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Lyapunow Stability, Semistability, 
and Asymptotic Stability of Matrix 
Second-Order Systems 
Necessary and sufficient conditions for Lyapunov stability, semistability and asymptotic 
stability of matrix second-order systems are given in terms of the coefficient matrices. 
Necessary and sufficient conditions for Lyapunov stability and instability in the absence 
of viscous damping are also given. These are used to derive several known stability and 
instability criteria as well as a few new ones. In addition, examples are given to illustrate 
the stability conditions. 

1 Introduction 
The stability of matrix second-order systems has been of 

considerable interest for over three decades (Duffin, 1955; 
Lancaster, 1966). These systems, which are of the form 
Mx + (C + G)x + Kx = 0, are of fundamental importance in 
the study of vibrational phenomena, where the matrices M, 
C, G and K represent mass, damping, gyroscopic coupling 
and stiffness parameters, respectively. The stability of sec­
ond-order systems is also important in feedback-control de­
sign. Linear feedback control of second-order systems leads 
to closed-loop systems that are also of second order. The 
closed-loop mass, damping and stiffness matrices can be 
modified by using acceleration, velocity, and position feed­
back, respectively. A part of the design problem is to choose 
the feedback gains such that the matrices M, C, G and K for 
the closed-loop system satisfy some stability criterion. In 
most applications and throughout this paper M is positive 
definite, C is nonnegative definite, G is skew symmetric and 
K is symmetric. Here, positive-definite and nonnegative-defi-
nite matrices are assumed to be symmetric. 

The purpose of this paper is to provide a self-contained, 
unified and extended treatment of the stability of matrix 
second-order systems. The results we obtain encompass nu­
merous results from the prior literature in addition to several 
new results. Specifically, in addition to obtaining necessary 
and sufficient conditions for Lyapunov and asymptotic stabil­
ity, we consider the case of semistability, a concept first 
introduced in Campbell and Rose (1979). Semistability is of 
particular interest in the analysis of vibrating systems in that 
it represents the case of "damped rigid body modes," that is, 
systems that eventually come to rest, although not necessarily 
at a specified equilibrium point. This paper presents the first 
treatment of semistability for matrix second-order systems. 

In prior work, Moran (1970) gave necessary and sufficient 
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conditions for the case in which K is positive definite. His 
condition, which is applicable in the presence of gyroscopic 
terms, can be stated as follows: The second-order system is 
asymptotically stable if and only if no modal vector of the 
corresponding undamped system (that is, with C = 0) lies in the 
nullspace of C. This result follows from Lemma 2 of this 
work. Walker and Schmitendorf (1973) gave an algebraic 
condition for asymptotic stability, which is given by condition 
(32) in this work. Hughes and Gardner (1975) extended this 
result to include gyroscopic terms. All these works gave 
necessary and sufficient conditions for the system to be 
asymptotically stable with nonnegative-definite damping and 
positive-definite stiffness. Zajac (1965) coined the phrase 
"pervasive damping" to describe such systems. Roberson 
(1968) devised a constructive method for determining if a 
system is pervasively damped. Inman (1983) gave conditions 
for asymptotic stability when the damping and stiffness matri­
ces are asymmetric but simultaneously symmetrizable. The 
necessary and sufficient condition given by him is an exten­
sion of condition (32) of this work. 

Greenlee (1975) gave a necessary and sufficient geometric 
condition for Lyapunov stability when C = 0. Condition (29), 
with C = 0, can be shown to be the algebraic equivalent of 
Greenlee's condition. Connell (1969) gave a sufficient condi­
tion for asymptotic stability in the presence of gyroscopic 
terms when the damping is nonnegative definite. His condi­
tion is based on the Krasovskii-LaSalle theorem on asymp­
totic stability. 

The literature also contains stability criteria involving less 
restrictive conditions on the coefficient matrices than those 
assumed in the paper. Probably the oldest among these is the 
Kelvin-Tait-Chetayev theorem (Chetayev, 1961) which was 
later made stronger by Zajac (1964). Zajac's theorem can be 
stated as follows: / / C is positive definite, then the number of 
open right half plane eigenvalues of the second-order system is 
equal to the number of negative eigenvalues of K. Wimmer 
(1974) further extended this result to the case in which C is 
only nonnegative definite. Walker (1970) gave sufficient con­
ditions for asymptotic stability for the general case in which 
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neither C nor K satisfies symmetry or definiteness proper­
ties. His condition depends upon the existence of matrices 
having specified properties. Mingori (1970) gave a sufficient 
condition for asymptotic stability when the damping is posi­
tive definite, the stiffness is asymmetric and certain commu-
tativity conditions are met. Mingori's result is a generaliza­
tion of the Kelvin-Tait-Chataev theorem. Fawzy (1979) gave a 
necessary and sufficient condition based on Lyapunov's 
lemma. The same approach was adopted by Ahmadian and 
Inman (1985, 1986) to arrive at sufficient conditions for 
Lyapunov and asymptotic stability. Kliem and Pommer (1986) 
obtained a sufficient condition involving a lower bound on 
the magnitudes of the eigenvalues of the system. Shieh et al. 
(1987) obtained various sufficient conditions for stability and 
instability using Lyapunov theory. 

