0.5 2.8057 1.4722
1.0 5.4646 1.8387

RMS estimation error for x1, x2, and x3 (×10−3)
0 0.57, 0.36, 2.93 0.10, 0.16, 0.21
0.1 6.26, 2.60, 7.34 6.25, 2.54, 4.19
0.5 9.01, 4.58, 13.2 9.01, 4.55, 6.75
1.0 9.35, 5.58, 19.7 9.35, 5.56, 8.07

For state estimation, the KF algorithm is initialized with

x̂0 = [ 2 1 0 ]
T

, P xx
0 = I3×3. (6.2)

Fig. 2c shows that KF estimates do not lie on the plane (3.7).
Even if x̂0 = x0 or σw = 0, KF does not produce estimates
satisfying (3.7). Next, we implement the ECKF algorithm.
From a 100-run Monte Carlo simulation for each one of
these process noise levels, namely, σw = 0, 0.1, 0.5, 1.0,
and σv = 0.01, Table I shows that the ECKF estimates satisfy
the equality constraint. In addition, these estimates are both
more accurate (smaller root-mean-square (RMS) errors) and
more informative (smaller trace of error covariance) than the
KF estimates.
For MAKF, PKF-EP, and PKF-SP, initialization is given

by (6.2), except for PKF-SP (see (7.30) in Appendix II).
Table I summarizes the results. ECKF, MAKF, PKF-SP, and
PKF-EP guarantee that (3.9) is satisfied and yield improved
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estimates compared to KF. All equality-constrained methods
produce similar results concerning RMS error and trace of
error covariance for this time-invariant system. This is in
accordance with [8, Theorem 2] regarding PKF-SP and PKF-
EP. However, though not shown in Table I, it is relevant
to mention that PKF-EP produces less accurate and less
informative forecast estimates x̂k|k−1 compared to the other
constrained algorithms. This is expected because PKF-EP do
not use x̂

p
k−1 to calculate x̂k|k−1.

VII. CONCLUDING REMARKS
We have shown that the problem of equality-constrained

state estimation for linear systems arises from both process
noise and dynamic equations with special properties (3.4)-
(3.6), such that the system is not controllable from the pro-
cess noise. In this case the optimal estimates of the classical
Kalman filter (KF) do not match the equality constraint (3.7).
Then we have presented the equality-constrained KF

(ECKF) as the solution to this problem. Moreover, we have
proved its equivalence to the measurement-augmentation KF
(MAKF) and have pointed its connections to the projection
KF by system-projection (PKF-SP) and the projection KF by
estimate-projection (PKF-EP).
We have compared these four methods by means of an

example: a compartmental model with mass conservation.
Numerical results suggest that, in addition to exactly satisfy-
ing the equality constraint, ECKF produce more accurate and
more informative estimates than KF. For the time-invariant
linear scenario, ECKF, MAKF, PKF-SP, and PKF-EP have
produced similar results.

APPENDIX I: EQUIVALENCE OF ECKF AND MAKF
Define the augmented observation

ỹk �

[
yk

dk−1

]
= C̃kxk +

[
vk

0s×1

]
, (7.1)

where
C̃k �

[
Ck

Dk−1

]
. (7.2)

With (7.1), MAKF uses (2.4)-(2.5) together with the aug-
mented forecast equations

ˆ̃yk|k−1 = C̃kx̂k|k−1, (7.3)

P̃
ỹỹ

k|k−1 = C̃kP xx
k|k−1C̃

T

k + R̃k, (7.4)

P̃
xỹ

k|k−1 = P xx
k|k−1C̃

T

k , (7.5)

where R̃k �

[
Rk 0m×s

0s×m 0s×s

]
, and the augmented data-

assimilation equations given by

K̃k = P̃
xỹ

k|k−1(P̃
ỹỹ

k|k−1)
−1, (7.6)

x̂k = x̂k|k−1 + K̃k(ỹk − ˆ̃yk|k−1), (7.7)

P xx
k = P xx

k|k−1 − K̃kP̃
ỹỹ

k|k−1K̃
T

k . (7.8)

Let x̃k|k−1 � x̂k|k−1 (2.4) denote the forecast estimate
provided by MAKF. Furthermore, let P̃ xx

k|k−1 � P xx
k|k−1 (2.5)

be the associated forecast error covariance of MAKF. Also
let x̂k|k−1 (4.2) and P xx

k|k−1 (4.3) denote the forecast estimate
and the associated error covariance of ECKF.

