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Abstract— Retrospective cost adaptive control (RCAC) can
be applied to command following and disturbance rejection
problems with plants that are possibly MIMO, unstable, and
nonminimum phase. RCAC requires knowledge of a bound on
the first nonzero Markov parameter as well as knowledge of
the nonminimum-phase zeros of the plant, if any. The goal of
the present paper is to increase the robustness of RCAC to
uncertainty in the locations of the nonminimum-phase zeros.
Specifically, a convex constraint is imposed on the poles of
the controller in order to prevent the adaptive controller from
attempting to cancel the nonminimum-phase zeros. Numerical
results show that, when constrained convex optimization is
used at each step, the transient response is improved and the
adaptive controller has increased robustness to uncertainty in
the locations of the nonminimum-phase zeros.

I. INTRODUCTION

Nonminimum-phase zeros are a major impediment to

achievable performance in feedback control. While all fields

of science and technology that work with dynamical systems

are familiar with poles, the field of control is unique in rec-

ognizing the role of zeros in systems with inputs and outputs.

The multiple ways in which zeros impact the operation of

control systems are discussed in [1]. In the classical case

of root locus analysis, the attraction of poles to zeros limits

the magnitude of the feedback gain. The same phenomenon

occurs in LQG control for SISO and MIMO systems,

where, in the high-authority limit, the controller obtained

from the Riccati equations drives some of the closed-loop

poles to the open-left-half-plane reflections of the open-loop

nonminimum-phase (NMP) zeros. Nonminimum-phase zeros

thus limit the achievable bandwidth and control authority. In

addition, real nonminimum-phase zeros are responsible for

initial undershoot and direction reversals in the step response.

These issues are well understood for continuous-time sys-

tems; for sampled-data systems, analogous phenomena occur.

Nonminimum-phase zeros are especially challenging in

adaptive control since an adaptive controller may attempt

to cancel a nonminimum-phase zero. Such pole-zero can-

cellation is impossible, and thus, in fixed-gain control, the

use of a nonminimum-phase zero to cancel an unstable pole

is well known to be ineffective. In adaptive control, the

reverse situation occurs, namely, an adaptive controller may

attempt to cancel a nonminimum-phase zero that limits its

performance; however, the nonminimum-phase zero cannot
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be removed. The detrimental affect of this attempt to cancel

a nonminimum-phase zero is the fact that the controller may

seek to apply unbounded control effort, thereby destabilizing

the closed-loop system.

In the present paper we focus on retrospective cost adap-

tive control (RCAC) [2], [3]. RCAC uses a retrospective cost

functional defined in terms of a surrogate performance vari-

able, which is based on measured data over a past window of

operation. In effect, the retrospective cost functional “looks

backward” over the window of data in order to determine

a controller modification that would have improved the past

performance. This retrospective cost functional is optimized

at each step in order to update the controller. The algorithm

thus seeks the controller that achieves the best performance

in terms of a prior window of operation as determined by

the retrospective cost. The approach of “looking backward”

rather than forward (as in the case, for example, of model

predictive control) allows RCAC to control the system under

minimal modeling information.

As shown in [2], [4], RCAC has the ability to adaptively

control nonminimum-phase systems if the locations of the

nonminimum-phase zeros are known. Modeling information

that captures the locations of the nonminimum-phase zeros

(either SISO or MIMO) is included in the matrix B̄zu, as

described in the next section. The matrix B̄zu can be defined

in terms of the Markov parameters of the transfer function

from the control input to the performance variable. The

Markov parameters are coefficients of the Laurent expansion

of the transfer function expressed in terms of powers of

1/z. The Laurent expansion provides a convergent series

for the transfer function outside of the spectral radius of

the plant; consequently, this series automatically captures

all nonminimum-phase zeros outside of the spectral radius.

Alternatively, if the nonminimum-phase zeros are known,

then their values can be used directly in B̄zu in place

of a finite number of Markov parameters. Consequently,

identification of nonminimum-phase zeros is of interest in

practice [5].

