Spacecraft Trajectory Estimation
Using a Sampled-Data Extended Kalman Filter
with Range-Only Measurements

R. Scott Erwin, Mario A. Santillo, and Dennis S. Bernstein

1. INTRODUCTION

The problem of estimating the full state of a dynamical system based on limited measurements is of extreme importance in many applications. For the case of a linear system with known dynamics, the classical Kalman filter provides an optimal solution [1, 2]. However, state estimation for nonlinear systems remains a problem of research interest.

Besides their value in estimating the state of a system with nonlinear dynamics, nonlinear estimators can also be used to estimate constant states that represent parameters. Consequently, nonlinear filters are useful for system identification [3]. One of the key issues that arises in this application is parameter bias, a longstanding problem [4].

Optimal nonlinear filters have been studied [5], but are often infinite dimensional and thus difficult to implement. Within a deterministic setting, nonlinear observers have been developed for systems of special structure [6, 7]. Consequently, except for systems of special structure, approximate filters are usually implemented in practice.

There are two main approaches to approximate nonlinear filtering. The first approach is based on a linearization of the nonlinear dynamics and measurement mapping. For example, the extended Kalman filter uses the nonlinear dynamics to propagate the state estimate while using the linearized dynamics and linearized output map to propagate the pseudo-error covariance. The extended Kalman filter is often highly effective, and documented applications cover an extraordinarily broad range of disciplines.

Although the extended Kalman filter was originally conceived within a stochastic setting, recent research has provided a foundation for viewing the extended Kalman filter as a deterministic observer [8–10]. The idea is to adopt or modify the formalisms of the extended Kalman filter while determining conditions that ensure stability and convergence. Although the sufficient conditions are often conservative for specific applications, these results provide an rationalization for the extended Kalman filter formalism.

The second approach to approximate nonlinear state estimation foregoes an explicit update of the state estimate error covariance in favor of a collection of filters whose response is used to approximate the state estimate error covariance. These statistical approaches include the particle, unscented, and ensemble Kalman filters [11–13].

The present paper is concerned with state estimation for satellite trajectory estimation, which, for unforced motion, is equivalent to orbit determination [14]. Since orbital dynamics are nonlinear, nonlinear estimation techniques are needed. A wide variety of problems can be considered based on the type of data that are available, including angle (azimuth and elevation), range, and range rate. Range-only orbit determination is considered in [15, 16] which use least-squares approaches and orbital element state representations. The use of angle-only data is considered in [17], which develops a specialized filter to exploit the monotonicity of angles in orbital motion. Issues that arise in the use of range-rate (doppler) measurements are discussed in [18, 19].

Orbit estimation with measurements provided by a constellation of satellites is considered in [20, 21]. One scenario (TDRSS) considers the use of observing satellites in circular, equatorial, geosynchronous orbits to track satellites in low-Earth orbit, while another scenario (GPS) involves the use of a constellation of satellites with pseudo-range measurements (range measurements with clock error biases) to determine the location of the user, but with a significantly different observer-target geometry from the current problem.

In the present paper we consider the use of a constellation of spacecraft in low-Earth orbit to track a satellite in geosynchronous orbit. Since the observing spacecraft have much smaller period than the target satellite in geosynchronous orbit, we must account for blockage by the Earth, and thus the number of available measurements varies with time. We are particularly interested in the ability of the observing spacecraft to acquire and track the target satellite when measurements are available at low frequency, that is, with a large sample interval.

Unlike the study in [20, 21], which considers either angle (two observations per satellite), angle and range (three observations per satellite), and angle, range, and range rate (four observations per satellite), we focus on the case in which only range measurements are available (one obser-
perturbing forces such as drag. The position vector of the Earth. We assume a radially symmetric Earth. Except for possible thrusting by the target itself, we ignore all perturbing forces such as drag. The position vector \(\vec{r} \) of the target with respect to the center of the Earth satisfies

\[
\frac{\vec{r}}{\dot{r}} = \frac{-\mu}{r^3} \vec{r} + \vec{w},
\]

where \(r \triangleq |\vec{r}| \) is the distance from the satellite to the center of the Earth, \(\vec{w} \) denotes forces due to thrusting per unit mass acting on the target, and \(\mu \triangleq 398,600 \text{ km}^3/\text{s}^2 \) is the Earth’s gravitational parameter. The specific thrust \(\vec{w} \) is zero unless the target is actively maneuvering.

