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1. Introduction 
The Rotational/Translational Actuator (RTAC) pro- 
vides a low-dimensional nonlinear system for investi- 
gating nonlinear control techniques [l] - [4]. The loss- 
less formulation of this problem involves the nonlinear 
coupling of an undamped oscillator with a rotational 
rigid body mode. Stabilization and disturbance rejec- 
tion objectives for this problem have been formulated 
as a benchmark problem [3]. 
We implement four nonlinear controllers on the RTAC, 
including an integrator backstepping controller and 
three passivity-based controllers. The integrator back- 
stepping design is based on the work of Wan et al. [l]. 
This approach requires that the equations of motion be 
reformulated by partial feedback linearization. Integra- 
tor backstepping [5] is then used to produce a family of 
globally asymptotically stabilizing control laws. 
Next, three passivity-based controllers are developed 
for the RTAC. These controllers have intuitively ap- 
pealing energy-dissipative properties and thus also in- 
herent stability robustness to plant and disturbance un- 
certainty. Two of these controllers are encompassed 
by the classical passivity framework[6], and versions of 
these controllers have appeared in [2, 31. The final con- 
troller is based upon the novel concept of resetting ab- 
sorbers [7]. 

2. Experimental Testbed 

A Rotational/Translational Actuator (RTAC) experi- 
mental testbed has been constructed based on the non- 
linear system model of [l] - [3] to evaluate the perfor- 
mance of various nonlinear controllers. A photograph 
of the testbed appears in Figure 1. A model of this ar- 
rangement, illustrated by Figure 2, consists of a transla- 
tional cart of mass M connected by a spring of stiffness 
k to a wall. The rotational actuator, which is mounted 
on the cart, consists of a proof mass of mass m and cen- 
troidal moment of inertia I mounted at a fixed distance 
e from its center of rotation. Values of these parame- 
ters for the RTAC experiment are given in Table 1. A 
control torque denoted N is applied to the rotational 
proof mass, and F denotes a disturbance force. 
Let q denote the translational position of the cart from 
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Figure 1: The RTAC Testbed 

Arm Mass mz2.44 oz 
Spring Constant k 1 8 . 6  oz/in 
Eccentricity e=2.33 in 
Arm Inertia I d . 7 4  oz-in2 

Table 1: Physical parameters for the RTAC testbed. 

its equilibrium position, and let B denote the counter- 
clockwise rotational angle of the eccentric mass, where 
B = 0 is perpendicular to the direction of translation, as 
shown in Figure 2. The equations of motion are given 

Note that while the model is lossless, the experimental 
testbed experiences unmodeled damping effects such as 
air friction. 
Equations (1) - (2) are given in first-order form by 

where x = [q ,  p , Q ,  elT, 
2 = f(4 + g ( z ) N ,  (3) 
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Figure 2: Model of the RTAC Experiment 

0 I -me cos e 
+) = (M+m)(r+me2)-(m= 

M + m  [ (M+m)(l+me2)-(me c 0 . 8 ) ~  

A mechanism for generating the disturbance force F for 
the testbed is currently under design. Hence, F = 0 in 
this paper. 

3. Integrator Backstepping Controller 

Following the procedure in [8], we normalize the equa- 
tions of motion, scaling displacement, torque, and time 
according to 

to obtain 
ci-t = ~ ( ~ ~ s i n B - ~ c o s B ) ,  (4) 

e = - - ~ $ ~ ~ ~ e +  (5) 

(6) 

In the normalized equations (4) - (5) the parameter E 
defined as 

J( I + me2) ( M + m) 

quantifies the coupling between the translational and 
rotational motions. Note that in this section the nota- 
tion ( ), when applied to the scaled variables, denotes 
differentiation with respect to the scaled time r. 
The control law derived in [8] is given by 

A .  me 
E =  

where the controller parameters PO, p l ,  p2 ,  CO, c1, and 
c2 are all positive, and 0 < CO < 2. Global asymptotic 
stability of the origin is obtained for every allowable 
choice of these parameters. 