The above discussion leads to the following question: How

does RCAC exploit knowledge of the nonminimum-phase

zeros in order to avoid any attempt to cancel them? This

question is addressed in [4], where it is shown that the

nonminimum-phase zeros appear in the numerator of a filter

that processes the data in the regressor used in the controller

update. This filter removes spectral content corresponding to

the locations of the nonminimum-phase zeros, thus avoiding

the possibility of having the adaptive controller attempt to

cancel a nonminimum-phase zero.
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Since RCAC requires knowledge of the nonminimum-

phase zeros of the plant, it is of interest to determine how ac-

curately this knowledge must be known. Numerical examples

in [2], [6] suggest a negative result, namely, that there may

exist plants for which the robustness to uncertainty in the

locations of the nonminimum-phase zeros may be arbitrarily

small. This lack of robustness is manifested by the increas-

ingly larger transients that arise as the nonminimum-phase-

zero locations become increasingly uncertain. This negative

result is consistent with [7], [8], namely, that adaptive control

must confront plants that are inherently difficult to control.

RCAC shows that this difficulty is inherent in the modeling

information relating specifically to the nonminimum-phase

zeros (if any are present).

In the present paper our goal is to develop a technique

that increases the robustness of RCAC to uncertainty in the

locations of the nonminimum-phase zeros. To do this, we

consider an extension of RCAC, where the minimization of

the retrospective cost is performed subject to a constraint

on the allowable locations of the controller poles. A convex

constraint on eigenvalue locations is given in [9] and is used

in [10] for model identification with guaranteed stability.

However, this approach cannot be used with RCAC since

RCAC updates the coefficients of the denominator of the

controller transfer function, rather than the entries of an

unstructured dynamics matrix. We thus use this polynomial

to construct a companion matrix. Since a bound on the

spectral radius of the companion matrix does not provide

a convex constraint on the coefficients of the polynomial,

we bound the spectral radius with a matrix norm, which

defines a convex constraint. Although bounding the spectral

radius with a matrix norm introduces conservatism, this

conservatism has minimal effect since the magnitude of the

bound on the matrix norm can be adjusted as a design

parameter.
II. PROBLEM FORMULATION

Consider the multi-input, multi-output discrete-time sys-

tem
x(k + 1) = Ax(k) +Bu(k) +D1w(k), (1)

y(k) = Cx(k) +Du(k) +D2w(k), (2)

z(k) = E1x(k) + E2u(k) + E0w(k), (3)

where x(k) ∈ R
n, y(k) ∈ R

ly , z(k) ∈ R
lz , u(k) ∈ R

lu ,

w(k) ∈ R
lw , and k ≥ 0. Our goal is to develop an adaptive

controller that generates a control signal u that minimizes

the performance z in the presence of the exogenous signal

w. We assume that measurements of the output y and

the performance z are available for feedback; however, we

assume that a direct measurement of the exogenous signal

w is not available.

Note that w can represent either a command signal to be

followed, an external disturbance to be rejected, or both. For

example, if D1 = 0, E2 = 0, and E0 6= 0, then the objective

is to have the output E1x follow the command signal −E0w.

On the other hand, if D1 6= 0, E2 = 0, and E0 = 0, then the

objective is to reject the disturbance w from the performance

measurement E1x. The combined command following and

disturbance rejection problem is addressed when D1 and E0

are block matrices. Lastly, if D1 and E0 are empty matrices,

then the objective is output stabilization, that is, convergence

of z to zero.

The performance variable z can include the feedthrough

term E2u. This term allows us to design an adaptive con-

troller where the performance z to be minimized can include

a weighting on control authority. For example, if E1 =
[ ÊT

1 0 ]T, E2 = [ 0 ÊT
2 ]T, and E0 = [ ÊT

0 0 ]T,

then the performance z consists of the components z1
△
=

Ê1x + Ê0w and z2
△
= Ê2u. In this case, the goal is to

minimize a weighted combination of z1 and z2, where z1
is the weighted state performance and z2 is the weighted

control authority.