To cast the dynamics (1) in terms of coordinates, we introduce an inertial reference frame \(I \). It is traditional to choose the inertial reference frame so that the \(X \)-axis points toward the Sun on the first day of spring (the vernal equinox line), the \(Z \)-axis points through the North pole of the Earth along the axis of rotation, and the \(Y \)-axis completes a right-handed coordinate system. This description is approximate since the Earth’s rotational axis is not fixed inertially and since the stars move inertially as well [22, pp. 150–153]. However, such details do not play a role in this analysis.

Introducing the velocity vector \(\vec{v} \triangleq \dot{\vec{r}} \) and resolving \(\vec{r}, \vec{v}, \) and \(\vec{w} \) in \(I \) according to

\[
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}, \quad
\begin{bmatrix}
 v_x \\
 v_y \\
 v_z
\end{bmatrix}, \quad
\begin{bmatrix}
 w_x \\
 w_y \\
 w_z
\end{bmatrix},
\]

the equations of motion (1) become

\[
\dot{X} = f(X) + W,
\]

where

\[
X \triangleq \begin{bmatrix}
 x \\
 y \\
 z \\
 v_x \\
 v_y \\
 v_z
\end{bmatrix}, \quad f(X) \triangleq \begin{bmatrix}
 v_x \\
 v_y \\
 v_z \\
 -(\mu/r^3)x \\
 -(\mu/r^3)y \\
 -(\mu/r^3)z
\end{bmatrix}, \quad W \triangleq \begin{bmatrix}
 0 \\
 0 \\
 w_x \\
 w_y \\
 w_z
\end{bmatrix}.
\]

Note that \(r = \sqrt{x^2 + y^2 + z^2} \).

The vector \(X \) provides a complete representation of the target’s state, which is characterized by the position and velocity. When the satellite is moving along an orbit, such as a circle, ellipse, parabola, or hyperbola, it is often useful to represent the satellite motion in terms of the six orbital parameters given by the periapsis distance \(r_p \), the eccentricity \(e \), the right ascension of the ascending node \(\Omega \), the argument of periapsis \(\omega \), and the true anomaly \(\nu \). The orbital elements \(r_p \) and \(e \) fix the shape of the orbit, while the angles \(\Omega \), \(\omega \), and \(\nu \) comprise a \((3, 1, 3)\) sequence of Euler rotations that transform the inertial frame to the inertially fixed frame. The true anomaly \(\nu(t) \) is a time-dependent parameter that keeps track of the position of the satellite along its orbit. The nonlinear transformations that convert position and velocity into orbital elements and vice versa are given in [22].

3. Measurement Model

For trajectory estimation, we assume that range measurements are available from \(p \) satellites at times \(t = kh \), where \(k = 1, 2, \ldots \). Letting \(x_i, y_i, z_i \) denote the inertial coordinates of the \(i \)-th satellite, assumed to be known accurately, the measurement \(Y = Y(kh) \in \mathbb{R}^p \) is given by (omitting the argument \(kh \) on the right-hand side)

\[
Y(kh) = \begin{bmatrix}
 d_1(x, y, z, x_1, y_1, z_1) \\
 \vdots \\
 d_p(x, y, z, x_p, y_p, z_p)
\end{bmatrix} + \nu,
\]

where, for \(i = 1, \ldots, p \),

\[
d_i(x, y, z, x_i, y_i, z_i) \triangleq \sqrt{(x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2},
\]

is the distance from the \(i \)-th satellite to the target, and \(\nu \in \mathbb{R}^p \) denotes measurement noise.