Proposition 7.1: Assume that x̃k|k−1 = x̂k|k−1 and
P̃ xx

k|k−1 = P xx
k|k−1. Then x̃k+1|k = x̂k+1|k and P̃ xx

k+1|k =
P xx

k+1|k.
Proof. P̃

ỹỹ

k|k−1 (7.4) is equivalent to

P̃
ỹỹ

k|k−1
=

[
P

yy

k|k−1
CkP xx

k|k−1DT
k−1

Dk−1P xx
k|k−1CT

k P dd
k|k−1

]
. (7.9)

It follows from [3] that P̃
ỹỹ −1
k|k−1 has entries

P̃
ỹỹ −1
k|k−1

=


 (P̃−1

k|k−1
)1 (P̃−1

k|k−1
)12(

(P̃−1
k|k−1

)12
)T

(P̃−1
k|k−1

)2


 , (7.10)

where
(P̃

−1
k|k−1)1 �

(
P

yy

k|k−1
−CkP

xx
k|k−1D

T
k−1P

dd −1
k|k−1 Dk−1P

xx
k|k−1C

T
k

)−1
,

(P̃
−1
k|k−1)12 � −

(
P

yy

k|k−1
−CkP

xx
k|k−1D

T
k−1P

dd −1
k|k−1 Dk−1P

xx
k|k−1C

T
k

)−1

CkP
xx
k|k−1D

T
k−1P

dd −1
k|k−1 ,

(P̃
−1
k|k−1)2 �

(
P

dd
k|k−1−Dk−1P

xx
k|k−1C

T
k P

yy −1
k|k−1

CkP
xx
k|k−1D

T
k−1

)−1
.(7.11)

Furthermore, it can be shown that
(P̃

−1
k|k−1)1 = (P

yy

k|k−1
)
−1

+ (P
yy

k|k−1
)
−1

CkP
xx
k|k−1D

T
k−1

(P̃
−1
k|k−1)2Dk−1P

xx
k|k−1C

T
k (P

yy

k|k−1
)
−1

, (7.12)

(P̃
−1
k|k−1)12 = −(P

yy

k|k−1
)
−1

CkP
xx
k|k−1D

T
k−1(P̃

−1
k|k−1)2. (7.13)

It follows from (2.9) that

Kk = P xx
k|k−1C

T
k (P yy

k|k−1)
−1, (7.14)

Furthermore substituting (7.14) into (2.11) yields

P xx
k = P xx

k|k−1 − P xx
k|k−1C

T
k (P yy

k|k−1)
−1CkP xx

k|k−1. (7.15)

Hence,
(Dk−1P

xx
k D

T
k−1)

−1
=

(
Dk−1P

xx
k|k−1D

T
k−1−

Dk−1P
xx
k|k−1C

T
k (P

yy

k|k−1
)
−1

CkP
xx
k|k−1D

T
k−1

)−1

= (P̃
−1
k|k−1)2. (7.16)

Substituting (7.14) into (2.10) yields (4.8). Substituting
(4.4) into (4.8) yields

x̂
p
k

= x̂k|k−1 +
[

Kk − K
p
k

Dk−1Kk K
p
k

] (
ỹk − C̃kx̂k|k−1

)
. (7.17)

It follows from (4.5), (7.11), (7.13) and (7.16) that

K
p
k

= P
xx
k|k−1C̃

T
k

[
(P̃−1

k|k−1
)12

(P̃−1
k|k−1

)2

]
. (7.18)

Substituting (7.13) into (7.18) and substituting the resulting
expression into Kk −K

p
kDk−1Kk yields

Kk−K
p
k

Dk−1Kk = P
xx
k|k−1C

T
k

[
P

yy −1
k|k−1

+P
yy −1
k|k−1

CkP
xx
k|k−1

D
T
k−1(P̃

−1
k|k−1)2Dk−1P

xx
k|k−1C

T
k P

yy −1
k|k−1

]
− (7.19)

P
xx
k|k−1D

T
k−1(P̃

−1
k|k−1)2Dk−1P

xx
k|k−1C

T
k P

yy −1
k|k−1

.