We represent (1) and (3) as the time-series model from u
and w to z given by

z(k)=

n
∑

i=1

−αiz(k − i)+

n
∑

i=d

βiu(k − i)+

n
∑

i=0

γiw(k − i), (4)

where α1, . . . , αn ∈ R, βd, . . . , βn ∈ R
lz×lu , γ0, . . . , γn ∈

R
lz×lw , and the relative degree d is the smallest non-negative

integer i such that the ith Markov parameter, either H0
△
= E2

if i = 0 or Hi
△
= E1A

i−1B if i > 0, is nonzero. Note that

βd = Hd.

III. REVIEW OF RCAC

In this section we give a brief overview of the RCAC.

Full details are given in [11]. RCAC depends on several

parameters that are selected a priori. Specifically, nc is the

controller order, p is the data window size, and µ is the

number of Markov parameters. The adaptive update law is

based on a quadratic cost function, which involves a time-

varying weighting parameter ζ(k) > 0, referred to as the

learning rate since it affects the convergence speed of the

adaptive control algorithm.

We use a strictly proper time-series controller of order nc

such that the control u(k) is given by

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=1

Ni(k)y(k − i), (5)

where Mi ∈ R
lu×lu , i = 1, . . . , nc, and Ni ∈ R

lu×ly , i =
1, . . . , nc, are given by an adaptive update law. The control

can be expressed as
u(k) = θ(k)φ(k), (6)

where
θ(k)

△
=

[

N1(k) · · · Nnc
(k) M1(k) · · · Mnc

(k)
]

(7)

is the controller parameter block matrix, and the regressor

vector φ(k) is given by

φ(k)
△
=





















y(k − 1)
...

y(k − nc)
u(k − 1)

...

u(k − nc)





















∈ R
nc(lu+ly). (8)
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For positive integers p and µ, we define the extended

performance vector Z(k), and the extended control vector

U(k) by

Z(k)
△
=







z(k − 1)
...

z(k − pc)






, U(k)

△
=







u(k − 1)
...

u(k − pc)






, (9)

where pc
△
= n+ µ+ p− 1.

From (6), it follows that the extended control vector U(k)
can be written as

U(k)
△
=

pc
∑

i=1

Liθ(k − i)φ(k − i), (10)

where

Li
△
=





0(i−1)lu×lu

Ilu
0(pc−i)lu×lu



 ∈ R
pclu×lu . (11)

We define the surrogate performance vector Ẑ(θ̂(k), k) by

Ẑ(θ̂(k), k)
△
= Z(k)− B̄zu

(

U(k)− Û(k)
)

, (12)

where
Û(k)

△
=

pc
∑

i=1

Liθ̂(k)φ(k − i), (13)

and θ̂(k) ∈ R
lu×[nc(lu+ly)] is the surrogate controller pa-

rameter block matrix. The block-Toeplitz surrogate control

matrix B̄zu is given by

B̄zu
△
=













0lz×lu · · · 0lz×lu Hd · · ·
...

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

0lz×lu · · · 0lz×lu 0lz×lu · · ·

· · · Hµ 0lz×lu · · · 0lz×lu

. . .
. . .

. . .
. . .

...

. . .
. . .

. . .
. . .

...

· · · 0lz×lu Hd · · · Hµ













, (14)

where the relative degree d is the smallest positive integer

i such that the ith Markov parameter Hi
△
= C0A

i−1
0 B0 is

nonzero. The leading zeros in the first row of B̄zu account

for the nonzero relative degree d. The algorithm places no

constraints on either the value of d or the rank of Hd or B̄zu.