The measurement \(d_i \) is assumed to be unavailable when the line-of-sight path between the \(i \)-th satellite and the target is blocked by the Earth. To determine blockage, we note that the Earth’s surface blocks the path from the \(i \)-th satellite to the target if and only if there exists \(\alpha \in [0, 1] \) such that

\[
D_i(\alpha) < R_E, \quad \text{where } R_E \triangleq 6378 \text{ km is the radius of the Earth and }
\]

\[
D_i(\alpha) \triangleq \sqrt{(x_i + \alpha x)^2 + (y_i + \alpha y)^2 + (z_i + \alpha z)^2}.
\]

The smallest value of \(D_i(\alpha) \) as attained for \(\alpha = \alpha_i \), where

\[
\alpha_i \triangleq -\frac{x_iz + y_iz + z_iz}{x^2 + y^2 + z^2}.
\]

Hence, we compute \(\alpha_i \) to ascertain whether \(\alpha_i \) lies in the interval \([0, 1]\), and then check the blockage condition

\[
D_i(\alpha_i) < R_E.
\]
4. Sampled-Data Extended Kalman Filter

Since the equations of motion (1) are nonlinear, we consider an extended Kalman filter. In addition, since we
assume that measurements Y are available with a specified sample interval of h sec, we consider a sampled-data extended Kalman filter with data update performed at each
time $t = kh$. The sampled-data ("continuous-discrete") extended Kalman filter is given in [2, p. 188]. We use "-"
and "+" to denote state estimates before and after data updates, respectively.

4.1. Forecast Step

The forecast (data-free) step of the sampled-data extended Kalman filter consists of the state-estimate propa-
gation

$$\hat{X}(t) = f(\hat{X}(t)), \quad t \in [(k-1)h, kh],$$

where

$$\hat{X} \triangleq [\dot{x} \dot{y} \dot{z} \dot{v}_x \dot{v}_y \dot{v}_z]^T,$$

as well as the pseudo-error covariance propagation

$$\hat{P}(t) = \hat{A}(t)P(t) + P(t)\hat{A}^T(t) + Q, \quad t \in [(k-1)h, kh],$$

where $\hat{A}(t) \triangleq f'(\hat{X}(t))$ is the Jacobian of f evaluated along the trajectory of (6). The Jacobian $\hat{A}(t)$ is given by

$$\hat{A}(t) = \begin{bmatrix} 0_{3 \times 3} & I_3 \\ \hat{A}_0(t) & 0_{3 \times 3} \end{bmatrix},$$

where (omitting the argument t)

$$\hat{A}_0(t) \triangleq \mu \begin{bmatrix} \frac{3\dot{y}^2}{\dot{v}_z^2} - \frac{1}{\rho} & \frac{3\dot{y} \dot{v}_y}{\dot{v}_z^2} & \frac{3\dot{y} \dot{v}_x}{\dot{v}_z^2} \\ \frac{3\dot{y} \dot{v}_y}{\dot{v}_z^2} & \frac{3\dot{y}^2 - \frac{1}{\rho}}{\dot{v}_z^2} & \frac{3\dot{y} \dot{v}_x}{\dot{v}_z^2} \\ \frac{3\dot{y} \dot{v}_x}{\dot{v}_z^2} & \frac{3\dot{y} \dot{v}_y}{\dot{v}_z^2} & \frac{3\dot{y}^2}{\dot{v}_z^2} - \frac{1}{\rho} \end{bmatrix},$$

where $\mu \triangleq \sqrt{\dot{v}_x^2 + \dot{y}^2 + \dot{z}^2}$.

Equations (6) and (8) are numerically integrated in real
time. Since there is no data injection during the time interval
$[(k-1)h, kh]$, variable-step integration can be used for
efficiency and accuracy. Let $\hat{X}(kh-)$ and $P(kh-)$ denote the values of \hat{X} and P at the right-hand endpoint of the interval $[(k-1)h, kh]$. At the start of the next interval
$[kh, (k+1)h]$, the initial values $\hat{X}(kh+)$ and $P(kh+)$ are determined by the data update step. The overall system is
viewed as a sampled-data system in which continuous-time dynamics are interrupted by instantaneous state jumps [23].