The problem of gyroscopic stabilization, that is, Lyapunov 
stability with C = 0, K not necessarily nonnegative definite 
and nonzero G, has also been studied. It will be shown that 
in this case, the system is Hamiltonian. One of the earliest 
results on this problem, which can be found in Chetayev 
(1961), can be stated as follows: If the stiffness matrix K has an 
odd number of negative eigenvalues, then the gyroscopic system 
is unstable. This result, along with related observations, is 
also stated in Greenwood (1977). A similar result holds for 
linear Hamiltonian systems in general (Bloch et al., 1994). 
Plaut (1976) gave alternative forms of the eigenvalue problem 
associated with gyroscopic systems. Hagedorn (1975) showed 
that a gyroscopic system is unstable if AK-GM~lG is nega­
tive definite. In later work, Huseyin et al. (1983) showed that 
the system is Lyapunov stable if AK-GM~lG is positive 
definite and GM~'K-KM~lG is positive semidefinite. The 
same paper also showed that if GM~~lK = KM~AG, then the 
system is Lyapunov stable if and only if AK-GM~lG is 
positive definite. Inman (1988) proposed a sufficient condi­
tion for Lyapunov stability when the stiffness is negative 
definite, but the proof given for this result was later shown to 
be erroneous (Walker, 1991) and counterexamples were pro­
vided by Barkwell and Lancaster (1992). Using Lyapunov 
theory, Walker (1991) obtained sufficient conditions in terms 
of the existence of scalars satisfying certain properties. A 
discussion of Walker (1991) by Ly (1992) includes a few 
sufficient conditions for instability and a sufficient condition 
for Lyapunov stability. Huseyin (1991) obtained a related 
sufficient condition for stability using an alternative ap­
proach. Barkwell and Lancaster (1992) arrived at a sufficient 
condition for Lyapunov stability using matrix pencil methods. 
Recently, Wu and Tsao (1994) obtained a sufficient condition 
for Lyapunov stability using a result from Huseyin (1978). 
The main results of Hagedorn (1975), Huseyin et al. (1983), 
Walker (1991) and Huseyin (1991) are rederived in this paper 
using a slightly different approach. A critical survey and 
comparison of various Lyapunov stability criteria for gyro­
scopic systems is given in Huseyin (1976, 1981, 1984) and 
Knoblauch and Inman (1994). 

As mentioned earlier, stability criteria for second-order 
systems are also of interest in control design. Consider a 
second-order plant given by 

IVl p X p i \~s p X p i J\- pX p — Li pLi p , 

yP — CPaxP + CPuxP + CPpxP. 

One can design a second-order compensator of the form 
Mc*c + Ccxc + Kcxc = BcyP. 

A control law of the form uP = CCaxc + CCuxc + Cc xc + 
Luc gives a second-order closed-loop system with 

\MP - BPLCPa -BPCC 

-BcCPa Mc 
M = 

C 

K 

CP BPLCPll 

-BCCPU 

KP - BpLCpp 

-BCCPP 

~BPCcu 
Cr 

-BPC, Cp 

To guarantee asymptotic stability of the closed-loop system, 
the compensator parameters as well as the matrices CCa, 
CCu, CCp and L can be chosen such that M, C and K satisfy 
a stability criterion. This is the idea behind many static and 
dynamic feedback designs in recent literature (Gardiner, 
1992; Juang and Phan, 1992; Morris and Juang, 1994). An 
added advantage of controllers obtained in this way is that 
such controllers are often model-independent and therefore, 
the closed-loop properties which result are relatively insensi­
tive to plant uncertainties (Juang and Phan, 1992). 

2 Preliminaries 
We begin by defining three types of stability for the linear 

system 

where t > 0, x(t) e R" and A e R"x". 

Definition 1. A is Lyapunov stable if, for every initial 
condition x(0), there exists e > 0 such that ||x(OII < e for all 
t > 0. 

Definition 2. A is semistable if lim x(t) exists for all 
( - > 0 0 

initial conditions x(0). 

Definition 3. A is asymptotically stable if lim x(t) = 0 

for all initial conditions x(0). 

Definition 4. A is unstable if A is not Lyapunov stable. 

We also recall that if A e spec(yl), then A is semisimple 
(Kato, 1984) if every Jordan block of A associated with A is 

Nomenclature 

R(C) = real (complex) numbers 
R"(C") = real (complex) vectors of 

dimension n 
R"X"(C"X") = real (complex) n X n 

matrices 

Re{X) = real part of A 
II • II = Euclidean norm on R" 

spec(^4) = spectrum of the matrix A 
rank A = rank of the matrix A 

tr A = trace of the matrix A 

det A = determinant of the ma­
trix A 

N(A) = nullspace of the matrix 
AT = transpose of the matrix 
A = complex conjugate of 

the matrix A 
A* = complex conjugate 

transpose of the matrix 
A ~ = inverse of the complex 

conjugate transpose of 
the matrix A 

A^ = Moore-Penrose general­
ized inverse of the ma­
trix A 

A > (> )0 = symmetric positive 
(nonnegative) definite 
matrix 

Ax/1 = positive-definite square 
root of the positive-defi­
nite matrix A 

A~~l/2 = inverse of A]/2 

= = equal by definition 
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of size one, that is, if the algebraic multiplicity of A is equal 
to the geometric multiplicity of A. Further, it can be seen 
that A e spec(y4) is semisimple if and only if 

rank(kl-A) = rank(A/ -A)2. (2) 

The following result, which follows from the structure of 
the matrix exponential of A, shows that the stability of A 
depends on its eigenstructure. 

Proposition 1. The following statements are valid. 

(i) A is Lyapunov stable if and only if every eigenvalue of 
A lies in the closed left half complex plane and every eigen­
value of A with zero real part is semisimple. 

(ii) A is semistable if and only if A is Lyapunov stable 
and A has no nonzero imaginary eigenvalues. 

(Hi) A is asymptotically stable if and only if every eigen­
value of A lies in the open left half complex plane. 

Consider the matrix second-order system 

Mq + (C + G)q + Kq = 0, (3) 

where q e R', M, C, G, K e RrXr, M > 0, C > 0, K = KT 

and G = -GT. Such a system can be rewritten in first-order 
form (1) by defining 

A 
0 

-M~\C + G) 

3 Main Results 
The following result is stated and proved by Gardiner 

(1992). Since the result is basic to our development, we 
reproduce the proof here for completeness. 

Lemma 1. Suppose K > 0. If A e spec(^4) then Re(X) 
< 0. Furthermore, if C = 0, then Re(X) = 0. 