We now consider the cost function

J(θ̂, k)
△
= ẐT(θ̂, k)Ẑ(θ̂, k) + ζ(k)tr

[

(θ̂−θ)T(θ̂−θ)
]

, (15)

where the positive scalar ζ(k) is the learning rate. Substi-

tuting (12) into (15), the cost function can be written as the

quadratic form

J(θ̂, k) =
(

vec θ̂
)T

A(k)vec θ̂ + bTvec θ̂ + c(k), (16)

where

D(k)
△
=

pc
∑

i=1

φT(k − i)⊗ (B̄zuLi),

f(k)
△
= Z(k)− B̄zuU(k),

A(k)
△
= DT(k)D(k) + ζ(k)Inclu(lu+ly),

b(k)
△
= 2DT(k)f(k)− 2ζ(k)vec θ(k),

c(k)
△
= f(k)Tf(k) + ζ(k)tr

[

θT(k)θ(k)
]

. (17)

Since A(k) is positive definite, J(θ̂, k) has the strict global

minimizer

θ̂(k) = −
1

2
vec−1(A(k)−1b(k)). (18)

The controller gain update law is θ(k + 1) = θ̂(k).

IV. CONSTRAINED CONVEX OPTIMIZATION

In this section we extend RCAC by using constrained

convex optimization instead of (18) to update θ(k) ∈

R
1×2nc . For simplicity, we consider only SISO systems. The

denominator coefficients of the controller can be constructed

from the last nc entries of θ(k) as

den(θ(k))
△
= [1 −M1 −M2 · · · −Mnc

]. (19)

The roots of the monic polynomial whose coefficients are

given by den(θ(k)) are the pole locations of the adaptive

controller at step k.

In order to prevent the poles of the adaptive controller

from approaching the nonminimum-phase-zero locations, we

constrain the poles to lie inside a disk centered at the origin

of the complex plane. Accordingly, we modify the problem

of minimizing (16) by imposing an additional constraint on

the companion-form matrix

K
△
=















M1 M2 . . . Mnc−1 Mnc

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0















. (20)

We constrain the poles to a disk by bounding the spectral

radius of K by a matrix norm, which is a convex function

and thus defines a convex region in terms of the denominator

coefficients den(θ(k)). Various matrix norms can be used to

bound the spectral radius. For example, every equi-induced

norm provides an upper bound, see Corollary 9.4.5 of [12].

One such norm is the maximum singular value of K.

Accordingly, the constraint we use is given by

σmax(K) ≤ γ, γ > 1. (21)

To investigate the conservatism of this bound when applied

to matrices of form (20), we generate 105 10th-order monic

polynomials whose last ten coefficients are taken from a stan-

dard normal distribution. For each polynomial we compute

the spectral radius ρ(K) and the maximum singular value

σmax(K). Each dot in Figure 1 corresponds to a polynomial.

Figure 1 suggests that there is little conservatism associated

with constraint (21). For the rest of the paper we consider
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only the maximum singular value to bound the spectral

radius. The use of alternative bounds is left for future work.

Fig. 1. Spectral radius ρ(K) is plotted versus maximum singular value

σmax(K) for 105 10th order random monic polynomials. The plot shows
that the constraint (21) has little conservatism.

V. NUMERICAL EXAMPLES

We now demonstrate the performance of convex-

constrained-RCAC (CC-RCAC) with constrained convex op-

timization on command following problems. The package

CVX [13], [14] is used to minimize (16) subject to the

constraint (21). For all examples in this section, the control

objective is to have the plant output y(k) follow a sinusoid

with amplitude 1 and frequency π
10

rad

samp
= 18 deg

samp
, except where

noted otherwise. The adaptive controller (6) is implemented

in feedback with nc = 10, µ = 1, p = 1, ζ ≡ 1, and

θ(0) = 0. Also, we assume that the relative degree d and the

first nonzero Markov parameter Hd are known.

The closed-loop is simulated for 1000 steps. Initial con-

ditions are generated at the beginning of each simulation

from a Gaussian distribution with mean 0 and variance

0.3. The transient and the steady-state performances are the

two performance metrics used to compare RCAC with CC-

RCAC. By transient performance we mean the maximum

of the absolute value of the performance variable z(k), and

by steady-state performance we mean the maximum of the

absolute value of the performance variable over the last 100

steps of the simulation.