4. Passive Controllers 
Our primary objective for controller design is to asymp- 
totically stabilize the origin 2 = 0 of the system (3). 
In order to exploit the appealing stability robustness 
property associated with the feedback connection of a 
passive plant with a passive controller, we must first en- 
sure that the plant to be controlled is passive. In fact, 
due to the rigid-body rotational mode, the undamped 
RTAC model (3) is actually unstable, and, accordingly, 
not passive. Therefore, the approach we take for con- 
trol design is to passify the plant model using bounded 
state feedback, and then consider various asymptoti- 
cally stabilizing passive control designs. 
To passify the plant model, let g > 0 and set 

N = -mge sin 8 + U ,  (8) 
where the input U will be determined later based on 
the output of a passive controller. This inner-loop con- 
trol is chosen because it is a bounded function of the 
state, and because it will not cause unwinding. The 
term -mgesinB in (8) lends itself to the interpreta- 
tion of the gravitational torque that would result if the 
eccentric arm were in a gravitational field of strength 
g oriented in the 6' = 0 direction. Consequently, the 
inner-loop system can be viewed as the emulation of 
a pendulum absorber, which is used, for example, to 
reduce the vibration levels of tower structures[9]. Tun- 
ing of this emulated absorber can be accomplished by 
adjusting the value of the "gravitational acceleration" 
parameter g. 
With the control (8), (3)  becomes 

x = f(.) + g(z )u ,  (9) 

so that (9) with input U and output y is passive, with 
a storage function 

a 1  1 
2 ~ ( z )  = Z ( ~  + m)i2 - meidcos0 + - ( I  + me2)d2 

1 
+-kq2 2 + mge(1-  cos^), (12) 

and (9), (11) will be termed the passzfied plant. 

4.1. Damped Pendulum Absorber Emulation 
In this subsection, we design a controller that asymp- 
totically stabilizes the passified plant (9), (11). Let 
cu,y > 0, and 

which has the desirable property of being a bounded 
function of e .  This controller effectively adds a bounded 
damping term to the pendulum absorber designed in 
the inner loop, and the resulting controller emulates 
a damped pendulum absorber. With the control in- 
put defined by (8) and (13), the control torque N is 
bounded in magnitude by mge + a. 
The closed-loop system (9), (11), (13) is given by 

U = -atanhyO, (13) 

x = f(x) - g(z)cytanhyB. (14) 
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By choosing V(z) = V ( to be a Lyapunov candidate, 
where K(z) is given :nz)12), along the trajectories of 
the closed-loop system we have 

V ( z ( t ) )  = -a8tanhy6 5 0, (15) 

and asymptotic stability of the origin follows from the 
invariant set theorem [lo]. It also follows from the in- 
variant set theorem that the closed-loop trajectory from 
every initial condition will asymptotically approach an 
equilibrium position in state space of the form q = 0, 
q = 0, = 0, 6’ = n?r, n = O , f l , f 2 , .  . ., which corre- 
sponds to one of two physical configurations: a stable 
configuration corresponding to the arm pointed “down” 
(6’ = 0 mod 2 ~ ) ,  or an unstable configuration corre- 
sponding to the arm pointed “up” (e = 7r mod 27r). 
Furthermore, if a particular trajectory tends to asymp- 
totically approach the unstable configuration, a small 
disturbance would cause it to approach the stable con- 
figuration. While this is desirable global behavior, the 
origin x = 0 is not globally asymptotically stable. 

4.2. Coupled Pendula Absorber Emulation 
In this subsection we extend the emulated damped pen- 
dulum absorber design of Section 4.1 to emulate the 
multi-mode absorber comprised of a system of coupled 
pendula as shown in Figure 3 [3]. This added flexibility 

Figure 3: Coupled Pendula Absorber 

can be exploited by tuning the controller to effectively 
reject disturbances with two dominant frequency com- 
ponents, or to efficiently stabilize a multi-mode plant. 
These capabilities are not explored further in this pa- 
per, however. 
For the coupled pendulum absorber, the pendulum em- 
ulated by the eccentric arm and the damped pendulum 
control law (13) is termed the primary pendulum. The 
angular motion of the primary pendulum is imagined to 
be transmitted by a massless rigid rod and ideal gear- 
box assembly to an auxiliary pendulum. A nonlinear 
rotational spring element is introduced to couple the 
dynamics of the two pendula. The auxiliary pendulum 
hangs vertically in an emulated gravitational field of 
strength g,, and the damping is represented by -dcO,. 
The primary pendulum is defined by the parameters m, 
I ,  and e,  the 0 degree of freedom, and controller param- 
eters g, a,  and y as before. The auxiliary pendulum is 
defined by a virtual mass m, at a distance e, about the 
rotational axis, and the 8, degree of freedom, measured 
from the vertical. The inertia of the auxiliary pendu- 
lum about the pivot is I,. The nonlinear rotational 
spring that couples the primary and auxiliary pendula 
has restoring torque -~sin(Q,  - 8),  where IF. > 0. 