Proof. Let A e spec(^f) and x N(kl -A), 

where xx, x2 e C and x # 0. Then x2 = Xxx, and (MX2 + 
AG + AC + K)xx = 0. Consequently, xf(MA2 + AG + AC 
+ K)xx = 0. Thus A satisfies 

mX2 + (c +Jg)X +/c = 0, (4) 

where m = xfMxx > 0, c = x*Cxx > 0, g = -jxfGxx and 
k = x*Kxx > 0. Let A, = <rx + jcox and A2 = a2 +jco2 de­
note the roots of (4). It follows that A] + A2 = — (c + jg)/m 
and A:A2 = k/m. These equations lead to (/) ax + cr2 = 
— c/m < 0, (ii) oij + a>2 =* —g/m, (Hi) a-xa2 — a)lco2 = k/m 
> 0 and (iu) <7x<o2 + <J2U>\ — 0. Now suppose ux > 0. Then 
by (i) a2 < 0 and, consequently, by (Hi) o ) ] a) 2 <0. This 
implies CO2/OJ1 < 0 and o-j/cr^ < 0, which violates (iu). Thus 
both at and a2 must be nonpositive. 

Next suppose that c = 0. Then (i) implies at + a2 = 0. 
Since ax < 0 and a2 < 0, it follows that both cr1 and a2 are 
zero. • 

Before stating the next lemma, we define 

A = 
0 

-AT lK 

I 
-M~lG 

C0 = [C 0], 

Note that A0 represents the undamped gyroscopic system 
obtained from (3) by setting C = 0. The next lemma states 
that every oscillatory mode of A is also a mode of A0 that is 
unaffected by the damping. The proof is based on a tech­
nique used in the proof of Theorem 1 in Moran (1970). 

Lemma 2. Let w e R, w # 0. Then 

N(jcoI -A) = N 
jcol -A0 

Cn 
(5) 

Proof. Let x = N(](oI —A), where xu x2 e C . 

Then x2 = jcoxu and (K — Mco2 + jcoG + jcoC)xx = 0. 
Consequently, x*(K ~ Ma>2 + jooG + ja>C)xl = Q. Since 
if - Mco2 + jcoG is Hermitian and jcoC is skew Hermitian, 
it follows that x*(K - Mco2 + jtoG)x1 is real and x*()coC)xx 

is imaginary. Hence xf(K - Mco2 + jcoG)xl = 0 and 
xfQwC).*, = 0. Now, since C is nonnegative definite, it 
follows that Cxx = 0 and thus (K - Mco2 +jcoG)xx = 0. 
Combining these relations yield 

jcol -I 
M-[K jcoI + M-'G 

C 0 
0, 

which is equivalent to 

jcol -A0 

Cn 

Conversely, 
ja>I -A0 

Cn 
x = 0 implies (jcol — A)x = 0. • 

The next lemma shows that if the stiffness matrix K is 
nonnegative definite, or G = 0, then every oscillatory mode 
is harmonic, that is, the system (3) possesses no divergent 
oscillatory modes. 

Lemma 3. Suppose jco e spcc(A), where to ¥= 0. If 
either K > 0 or G = 0, then j co is semisimple. 

Proof. Since N0&>/ - A) c N(jtoI - A)2, it suffices to 
show that N(jcoI - A)2 c N0<u/ - / l) . Let 

y = 

where yu y2, xx, 

and 

(]<•>!-A) 

x2 e C . Then 

v, =;o)x1 

My2 = Kxx +jcoMx2 + (C + G)x 2 . 

(6) 

(7) 

Now, suppose that x = N(jwl -A)2 so that (jcol 

A)y = (jcol — A)2x = 0. Then Lemma 2 implies that 

jcol -A0 

C„ 
y = o, 

which gives 
y2=J(oy1, (8) 

^ 1 + ; ^ M y 2 + Gy2 = 0, (9) 

Cyl = 0. (10) 

Using (6) and (8) to eliminate y2 and x2 from (7) gives 

2jcoMyx + Gyx = Kxx 
2Mxx +jco(C + G)xx. (11) 

Eliminating y2 from (9) by using (8) gives 

Kyx - co2Myx +ja>Gyx = 0. (12) 

Using Eqs. (11), (12) and (10), we compute 

2jeoy\*Myx +y\*Gyx = y^[Kxx ~ co2Mxx + jco(C + G)xx] 

= x*[Kyx-co2Myx-jco(C-G)yx] 

= 0. (13) 

Also, from Eqs. (11) and (3), we have 

y*xKyx + co2y\Myx =yf(Kyx - co2Myx + jcoGyx) 

-j<o(2jcoy*Myi+yfGyx)=0. (14) 

Special 50th Anniversary Design Issue JUNE 1995, Vol. 117/147 

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 12/30/2013 Terms of Use: http://asme.org/terms



Now, if K > 0, then, since w # 0 and M > 0, it follows from 
(14) that yl = 0. On the other hand, if G = 0, then it follows 
from (13) that y1 = 0. In either case, y2 = ; w y ] = 0 and 
hence y = (jwl - A)x = 0. Thus N(ja>I - A)2 c N(; w/ -
A). • 

If G is nonzero and K is not nonnegative definite, then 
nonzero imaginary eigenvalues of A may. not be semisimple. 

To —2" 
This can be seen by taking M ~ /, C = 0, G = ,_ ,-. 
and K = —I. In this case, solutions of (3) involve terms of 
the form tsin t. The next result gives a convenient characteri 
zation of the nullspaces of A and A2. 

Lemma 4. 

N(y4) = N 

Proof. Let x 

K 0 
0 I 

N(A2) = N 
~K 
0 
0 

G' 
K 
C 

(15) 

, where xx, x2 e C . It can easily be 

shown that Ax = 0 if and only if Kx1 = 0 and x2 = 0, which 
proves the first equality. 