A. Third-Order Plant with a Known NMP Zero

We apply RCAC to a third-order plant with transfer

function given by

G3(z)
△
=

z − 1.4

z3 − 1.7z2 + 1.2z − 0.35
. (22)

RCAC requires knowledge of relative degree, the first

nonzero Markov parameter, and the NMP zero. For this

example the exact values of these parameters are assumed

to be known, and therefore d = 2, Hd = 1, and B̄zu =
[ 0 0 1 −1.4 ]. For RCAC Figure 2 shows the perfor-

mance z(k), control input u(k), and controller coefficients

θ(k). After the controller is turned on at k = 100, the

performance variable z(k) approaches zero in about 200
steps, and the controller coefficients converge in about 400
steps. Figure 3 shows the evolution of the controller poles,

which settle in about 400 steps.
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Fig. 2. RCAC performance, control, and controller coefficients are shown
as a function of time for the transfer function (22).
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Fig. 3. Evolution of the RCAC controller poles is shown as a function of
time in terms of color. Later pole locations are colored with warmer colors
and the final locations are marked with a red square. After the controller is
turned on, the poles settle in about 400 steps.

Under the same assumptions we apply CC-RCAC with

γ = 1.1. For CC-RCAC Figure 4 shows the performance

z(k), control input u(k), and controller coefficients θ(k).
After the controller is turned on, the performance variable

z(k) approaches zero and the controller coefficients converge

in about 200 steps. Figure 5 shows the evolution of the

controller poles, which settle in about 200 steps. For this ex-

ample Figures 2-5 show that, compared to RCAC, CC-RCAC

provides improved performance in terms of decreasing the

peak error by about 70 percent and decreasing the settling

time by about 50 percent.

B. Third-Order Plant with an Uncertain NMP Zero

We now compare the performance of RCAC with CC-

RCAC on the plant (22), but with a NMP zero whose location

is varied from 1.1 to 4.1. In addition, we also test the

robustness of both algorithms to uncertainty in the estimate

of the NMP zero. Therefore, the estimate of the NMP zero

is varied from 1.1 to 4.1 regardless of the location of the

actual NMP zero. The true values for d and Hd are provided

to the algorithm.
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Fig. 4. CC-RCAC performance, control, and controller coefficients are
shown as a function of time for the transfer function (22).
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Fig. 5. Evolution of the CC-RCAC controller poles is shown as a function
of time in terms of color. After the controller is turned on, the poles settle
in about 200 steps.

Figure 6 shows the transient and steady-state performances

for various locations of the nonminimum-phase zero and its

estimates using RCAC. Note that in some cases (particularly

small values of the estimate of the NMP zero locations and

large actual NMP zero locations) the closed-loop becomes

unstable as signified by white in these plots. Additionally,

the color map for these plots is saturated so that dark red

corresponds to transient performance greater than 100. Also

note that, the diagonal in both plots corresponds to the

nominal case, i.e., the zero estimate location is at the actual

zero location. Figure 6 indicates that RCAC is more robust to

overestimating the NMP zero location than underestimating

it and that when the NMP zero is further out on the real axis,

RCAC has greater stability margins than when the NMP zero

is closer to the unit circle.

Next, Figure 7 shows the CC-RCAC transient and steady-

state performance and indicates that, like RCAC, CC-RCAC

is more robust to overestimating the NMP zero location

than underestimating it. Also, CC-RCAC has wider stability

margins when compared to RCAC since the white area in

Figure 7 is reduced by about 70 percent as compared to

Figure 6.
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Fig. 6. For the third-order plant (22) with a nonminimum-phase zero
whose position is given by the horizontal axis, RCAC uses the estimate of
the nonminimum-phase zero whose location is given by the vertical axis.
The color in (a) shows the logarithm of the transient performance, whereas
(b) shows the logarithm of the steady-state performance.

N
M

P
−

z
e
ro

 e
s
ti
m

a
te

 l
o
c
a
ti
o
n
s

(a) NMP−zero locations

 

 

2 3 4

1.5

2

2.5

3

3.5

4

−1

0

1

2

3

4

N
M

P
−

z
e
ro

 e
s
ti
m

a
te

 l
o
c
a
ti
o
n
s

(b) NMP−zero locations

 

 

2 3 4

1.5

2

2.5

3

3.5

4

−14

−12

−10

−8

−6

−4

−2

0

Fig. 7. For the third-order plant with a nonminimum-phase zero whose
position is given by the horizontal axis, CC-RCAC with γ = 1.1 uses the
estimate of the nonminimum-phase zero whose location is given by the
vertical axis.