4.2. Data Update Step

For the data update step, the linearized measurement map is given by

$$\hat{C}_k \triangleq \begin{bmatrix} \hat{x}_i(k) & \hat{y}_i(k) & \hat{z}_i(k) \\ d_i(k) & d_i(k) & d_i(k) \\ \vdots & \vdots & \vdots \\ \hat{x}_p(k) & \hat{y}_p(k) & \hat{z}_p(k) \\ d_p(k) & d_p(k) & d_p(k) \end{bmatrix} \begin{bmatrix} 0_{1 \times 3} \end{bmatrix},$$

where, for $i = 1, \ldots, p$,

$$\hat{x}_i(k) \triangleq \dot{x}(kh-) - x_i(kh), \quad \hat{y}_i(k) \triangleq \dot{y}(kh-) - y_i(kh),$$

$$\hat{z}_i(k) \triangleq \dot{z}(kh-) - z_i(kh),$$

$$\hat{d}_i(k) \triangleq d_i(\dot{x}(kh-), \dot{y}(kh-), \dot{z}(kh-), x_i(kh), y_i(kh), z_i(kh)).$$

Furthermore, the data update gain K_k is given by

$$K_k = P(kh-)\hat{C}_k^T[\hat{C}_k P(kh-) \hat{C}_k^T + R]^{-1},$$

where Q and R in (8) and (9) are chosen empirically to
improve filter convergence. The state-estimate data update
is given by

$$\hat{X}(kh+) = \hat{X}(kh-) + K_k[Y(kh) - \hat{d}(k)],$$

Finally,

$$P(kh+) = (I - K_k \hat{C}_k)P(kh-).$$

The values $\hat{X}(kh+)$ and $P(kh+)$ are used to initialize (6),
(8) in the next interval $[kh, (k+1)h]$.

5. Numerical Examples

We consider the case in which satellites in low-Earth orbit (LEO) at a radius of 6600 km are observing a target
satellite in an equatorial geosynchronous orbit at a radius of
42,164 km. We assume that the LEO satellites are spaced
uniformly around the Earth in an equatorial orbit. With
this arrangement, 4 is the smallest number of satellites for
which at least 2 satellites are always able to simultaneously
view the target. Target tracking with as few as 2 satellites
separated by a true anomaly of less than 180 degrees is
also possible as long as measurements are guaranteed to
be available when the target is in the field of view of
both satellites. However, for simplicity, we assume the availability of 4 uniformly spaced LEO satellites with range
measurements available (subject to blocking by the Earth)
at a fixed sample interval of h sec. All satellite measurements
(blocked or not) are assumed to occur simultaneously.

Assuming perfect knowledge of the initial condition and
assuming that the target is not maneuvering, it is possible
to track the target with arbitrary accuracy without the use
of measurements. In practice, perturbing forces such as
drag must also be estimated; however, these forces are
not considered in this study. When the initial state is
unknown or when the target is maneuvering, measurements
are needed to track the target. We consider these cases separately.

6. Target Acquisition

We first consider the ability of the sampled-data Kalman
filter to acquire the target, that is, to locate the target despite
initial position errors. In all cases we set $Q = 0.1 \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$,
and $P_k = 0$.

We consider gaussian measurement noise with a standard
deviation of 0.1 km, which corresponds to $R = 0.01I$ in
For initial estimates that are erroneous by 1 degree and 110 degrees, Figure 1 shows that the position-estimate error reaches a level that is consistent with the measurement accuracy.

Next we consider the ability of the filter to acquire the target under time-sparse measurements with a measurement standard deviation of 0.1 km. For an initial true anomaly error of 10 degrees, Figure 2 shows the position-estimate errors for \(h = 1, 10, 50, 100 \) sec. In each case, the estimator acquires the target in about 10 data assimilation steps, with ultimate accuracy independent of the sample interval.

7. Intermeasurement Tracking Accuracy

Next, we assess the ability of the filter to track the target along its orbit. To see how the position estimate degrades between data updates, we consider an initial true anomaly error of 10 degrees and a sample interval of 50 sec with measurement noise having a standard deviation of 0.1 km. Figure 3 shows the growth of the position error between measurements as well as the position-error reduction that occurs due to data injection.