Next, suppose that A2x = 0, which implies 

Kxx + (C + G)x 2 = 0 (16) 

and 

(C + G ) A T ' t o , - Kx2 + (C + G ) M " ' ( C + G)x 2 = 0. 

(17) 

Eliminating Kx{ in Eq. (17) leads to Kx2 = 0. This along 
with (16) implies x*Kxl = —x*(C + G)x2 = 0. Since x*Cx2 

and x* Gx2 are the real and imaginary parts, respectively, of 
x*(C + G)x2, it follows that x*Cx2 = x*Gx2 = 0. Since C is 
nonnegative definite, x*Cx2 = 0 implies Cx2 = 0. This to-

\K G~ 
gether with (16) gives Kx1 + Gx2 = 0. Thus 0 K x = 0. 

L° c. 
The converse is easily shown. • 

The following lemma shows that if either the stiffness 
matrix K is nonnegative definite or the gyroscopic term G is 
zero, then every polynomially divergent mode of the system 
(3) is linearly divergent. 

Lemma 5. If K > 0 or G = 0, then 

rank A2 = rank A3. (18) 

Proof. Since N(^42) c N(^43), it suffices to show that 

N U 3 ) c N U 2 ) . Suppose x = N(^43), where xx, x2 

e C . Then A2Ax = 0. From Lemma 4 it follows that 

~K 
0 
0 

G] 
K 

c\ 

0 
-M~lK -M-\C + G) 

= 0. 

Hence 

Ky = 0, Cy = 0, Gy - Kx2 = 0, (19) 

where y = M lKxl + M~\C + G)x2. Equations (19) imply 
that 

0, (20) x*Ky +x%Cy -x*2{Gy - Kx2) 

which leads to 

[Kx1 + (C + G)x2]*M-l[Kx] + (C + G)x2] + x%Kx2 

= 0. (21) 

If K is nonnegative definite, then, since M 1 is positive 
definite, it follows that 

Kxx + (C + G)x2 = 0, 

and 

Kx2 = 0. 

(22) 

(23) 

If G = 0 then (19) yields (23), and (21) yields. (22). Thus, in 
either case, it follows that 

A2x=A 
0 / 

-M~lK -M-\C + G) 

0 
-M~lK -M~\C + G) 

= 0 

• as required. 
The following theorem gives our main result. 

Theorem 1. Suppose K > 0. Then the following state­
ments are valid. 

(0 A is Lyapunov stable if and only if 

rank 
~K 

0 
0 

G" 
K 
C 

= r + rank K. (24) 

Hi) A is semistable if and only if A is Lyapunov stable 
and 

rank 

C0 

Co^o 

= rank 
Cn 

(25) 

(Hi) A is asymptotically stable if and only if A is semistable 
and K is positive definite. 

Proof. ( 0 From Lemma 1, Lemma 3 and Proposition 1, 
it follows that A is Lyapunov stable if and only if the zero 
eigenvalue of A is semisimple. A necessary and sufficient 
condition for this to be true is rank A2 = rank A, which, in 
view of Lemma 4, is equivalent to (24). 

(//) A is semistable if and only if A is Lyapunov stable 
and JCD 0 spec(^4) for all co + 0. It follows from Lemma 2 
that the latter condition is equivalent to 

rank 
]uI-A0 

C0 

2r, (o # 0. (26) 

To prove the sufficiency of condition (25) suppose that condi­
tion (26) is false, that is, there exists 0 ¥= x e C2r and a> ¥= 0 
such that 

ja>I -A0 

Co 

This implies that A0x=]cox and C0x = 0. Consequently, 
A'x = (jco)'x and C0A'x = 0 for all positive integers i. Hence 

C0 

Co^o 
C A2 

C A2r~l 

x = Q. (27) 
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but 
"Co' 

A°. 
x = 

0 
JCOX 

¥* 0. This along with the fact that 

TV 
C0 

An 
QN 

Co 

Co^o 

C Q ^ O 

C A2'" 

(28) 

shows that condition (25) is false, which proves sufficiency. 
To prove the necessity of condition (25), suppose A is 

semistable so that condition (26) holds. Now, the nullspace of 
the matrix in (27) is the span of those eigenvectors of A0 that 
belong to the nullspace of C0. But (26) along with the fact 
that A0 has only imaginary eigenvalues implies that those 
eigenvectors of A0 that belong to the nullspace of C0 corre­
spond to the zero eigenvalue of A0. Therefore, (27) implies 

x = 0. This, along with (28), proves the necessity. o 

An_ 
(Hi i) From Lemma 4 it follows that 0 0 sped A) if and 

only if det K + 0, in which case, by Proposition 1, the 
semistability of A is equivalent to the absence of nonzero 
imaginary eigenvalues in spec(v4). Since Lemma 1 states that 
all the eigenvalues of A are located in the closed left half 
plane, the result follows. • 

Condition (24) for Lyapunov stability can be restated as 
follows. 

Corollary 1. Suppose K > 0. Then A is Lyapunov stable 
if and only if 

rankftf + C + GT(I - K*K)G] = r. (29) 

Proof. Since rank B = rank BTB for every matrix B, 
condition (24) becomes 

rank 
K2 

GTK 

KG 
K2 + GTG + C2 = r + rank K. 

The matrix on the left hand side above can be shown to be 
equal to 

K2 

GTK(K^) 

0 

0 K2 + C2 + GT(I - KtK)G 

GTK(K^) 

Since congruence preserves rank, the required condition be­
comes 

rank K2 + r a n k [ # 2 + C2 + GT(I - KtK)G] = r 

+ ranki£. 