C. Effect of Varying γ

We now examine the performance of CC-RCAC for vari-

ous values of γ, more precisely, from 1.1 to 2.1. The third-

order plant (22) with the NMP zero location varied from

1.1 to 4.1, is used. The exact location of the NMP zero is

provided to the algorithm. Figure 8 shows the transient and

steady-state performances for various values of γ and known

NMP zero locations. The strip above each plot shows the

RCAC performance for various NMP zero locations. Figure

8 suggests that the best performance for each location of the

NMP zero is achieved at the lowest boundary of these plots,

namely, γ = 1.1. γ = 1.1 was found to work satisfactorily in

all cases tested. Additionally, plants with NMP zeros closer

to the unit circle have smaller transients and smaller steady-

state errors. Lastly, it can be seen that CC-RCAC produces

improved transient and steady-state performances compared

to RCAC.

D. Fourth-Order Plants with Uncertain NMP Zeros

In this section we compare RCAC and CC-RCAC perfor-

mance on 20 fourth-order plants with uncertain NMP zeros.

The plants used for this example have poles generated from

uniform random distribution, first nonzero Markov parameter

equaling 1, and the nonminimum-phase zero location of

2. The command following problem for these plants is

simulated in feedback with RCAC, while the estimate of

the NMP zero is varied from 1.4 to 2.6. Figure 9 shows the

resulting transient and steady-state performance. Next, the
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Fig. 8. For the G3(z) with a nonminimum-phase zero whose position
is given by the horizontal axis, CC-RCAC uses the exact location of the
nonminimum-phase zero and a value of γ that varies from 1.1 to 4.1. For
20 values of γ, the best performance is achieved with γ = 1.1.

same set of plants is simulated in feedback with CC-RCAC

with γ = 1.1. Figure 10 shows the resulting transient and

steady-state performance. Figures 9 and 10 suggest that both,

RCAC and CC-RCAC have problems adapting to plants 7,

9, 11 and 19, since the steady-state performance for both

versions of the algorithm is relatively high, as compared

to the rest of the plants. Additionally, both versions of the

algorithm are more robust to overestimating the location

of the nonminimum-phase zero than to underestimating it.

However, these Figures also suggest that, on average, CC-

RCAC produces smaller transient responses, as compared

to RCAC. Lastly, CC-RCAC has greater stability margin, as

shown by the fewer white regions in Figure 10 than in Figure

9.
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Fig. 9. For 20 random fourth-order plants with a nonminimum-phase zero
at 2, RCAC uses an estimate of the nonminimum-phase zero whose location
is given by the horizontal axis.
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Fig. 10. For 20 random fourth-order plants, CC-RCAC with γ = 1.1 uses
an estimate of the nonminimum-phase zero whose location is given by the
horizontal axis.

VI. CONCLUSION

Retrospective cost adaptive control (RCAC) is applicable

to command following and disturbance rejection problems

under minimal modeling assumptions, namely, knowledge

of the relative degree, first nonzero Markov parameter, and

nonminimum-phase zeros. In RCAC, the controller is up-

dated by optimizing a surrogate performance variable that

is used to define a retrospective cost. The retrospective cost

uses knowledge of the nonminimum-phase zeros to prevent

unstable pole-zero cancelation. The goal of this paper is

to increase the robustness of RCAC to uncertainty in the

nonminimum-phase zero locations. To do this, we extend

RCAC to include a convex constraint on the locations of

the controller poles. Convex optimization is then used to

optimize the retrospective cost subject to this constraint.

The resulting convex-constrained retrospective cost adaptive

controller (CC-RCAC) was found to have improved transient

and steady-state performance as well as improved robustness

to uncertainty in the locations of the nonminimum-phase

zeros.
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