To realize the coupled pendula absorber in Figure 3 as a 
passive compensator, we write the equations of motion 
with input y = 6 and output -U as 

x, = f c ( 4  + Gc(G)Y, (16) 
-U = h c ( 2 c )  + J c ( % ) d ( z c ,  Y, t > Y ,  (17) 

0 
where x,  = [ 8 $. 6, IT, and 

1 

Gc(zc) = [ 1 0 0 I T ,  
h,(~,)  = nsin(8 - e,), JC(zc) = (Y, 

tanh yy 
Y 

A storage function for the compensator (16)-(17) is 
given by 
~ ( z ~ )  = -I& + mcgcec(l - coset) + K ( i  - cos(e -ec>) .  

Asymptotic stability of the closed-loop system fol- 
lows from the invariant set theorem, where Kl(z, cc) = 
G(z) + V,,(z,) is used as a Lyapunov function for the 
closed-loop system. It also follows from the invariant 
set theorem that the stability properties of the equilib- 
ria q = 0, q = 0, 4 = 0, & = o 8 = fn1r,  e, = rtn27c for 
integers n1 and 122, are qualitatively similar to those of 
the closed-loop system involving the damped pendulum 
absorber of Section 4.1 in that all closed-loop trajecto- 
ries asymptotically approach the origin, modulo 7c in 
the rotational states 8, 8,. 

A 1  . 
2 

4.3. Virtual Resetting Absorber Controllers 
The third dissipative controller we consider is a virtual 
resetting absorber controller, which emulates an ab- 
sorber system whose states are reset to achieve instanta- 
neous reduction of the “total energy” of the closed-loop 
system, where the total energy includes the kinetic and 
potential energies associated with the actual physical 
plant, as well as the emulated energy associated with 
the states of the controller. One type of virtual re- 
setting controller, called a virtual trap-door absorber is 
described in [7], where the resetting algorithm is used 
to achieve finite-time stabilization of the double inte- 
grator. A general theory of virtual resetting absorber 
controllers is developed in [ll]. Resetting differential 
systems are also considered in [la]. 
Resetting differential systems consist of three main ele- 
ments: a continuous-time dynamical equation, which 
governs the motion of the system between resetting 
events; a difference equation, which governs the way 
the states of the controller are instantaneously changed 
when a resetting event occurs; and a condition that de- 
termines when the states of the system are to be reset. 
The evolution of the state of a resetting differential sys- 
tem is as follows: when the resetting condition is not 
met, the state corresponds to the solution of the dif- 
ferential equation, with appropriate initial conditions. 
Upon reaching a point in time and/or state space that 
satisfies the resetting condition, the state of the system 
is instantly reset according to the resetting law. The 
state then proceeds to evolve as a solution of the dif- 
ferential equation again, until the resetting condition is 
again satisfied. 
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Our resetting controller is given by 

e - 6, 
Ax, = [ -i, ] , ~sin(19 - 0,)j 5 0, (19) 

U = Icsin(8, - e). (20) 

The continuous-time equation governing the behavior 
of the state xc between resetting events is given by 
(18). These dynamics represent the coupled pendula 
absorber of Section 4.2 where the gravity term g, and 
the dissipation term d, are both set to zero. Notice 
that unlike the passive controller designs of sections 4.1 
and 4.2, this controller has no dissipation term in its 
dynamics (18). 
The resetting law given by (19) describes the instanta- 
neous change in the controller state that occurs when 
the resetting condition is met; that is, when the reset- 
ting condition is met, the state x, is instantly reset to 
zc + Axs, and thus according to (19), 19, is reset to 
6, + 0 - 6, = 8, and 0, is reset to 0, - 0, = 0. This 
resetting law (19) thus resets 0, to 6’ and 0, to 0. 
The resetting condition in (18)-( 19) involves a sign con- 
dition on the function rcsin(8 - 8,)b. The motivation 
for this condition, as well as for the form of the reset 
law (19), is based on properties of the emulated energy. 
The emulated energy is given by 