Being symmetric, K satisfies rank K2 = rank K. Hence (24) 
is equivalent to 

r a n k [ £ 2 + C2 + GT(I - K]K)G] = r. (30) 

Now, suppose [K2 + C2 + GT(I - K^K)G]x = 0. Since K2, ' 
C2 and GTU - KfK)G are nonnegative definite, premulti-
plying by x* gives x*K2x = 0, x*C2x = 0 and x*GT(I -
K^K)Gx = 0, which implies GT(I - K^K)Gx = 0. Since K 
and C are symmetric, it follows that Kx = 0 and Cx = 0. 
Thus [K + C + GTU - KfK)G]x = 0. The converse can be 
proved in a similar manner. Therefore, 

rank[ i : 2 + C2 + GT(I - KfK)G] 

= mnk[K + C + GT(I - ^ f ^ ) G ] . 

The result then follows from (30). • 
The following result is the specialization of Theorem 1 to 

the case G = 0. 

Corollary 2. Suppose K > 0 and G = 0. Then the follow­
ing statements are valid. 

(/) A is Lyapunov stable if and only if 

rank (31) 

(«) A is semistable if and only if 

C 
C(M-lK) 

rank C{M~'Kf 

C(M~lK) 

Proof. ( 0 If G = 0, then rank 

(32) 

rank 

~K 
0 
0 

G" 
K 
C 

= rank K + 

. The result then follows from (24). 

(«) It can easily be shown that, when G = 0, (25) reduces 
to 

2rank 

C 
C{M~lK) 

C{M~lKf = r + rank 
C 

(33) 

C(M-lK)'' 

To prove sufficiency, suppose condition (32) holds. Since 

C 

N 
C 

M-XK 
QN 

and rank rank 
C 

C{M-lK) 

C{M~lK)2 

C{M~lK)'' 

it follows that (31) is satisfied 

and A is Lyapunov stable. Thus (33) and hence (25) is 
satisfied and, by Theorem 1, A is semistable. 

On the other hand, if A is semistable, then A is Lyapunov 
stable and (31) holds. Also by Theorem 1, (33) is true. The 
result then follows from (31) and (33). D 

It should be noted that since K and C are nonnegative 
definite, condition (31) is equivalent to rank(C + K) = r. 
This condition also follows directly from (29) when G = 0. 

4 Gyroscopic Stabilization 
This section deals with the stability properties of (3) when 

C = 0. Throughout this section, we thus use A to denote the 
matrix AQ defined earlier. The following result, which does 
not require that K be nonnegative definite, gives a useful 
property of undamped gyroscopic systems. For this result we 
define 

A^ 
-±M-'/2GM-'/2 I 

•M-*'\K-\GM->G)M-* -\M~'/2GM 
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Proposition 2. A is similar to the Hamiltonian matrix A. 

Proof. First note the similarity transformation 

A = 
\M~XGM 

0 
-•/2 AT 

A 
M " / 2 

M~XGM -'/2 M 
-</2 

Since JA = (JA)T, where / : 0 it follows that A is 

Hamiltonian. p 
From the properties of Hamiltonian matrices (Laub and 

Meyer, 1974), it follows that spec(^) = -spec(^4). Thus the 
eigenvalues of A form symmetric pairs about the origin. 
Hence a gyroscopic system without viscous damping (that is, 
with C = 0) cannot be asymptotically stable. Also, in this 
case, A is semistable if and only if all the eigenvalues of A 
are zero and semisimple, that is, if and only if A = 0. Since, 
by definition, A is nonzero, it follows that A also cannot be 
semistable. 

The following result gives a condition for the Lyapunov 
stability of a linear Hamiltonian system. For this result and 
the next, the matrix A need only satisfy the stated assump­
tions. 

Theorem 2. Suppose A e R2rX2 ' ' is similar to a Hamilto­
nian matrix. Then A is Lyapunov stable if and only if there 
exists a positive-definite matrix P e R2 ' 'x2r

 s u c n that 

ATP + PA = 0. (34) 

Proof. If A is similar to a Hamiltonian matrix, then 
spec(/4) = — spec(yf). It then follows that A is Lyapunov 
stable if and only if all the eigenvalues of A are imaginary 
and semisimple. Thus if A is Lyapunov stable, then it is 
diagonalizable by a similarity transformation and the diago­
nal form of A is skew Hermitian. On the other hand, if A is 
similar to a skew-Hermitian matrix, then it is Lyapunov 
stable. Hence A is Lyapunov stable if and only if there exists 
an invertible matrix S e c2rx2r such that SAS~l = 
— S~ ATS*. This condition can be rewritten as 

ATS*S + S*SA = 0. (35) 

If S satisfies (35), then P = S*S + STS satisfies (34). On the 
other hand, if P satisfies (34), then S = P' /2 satisfies (35). 
This proves the result. P 

It is worthwhile to point out that if P satisfies (34), then 
xTPx is an integral of motion of (3). Thus the above theorem 
states that a linear Hamiltonian system such as an undamped 
gyroscopic system is Lyapunov stable if and only if there 
exists a constant of motion that is a quadratic positive-defi­
nite function of the states. Note that the sufficiency part of 
Theorem 2 also follows immediately from Lyapunov stability 
theory. 

The following theorem gives a necessary and sufficient 
condition for instability. 

Theorem 3. Suppose A e R 2 ' * 2 ' ' is similar to a Hamilto­
nian matrix. Then A is unstable if and only if there exists a 
matrix Q = Q R2 , x z ' ' such that 

0 ¥=AQ + QAT <0. (36) 

Proof. Suppose there exists a real symmetric matrix Q 
that satisfies (36). Let V = -(AQ + QAf). If A is Lyapunov 
stable, then from Theorem 2 it follows that there exists a 
positive-definite matrix P satisfying (34). We compute tr 

PV = - t r P(AQ + QAT) = - t r (PAQ + QATP) = - t r 
Q(ATP + PA) = 0. On the other hand, since V > 0, V # 0 
and P > 0, it follows that tr PV > 0. This contradiction 
establishes the sufficiency. 

Now, suppose that A is unstable. Then at least one of the 
following two cases must arise. 