Hence, (7.12) and (7.13) imply that

Kk − K
p
k

Dk−1Kk = P
xx
k|k−1C̃

T
k

[
(P̃−1

k|k−1
)1

(P̃−1
k|k−1

)
T

12

]
. (7.20)

Therefore, it follows from (7.18) and (7.20) that[
Kk −K

p
kDk−1Kk K

p
k

]
= P xx

k|k−1C̃
T
k P̃

ỹỹ −1
k|k−1 . (7.21)
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Since the estimate x̃k of MAKF is given by

x̃k = x̃k|k−1 + K̃k(ỹk − C̃kx̃k|k−1), (7.22)

where K̃k = P̃ xx
k|k−1C̃

T
k (C̃kP̃ xx

k|k−1C̃
T
k + R̃k)−1, it follows

from (7.21) that

K̃k =
[

Kk −K
p
kDk−1Kk K

p
k

]
. (7.23)

Therefore (7.17) and (7.22) imply that x̃k = x̂
p
k and (2.4)

and (4.2) imply that x̃k+1|k = x̂k+1|k.
Note that (2.11) and (4.9) can be expressed as

P
xx
k = (In×n − KkCk)P

xx
k|k−1(In×n − KkCk)

T
+ KkRkK

T
k , (7.24)

P
xxp
k

= (In×n − K
p
k

Dk−1)P
xx
k (In×n − K

p
k

Dk−1)
T

. (7.25)

Substituting (7.24) into (7.25) yields
P

xxp
k

= (In×n − K
p
k

Dk−1)(In×n − KkCk)P
xx
k|k−1

(In×n − KkCk)
T
(In×n − K

p
k

Dk−1)
T

+

(Kk − K
p
k

Dk−1Kk)Rk(Kk − K
p
k

Dk−1Kk)
T

. (7.26)

Substituting (7.2) and (7.23) into (7.26) yields

P
xxp
k

= (In×n − K̃C̃k)P
xx
k|k−1(In×n − K̃C̃k)

T
+ K̃R̃kK̃

T
. (7.27)

Since, (2.11) implies that

P̃
xx
k = (In×n − K̃C̃k)P̃

xx
k|k−1(In×n − K̃C̃k)

T
+ K̃R̃kK̃

T
, (7.28)

it follows from (7.27) and (7.28) that P̃ xx
k = P

xxp
k . Hence,

(2.4) and (4.3) imply that P̃ xx
k+1|k = P xx

k+1|k. �

APPENDIX II: CONNECTION OF ECKF AND PKF-SP

Assume that system (2.1)-(2.2) is time-invariant and
that (3.4)-(3.6) hold. Then, consider PKF-SP which uses KF
equations (2.4)-(2.11), but initialized with

x̂
p
0 = (D

T

D)−1D
T

d, (7.29)
P

xxp
0 = PN (D)P

xx
0 , (7.30)

where P
xxp
0 is singular and the projector PN (D) ∈ R

n×n is
obtained by the singular value decomposition

D
T

=
[

U1 U2

] [
Ss

0(n−s)×s

] [
V

T

1

V
T

2

]
,

where U2 ∈ R
n×(n−s) such that PN (D) = U2U

T

2 . Also,
note that, since (3.4) holds, Gwk−1 is constrained in PN (D)

and GQk−1G
T

is a “constrained” covariance [8].
With Corollary 4.1 and comparing (7.29)-(7.30) to (4.19)-

(4.20), we see that, similar to ECKF, which performs pro-
jection only at k = 1 to guarantee constraint satisfaction for
all k ≥ 1, PKF-SP performs projection in initialization, that
is, only at k = 0, providing that (3.4)-(3.6) hold.

APPENDIX III: CONNECTION OF ECKF AND PKF-EP

PKF-EP projects the updated estimate x̂k (2.10) onto the
hyperplane defined by (3.7) by minimizing the cost function
J(xk) � (xk − x̂k)

T

W−1 (xk − x̂k) subject to (3.7), where
W ∈ R

n×n is positive definite. The solution x̂
p
k to J(xk) is

given by

x̂
p
k = x̂k + K

p
k (dk−1 −Dk−1x̂k), (7.31)

where

K
p
k � WD

T

k−1(Dk−1WD
T

k−1)
−1. (7.32)

The projected error covariance P
xxp
k associated with x̂

p
k is

given by (4.18) and (4.20).
PKF-EP is formed by forecast (2.4)-(2.8), data-

assimilation (2.9)-(2.11), and projection (7.31)-(7.32),
(4.18), (4.20) steps.
We set W = P xx

k in (7.32), where P xx
k is given by (2.11),

such that x̂
p
k (7.31) is optimal according to the maximum a

posteriori and minimum variance criteria [12]. In this case,
note that the projection equations (7.31)-(7.32), (4.18), (4.20)
of PKF-EP are equal to the projection equations (4.4)-(4.7),
(4.8), (4.9) of ECKF.
However, unlike ECKF, PKF-EP does not recursively feed

the projected estimate x̂
p
k (7.31) and the error covariance

P
xxp
k given by (4.18), (4.20) back in forecast (2.4)-(2.5).
Therefore, the PKF-EP forecast estimate x̂k|k−1 (2.4) is
different from its ECKF counterpart (4.2).
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