1 
2 S / C ( ~ , ,  2) = -I& + K:(I - cos(e - e,)) 2 0, (21) 

and in the closed loop, 
d 
-I/,(xC, z) = K: sin(8 - &)e. 
dt 

It follows from (9)-(12) and (18)-(22) that 
d d --K(z) = i u  = tcsin(8 - e,)8 = --Vc(2,, x). dt dt (23) 

Thus, increasing V, corresponds to decreasing V,. It is 
now clear from (18)-(19) and (22) that the resetting 
condition is chosen so that the states of the controller 
evolve without resetting as long as the emulated energy 
is increasing; that is, no resetting occurs provided the 
controller is removing energy from the RTAC. When 
the controller is no longer able to remove energy from 
the RTAC, the controller states are reset. This change 
in controller state causes the emulated energy (21) to 
be instantly transferred from &(z,, x) 2 0 to V,(xc + 
Ax,, x) = 0, effectively dumping any “energy” that had 
accumulated in the controller. 
In this approach, energy is allowed to flow from the 
plant into the controller, but due to the resetting mech- 
anism, no energy can flow from the controller back to 
the plant. To implement the one-way absorber con- 
troller on the RTAC, only the angle 6 is measured. The 
value of the compensator energy (21) is evaluated at 
each time step, and the controller states are reset when- 
ever the current value of the compensator energy is less 
than or equal to its previous value. 

5. Experimental Results 
In this section, the controller designs of Section 3 and 
Section 4 are implemented and evaluated on the RTAC 