( 0 There exists nonzero x e C2r and A e C such that 
Ax = Xx and Re(\) < 0. Let A = a + ja> and x = xR + jx,, 
where a, w e R and xR, x, e R2'. Then a < 0, AxR = uxR 

— cox, and Ax, = ax, + coxR. Letting Q = xRxT
R + x,xf, it 

follows that AQ + QAT = 2aQ < 0. 
(«) There exists nonzero y e C2r and u> e R such that 

(jwl - A)2y = 0 and (jwl - A)y = x # 0. Let v = yR +jy, 
and x = xR + jx,, where yR, y,, xR, x, 6 R2r. Then AxR = 
-wx,, Ax, = (oxR, xR = AyR + coy, and x, = Ay, — (i>yR. 
Now, letting Q= -(yRxT

R+ xRyl + y,xf + x,yj), we get 

AQ + QA T _ -2(xRxR + x,x,) < 0. P 
Theorems 2 and 3 above, can be used to derive various 

stability and instability criteria for gyroscopic systems, as the 
following propositions illustrate. Note that the substitution 
q = M~ hq' can be used to transform (3) to a form in which 
the mass matrix M is replaced by the identity matrix and the 
stiffness matrix and the gyroscopic term are symmetric and 
skew symmetric, respectively. Hence, in the following propo­
sitions we assume without loss of generality that M = /. 

Proposition 3. Suppose M — I. Then the following are 
sufficient for the Lyapunov stability of A. 

(i) GK = KG, K+ \GGT > 0. 
Hi) K + GT(I - K^K)G > 0. 
(Hi) There exists a scalar e such that 

K2 > eK, 

K+ GGT > el + GK(K2 - eKylKGT: 

(iv) There exists a scalar e such that 

K + GGT > el, 

K2> eK + KG(K + GGT - eiy[GTK. 

(u) K is nonsingular and there exists a scalar e such that 

K2 > eK, 

K> el + eG(K- eiylGT. 

(vi) K is nonsingular and there exists a scalar e such that 

K-1 > el, 

I + GTKlG + G(K - eK2y[GT > eK 

Proof. The conditions given above are proved by showing 
the existence of a real positive-definite matrix that satisfies 
(34). Note that the partitioned real symmetric matrix 

P = 
' I 

3 7-
12 

is positive definite if and only if the matrices P{ and P2 — 
Pj^P\]P\2 are both positive definite or if and only if the 
matrices P2 and P, 
(Horn and Johnson, 1985). 

(0 If K + \GGT > 0, then 

PnP2
 lPn a r e both positive definite 

P = 
0 

0 (K+\GGT) 

is positive definite. If GK = KG, then P satisfies ATP + PA 
= 0. 
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0 0 It can be easily verified that 

'2K + GT(I-K<<K)G GT(I-K^K) 

(I - KfK)G 3 / - &K 
P = 

satisfies (34) and is positive definite if K + GT(I - KfK)G 
> 0. 

077), On) Equation (34) is satisfied by 

P = 
K2 - eK KG 

GTK K + GGT - el 

P is positive definite if either the conditions given in 077) or 
those given in (iu) are satisfied. 

(v) The matrix 

GT 

I 
K + GGT 

GT 

el G 

I - eK'1 
I 
G 

satisfies (34) and is positive definite if the given conditions 
are satisfied. 

(vi) It can be easily verified that 

/ + GTK-lG - eK 
K~]G 

GTK^ 
K~l - el 

satisfies ATP + PA = 0 and is positive definite if the given 
conditions hold. • 

The stability criteria 0 ) and (v) from Proposition 3 appear 
in Huseyin et al. (1983) and Walker (1991), respectively, 
while 077) and (iu), which are equivalent, appear in Huseyin 
(1991). Conditions 0 0 and (vi) are new. 

Remark. Since A is Hamiltonian, the matrices 
(A-T)2mJA2ll + l _and 04T)2 mJ rU"-1)2 ' , + 1 are symmetric and 
satisfy ATP + PA = 0, for m, n = 0, 1, 2 . . . . Hence new 
stability criteria can be obtained by requiring that some 
linear combination of these matrices be positive definite. For 
instance, condition (vi) in the above proposition was ob­
tained by choosing P = ST(JA + eJA~l)S, where A = 
SAS'K 

Proposition 4. Suppose M = I. Then the following are 
sufficient conditions for A to be unstable. 

(0 There exists a scalar e such that 

I> eK, 

4K(I - eK) 1 + GT(I - eKylG < 0. 

00 There exists a scalar e such that 

I> eK, 

4K(I - eK) + GT(I - eK)G < 0. 

070 K + \GGT < 0. 

Proof. (0 If Q = 
0 ~(I-eK) ' 

-(I-eK) e(KG-GK) 

2 + QAT 

' I 0" 
GT / . 

-2(1-eK) G(I-eK)' 

.0 l-eK)GT 2K{I-eK) 
1 

.C 

, thei 

G 
I 

which is negative semidefinite if the given conditions are 
satisfied. 

0 -(I-eK)' 
(I-eK) o 0 0 If Q - then 

AQ + QAT = 
-2(1-eK) (I-eK)GT 

G(I - eK) 2K(I - eK) 

It can be easily verified that AQ + QAT is negative semidefi­
nite if the given conditions are satisfied. 

077) If K + \GGT < 0, then condition (ii) of this proposi­
tion is satisfied with e = 0. • 

Conditions (/) and 077) from Proposition 4 are improved 
versions of the instability criteria obtained by Walker (1991) 
and Hagedorn (1975), respectively, while condition (ii) is 
new. 

5 Examples 
In this section we present several examples to illustrate the 

results. 

Example 1. Consider C = K = 
"l 
0 
0 

0 0" 
0 0 
0 0 

. From Lemma 

4, it follows that the zero eigenvalue of A has geometric 
multiplicity 2. For G = 0, it can easily be verified that rank 
"K G~ 

0 K = 2 so that condition (24) is not satisfied. Also A 
0 Cj 

has eigenvalues -0 .5 + 0.866;, 0, 0, 0 and 0. Since the zero 
eigenvalue has algebraic multiplicity 4, A is not Lyapunov 
stable. This illustrates the necessity of (24). 