8. Eccentricity Estimation

We now consider the case in which the target performs an unknown thrust maneuver that changes the eccentricity of its orbit. The initial true anomaly error in all cases is 10 degrees. In particular, the target is initially in a circular orbit as in the previous examples. At time \(t = 100 \) sec, the target performs a 1-second burn that produces a specific thrust \(\mathbf{w} = [0.5, 0]^T \text{ km/s}^2 \), and, at time \(t = 200 \) sec, the target performs a 1-second burn that produces a specific thrust \(\mathbf{w} = [0.3, 0]^T \text{ km/s}^2 \). With an initial eccentricity of \(e = 0 \), corresponding to the initial circular orbit, the eccentricity after the first burn is \(e \approx 0.35 \), while the eccentricity after the second burn is \(e \approx 0.59 \). Assuming measurement noise with a standard deviation of 0.01 km and measurements available with a sample interval of \(h = 1 \) sec, the estimated eccentricity based on the data update estimates is shown in Figure 4. The same scenario is repeated with \(h \) increased to 10 sec, with the results shown in Figure 5.

9. Inclination Estimation

We now consider the case in which the target performs an unknown thrust maneuver that changes its inclination. The initial true anomaly error in all cases except where noted is 30 degrees. The target is initially in a circular orbit with inclination \(i = 0.1 \) rad. At time \(t = 100 \) sec, the target performs a 1-second burn that produces a specific
Fig. 4. Estimated eccentricity. The target performs unknown 1-second burns at $t = 100$ sec and $t = 200$ sec. The initial eccentricity is $e = 0$, corresponding to the initial circular orbit, while the eccentricity after the first burn is $e \approx 0.35$, and the eccentricity after the second burn is $e \approx 0.59$.

Fig. 5. Estimated eccentricity. This simulation is analogous to Figure 4, where now the sample interval is $h = 10$ sec.

thrust $w = [0 0.5]^T$ km/s2, and, at time $t = 200$ sec, the target performs a 1-second burn that produces a specific thrust $w = [0 0 -0.2]^T$ km/s2. The inclination after the first burn is $i \approx 0.26$ rad, while the inclination after the second burn is $i \approx 0.197$ rad. Assuming measurement noise with a standard deviation of 0.01 km and measurements available with a sample interval of $h = 1$ sec, the estimated inclination is shown in Figure 6.

Figure 6 shows that, after a transient, the filter fails to detect the changes in inclination due to the target’s maneuvers. Further tests suggest a lack of observability by the equatorial observing satellites.

Finally, we increase the sample interval to $h = 10$ sec. In this case, the filter diverges. However, for an initial true anomaly error of 5 degrees, it can be seen from Figure 8 that the filter can detect changes in the target’s inclination.

To explore this observability issue in more detail, consider the undamped mass-spring system with dynamics $\ddot{x} + x = 0$ and measurement given by $y = x^2$. By initializing the estimate at zero, the derivative of y with respect to x evaluated at the initial estimate is also zero; this causes the filter to get “stuck” at this estimate. Figure 9 shows that with a zero initial estimate, the filter does not converge. In contrast, with a small nonzero initial estimate, the filter converges within about 20 sec. In our problem, the out-of-plane range measurement has the same characteristic and thus, the filter fails to converge when the initial estimate is zero and all observing satellites are in an equatorial orbit.
Under idealized assumptions on the astrodynamics of bodies orbiting the Earth, we developed a sampled-data extended Kalman filter for range-only observations provided by a constellation of 4 low-Earth orbiting satellites in circular, equatorial orbits. We studied the ability of the filter to acquire and track a target satellite in geosynchronous orbit as a function of the sample interval, initial true anomaly error, and measurement noise standard deviation.

This study complements previous studies that have considered combinations of angle, range, and range-rate measurements by considering range measurements alone and by considering the effects of infrequent measurements.

A surprising discovery of our study is the inability of a constellation of 4 equatorial LEO satellites to track a maneuvering target satellite that changes its inclination when the estimate is identically zero. A simple example illustrated the measurement's characteristics which caused the filter to get “stuck” indefinitely.

The addition of angle (azimuth and elevation) measurements enables the filter to correctly track inclination adjustments when the 4 observing satellites are in an equatorial orbit. Similarly, applying a sampled-data unscented Kalman filter (UKF) to this problem also results in filter convergence. With the UKF, there is no linearized output map to cause the estimate to “stick.” Due to lack of space, these extensions are not considered here.

REFERENCES