testbed. The baseline experiment used to evaluate the 
performance of the controllers is an initial condition re- 
sponse, where q(0 )  = 1.5’; i ( 0 )  = 0. For the passivity- 
based controllers, the arm is set initially to 6’ = 0 and 
8(0) = 0. The RTAC is held in this initial configuration, 
with the controller active and no control torque results. 
The experiment begins when the cart is released. For 
the integrator backstepping controller, when the cart is 
held motionless at q(0 )  = 1.5’; control torques cause the 
arm to be initially at rest at approximately 8 = 145’. 
For each experiment, a settling time is computed as the 
time required for the cart displacement to become less 
than 10% of the initial value, or 0.15”. An approxi- 
mate damping ratio is assigned to each response based 
on logarithmic decrement analysis. A summary of the 
results is tabulated in Table 2. Clearly, the responses 
of these nonlinear systems are not expected to mimic 
the responses of a linear system. However, by approx- 
imating the rate of decrease of the amplitude of the 
cart displacement during roughly the first five seconds 
of the experiment, a damping ratio can be assigned that 
is useful for comparison purposes. 
The integrator backstepping controller described in Sec- 
tion 3 is implemented with po = 5000, p l  = 500, 
p2 = 500, C O  = 0.5, c1 = 1, and c2 = 1. These pa- 
rameters were selected by trial and error, as it is not 
clear precisely what role is played by the individual con- 
troller parameters in determining the closed-loop re- 
sponse. The experimental initial-condition response is 
shown in Figure 4, and performance is summarized in 
Table 2. It is evident that the controller is able to bring 
the cart and arm to rest at the desired zero position. 
The controller output is characterized by a large ampli- 
tude control signal - saturating often during the initial 
two seconds - with substantial high frequency content. 
The damped pendulum absorber described in Section 
4.1 is designed with m = 3.4 oz, g = 19.7 ft/sec2, 
e = 2.33 in, CY = 10 oz-in, and y = 0.0057 sec. The 
parameters m and e are chosen to approximately re- 
flect the actual mass and eccentricity of the arm. The 
parameter g is tuned so that, in the absence of damp- 
ing, the initial condition response of the cart excites 
the greatest amount of motion in the arm. This proce- 
dure helps tune the natural frequency of the absorber 
to the natural frequency of the cart, which is useful for 
efficiently transferring the energy from the cart to the 
arm where it can be dissipated. The parameter CY is 
chosen first to set the torque bound, while the damping 
parameter y is tuned to provide adequate damping. If 
y is too large then the energy transfer from the cart 
to the arm becomes greatly reduced, whereas if y is 
too small then energy is transferred but not dissipated. 
The response to the baseline initial condition is given 
in Figure 5, and settling performance is summarized in 
Table 2. Residual oscillations of approximately 0.04“ 
amplitude are not damped by the controller. 
The coupled pendula absorber described in Section 
4.2 is designed with m = 3.4 oz, g = 34.6 ft/sec2, 
e = 2.33 in, Q = 10 oz-in, y = 0.0057 sec, K: = 14.2 oz-in, 
I, = 11.3 oz-in2, e, = 0, and d, = 14.2 oz-in-sec. Here 
again the parameters m and e are chosen to reflect the 
actual mass and eccentricity of the arm. To achieve 
good settling behavior, the parameters are tuned so 
that the initial condition response of the cart excites 
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one “mode” of the coupled pendulum absorber system 
as much as possible. The response to the baseline ini- 
tial condition is given in Figure 6, and performance 
is summarized in Table 2. Residual oscillations of ap- 
proximately 0.1‘’ amplitude are not damped by the con- 
troller. 
The one-way absorber controller described in Section 
4.3 is designed with m = 3.4 oz, g = 19.7 ft/sec2, 
e = 2.33 in, K: = 4.25 oz-in, and I, = 1.1 oz-in2. As was 
the case for the previous absorber-based controllers, the 
parameters m and e are chosen to reflect the actual 
mass and eccentricity of the arm. As it was for the 
damped pendulum absorber controller, the parameter 
g is chosen to allow the most efficient energy transfer 
from the cart to the eccentric arm. Now instead of 
proceeding to the selection of the proper dashpot pa- 
rameter as we did in the damped pendulum absorber 
design, we simply design the controller parameters K: 
and IC to exchange energy efficiently with the eccentric 
arm. The response of the one-way absorber controller 
to the baseline initial condition is given in Figure 7, and 
performance is summarized in Table 2. Residual cart 
oscillation of 0.08’’ amplitude are not damped by the 
controller. Some discontinuity in the control signal due 
to the resetting nature of this controller is apparent in 
the figure. 
It has been noted in all of the passivity-based control 
cases that there is a residual oscillation of the cart that 
the controllers cannot remove. This is due to stiction 
in the motor/arm assembly which is not included in the 
dynamical model. For oscillations of this level, the ac- 
celerations of the cart are so small that the stiction force 
alone keeps the arm from moving, and without motion 
in the arm, energy cannot be removed from the cart. To 
contrast, the integrator backstepping controller, being 
a full-state-feedback control law, applies torque based 
on measured cart displacement and velocity, and thus, 
despite the presence of stiction, can remove the low 
amplitude cart oscillations that the passive controllers 
cannot. 
It is to be expected that the integrator backstepping 
controller could achieve better performance than the 
absorber-based controllers, since the former was not re- 
stricted by passivity constraints. In fact, simulations 
indicate that the integrator backstepping controller can 
achieve much lower settling times compared to passive 
designs. However, due to the control amplitude con- 
straint imposed to safeguard the actuator, these high 
authority integrator backstepping controllers could not 
be implemented, and, although as implemented they 
used 25 times more control torque, the integrator back- 
stepping controller was only able to achieve settling be- 
havior roughly comparable to the absorber-based con- 
trollers. 
While the passive controllers do not reach the maximum 
torque constraint, they also cannot make use of the 
extra available torque. The best performance of these 
absorber-based controllers is achieved by careful tuning 
of the control parameters, and “increasing the gain” 
only serves to detune the controller. A controller that 
more efficiently uses the available torque to improve the 
settling performance of the RTAC would be desirable. 

ping 

Controller I Capprox I Umax J 
Integrator Backstep- I 3.7% 1 12.2 oz-in I 

I (saturated) 

Absorber 

Absorber 

Absorber 
0.44 oz-in 

Table 2: Summary of controller performance 
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Figure 4: Integrator Backstepping Controller: Response 
of the RTAC to a 1.5-inch initial displacement. 
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Figure 5: Damped Pendulum Absorber Controller: Re- 
sponse of the RTAC to a 1.5-inch initial dis- 
placement. 
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Figure 6: Coupled Pendula Absorber Controller: Re- 
sponse of the RTAC to a 1.5-inch initial dis- 
placement. 
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Figure 7: Virtual One-way Absorber Controller: Re- 
sponse of the RTAC to a 1.5-inch initial dis- 
placement. 
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