^o -l r 
(24) is satisfied. Furthermore, For G = 1 0 1 

1 - 1 0 
A has eigenvalues -0.39 ±"1.847, ~0.11 + 0.52;, 0 and 0. 
Since the algebraic and geometric multiplicities of 0 e 
spec(yl) are equal, A is Lyapunov stable. This illustrates 
gyroscopic stabilization as well as the sufficiency of (24). 

For Example 2. 

= 0, rank 

Consider C = 

" c0 ' 

CoA0 

C A3, 

"0 0' 
0 1 and K = 

= 2 whereas rank 
"C0" 

.A°. 

"1 0" 
.0 0 

= 4 so 

(25) is not satisfied. At the same time A has eigenvalues ±j, 
0 and — 1. A is thus Lyapunov stable but not semistable. This 
illustrates the necessity of (25). 

0 1 
- 1 0 

fied and A eigenvalues —0.21 + 1.31;, 
is semistable but not asymptotically stable. This illustrates 
the sufficiency of (25). 

On the other hand, if G = , then (25) is satis-

0.57 and 0. Thus A 

Example 3. 
o r 
- 1 0 

In Example 2 above, if K = / with G 

then A has eigenvalues -0.35 + 1.5; and 

-0.15 ± 0.63;. A is thus asymptotically stable while the 
conditions of Theorem 1 are satisfied. 

The following example illustrates Lyapunov stability, 
semistability and asymptotic stability of a lumped-parameter 
system. 

Example 4. Figure 1 shows a lumped-parameter system 
consisting of two masses having mass m1 and m2 and dis­
placements q1 and q2, respectively, linear springs with spring 
constants k1 and k2 and linear viscous dampers with damp­
ing coefficients cx and c2. The equations of motion for this 
system can written in the form (3) with 

M = 
0 

0 
C = 

c, + c, — c, 
K = 

0 

For different combinations of values of parameters, this 
system exhibits Lyapunov stability, semistability and asymp­
totic stability. 

If m, = m2, k} = k2 > 0, c, = 0 and c2 > 0, then for 
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A 

/ 

ki 

m1 

C2 

-dLh m2 

I 
I 

< 0 and k2 < 0, then the above conditions lead to 1 - e(kx 

+ k2 + 16) + e2klk2 < 0. A solution of this inequality exists 
if and only if kx + k2 + 16 > 2^kxk2 • Note that this in­
equality is automatically satisfied if kx > 0 and' k2 > 0. Thus, 
Proposition 3 implies that if kxk2 > 0 and kx + k2 + 16 > 
2^kxk2, then A is Lyapunov stable. Conditions (Hi), (iu) and 
(v) in Proposition 3 give the same sufficient conditions for 
stability (Knoblauch and Inman, 1994). 

q, 
Fig. 1 A lumped-parameter system 
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certain initial conditions the two masses can oscillate at the 
same frequency with identical amplitudes and phases, so that 
the damper c2 dissipates no energy. Only relative motion 
between the masses, if present, is damped out. The system is 
thus Lyapunov stable but not semistable. It is easy to verify 
that in this case condition (31) in Corollary 2 is satisfied while 
the condition (32) for semistability is not satisfied. 

If kx = 0 and mx, m2, cx, c2 and k2 are all positive, then 
every configuraton in which the spring k2 is unstretched and 
the two masses are at rest is an equilibrium state. Thus both 
masses asymptotically approach a state of rest but the final 
position of the mass mx depends on the initial velocity of m,. 
In this case the system is semistable but not asymptotically 
stable. This is consistent with the results obtained since 
condition (32) for semistability is satisfied whereas part (Hi) 
of Theorem 1 is not. 

Finally, if all of the quantities m„ m2, cx, c2, kx and k2 

are positive, then both masses have unique equilibrium posi­
tions and all motions lead to dissipation of energy. Both 
masses asymptotically approach a state of rest at their re­
spective equilibrium positions and the system is asymptoti­
cally stable. In this case, K is positive definite and condition 
(32) for semistability is satisfied. Thus, by Theorem 1, the 
system is asymptotically stable. 

Example 5. Consider M = /, C = 0, G 

K 

and 

This example has been used to test and 
kx 0 

. 0 k2\ 
compare various stability criteria for conservative gyroscopic 
systems (Walker, 1991; Knoblauch and Inman, 1994). It can 
be shown by direct analysis that kxk2 > 0 and kx + k2 + 16 
> 2^kxk2 are sufficient conditions for stability (Walker, 
1991). However, these conditions are not necessary as claimed 
in Walker (1991). For instance, if kx = k2 = 0, then (i) in 
Proposition 3 guarantees stability. We will apply the new 
condition (ui) from Proposition 3 to this example. 

The first part of (ui) in Proposition 3 can be applied only if 
det K = kxk2 # 0. It follows from (ui) that A is Lyapunov 
stable if there exists a scalar e such that 

1 
- ( 1 - efc,-) > 0 , / = 1 , 2 , (37) 

1 - ekx 

1 - ekn 

16e 

(1 - ek2) 

16e 

(1 " 6*1) 

> 0 , 

> 0. 

(38) 

(39) 

If kx > 0 and k2 > 0, these conditions are satisfied with 
e = 0. If kxk2 < 0, then the above conditions lead to 0 < (1 
— e/cj)(l - ek2) — 16e < 0, which is a contradiction. If kx 

References 
Ahmadian, M., and Inman, D. J., 1985, "On the Stability of General 

Dynamic Systems Using a Liapunov's Direct Method Approach," Comput­
ers & Structures, Vol. 20, pp. 287-292. 

Ahmadian, M., and Inman, D. J., 1986, "Some Stability Results for 
General Linear Lumped-Parameter Systems," ASME Journal of Applied 
Mechanics, Vol. 53, pp. 10-14. 

Barkwell, L., and Lancaster, P., 1992, "Overdamped and Gyroscopic 
Vibrating Systems," ASME Journal of Applied Mechanics, Vol. 59, pp. 
176-181. 

Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E., and Ratiu, T. S., 
1994, "Dissipation Induced Instabilities," Annates de I'lnstitul Henri 
Poincare, Vol. 11, pp. 37-90. 

Campbell, S. L., and Rose, N. J., 1979, "Singular Perturbation of 
Autonomous Linear Systems," S1AM Journal of Math. Analysis, Vol. 10, 
pp. 542-551. 

Chetayev, N. G., 1961, The Stability of Motion, Pergamon Press, New 
York, pp. 95-100. 

Connell, G. M., 1969, "Asymptotic Stability of Second-Order Linear 
Systems with Semidefinite Damping," AIAA Journal, Vol. 7, pp. 
1185-1187. 

Duffin, R. J., 1955, "A Minimax Theory for Overdamped Networks," 
Journal of Rational Mechanics and Analysis, Vol. 4, pp. 221-233. 

Fawzy, I., 1979, " A Simplified Stability Criterion for Nonconservative 
Systems," ASME Journal of Applied Mechanics, Vol. 46, pp. 423-426. 

Gardiner, J. D., 1992, "Stabilizing Control for Second Order Models 
and Positive Real Systems," Journal of Guidance, Vol. 15, pp. 280-282. 

Greenlee, W. M., 1975, "Lyapunov Stability of Linear Gyroscopic 
Systems," Utilitas Mathematica, Vol. 8, pp. 225-231. 

Greenwood, D. T., 1977, Classical Dynamics, Prentice Hall, Englewood 
Cliffs, N.J., pp. 127-129. 

Hagedorn, P., 1975, "Uber die Instabilitat konservativer Systeme mit 
gyroskopischen Kraften," Archive for Rational Mechanics and Analysis, 
Vol. 58, pp. 1-9. 

Horn, R. A., and Johnson, C. R., 1985, Matrix Analysis, Cambridge 
University Press, New York, p. 472. 

Hughes, P. C , and Gardner, L. T., 1975, "Asymptotic Stability of 
Linear Stationary Systems," ASME Journal of Applied Mechanics, Vol. 42, 
pp. 228-229. 

Huseyin, K., 1976, "Vibrations and Stability of Mechanical Systems," 
Shock and Vibration Digest, Vol. 8, No. 4, pp. 56-66. 

Huseyin, K., 1978, Vibrations and Stability of Multiple Parameter Systems, 
Sijthoff and Nordhoff, Alphen, p. 115. 

Huseyin, K., 1981, "Vibrations and Stability of Mechanical Systems: II," 
Shock and Vibration Digest, Vol. 13, No. 1, pp. 21-29. 

Huseyin, K., Hagedorn, P., and Teschner, W., 1983, "On the Stability 
of Linear Conservative Gyroscopic Systems," Journal of Applied Mathemat­
ics and Physics, Vol. 34, pp. 807-815. 

Huseyin, K., 1984, "Vibrations and Stability of Mechanical Systems: 
III," Shock and Vibration Digest, Vol. 16, No. 7, pp. 15-22. 

Huseyin, K., 1991, "On the Stability Criteria for Conservative Gyro­
scopic Systems," ASME Journal of Vibration and Acoustics, Vol. 113, pp. 
58-61. 

Inman, D. J., 1983, "Dynamics of Asymmetric Nonconservative Sys­
tems," ASME Journal of Applied Mechanics, Vol. 50, pp. 199-203. 

Inman, D. J., 1988, "A Sufficient Condition for the Stability of Conser­
vative Gyroscopic Systems," ASME Journal of Applied Mechanics, Vol. 55, 
pp. 895-898. 

Juang, J.-N., and Phan, M., 1992, "Robust Controller Designs for 
Second-Order Dynamic Systems: A Virtual Passive Approach," Journal of 
Guidance, Control, and Dynamics, Vol. 15, pp. 1192-1198. 

Kato, T., 1984, Perturbation Theory for Linear Operators, Springer Ver-
lag, New York, pp. 41-43. 

Kliem, W., and Pommer, C , 1986, "On the Stability of Linear Noncon­
servative Systems," Quarterly of Applied Mathematics, Vol. 43, pp. 457-461. 

Knoblauch, J., and Inman, D. J., "On Stability Conditions for Conser­
vative Gyroscopic Systems," preprint. 

152 /Vo l . 117, JUNE 1995 Transactions of the ASME 

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 12/30/2013 Terms of Use: http://asme.org/terms



Lancaster, P., 1966, Lambda Matrices and Vibrating Systems, Pergamon 
Press, New York, pp. 116-142. 

Laub, A. J., and Meyer, K., 1974, "Canonical Forms for Symplectic and 
Hamiltonian Matrices," Celestial Mechanics, Vol. 9, pp. 213-238. 

Ly, B. L., 1992, "Stability of Linear Conservative Gyroscopic Systems," 
ASME Journal of Applied Mechanics, Vol. 59, pp. 236-237. 

Mingori, D. L., 1970, "A Stability Theorem for Mechanical Systems 
With Constraint Damping," ASME Journal of Applied Mechanics, Vol. 37, 
pp. 253-257. 

Moran, T. J., 1970, " A Simple Alternative to the Routh-Hurwitz Crite­
rion for Symmetric Systems," ASME Journal of Applied Mechanics, Vol. 
37, pp. 1168-1170. 

Morris, K. A., and Juang, J.-N., 1994, "Dissipative Controller Designs 
for Second-Order Dynamic Systems," IEEE Transactions on Automatic 
Control, Vol. 39, pp. 1056-1063. 

Plaut, R. H., 1976, "Alternative Formulations for Discrete Gyroscopic 
Eigenvalue Problems," AIAA Journal, Vol. 14, pp. 431-435. 

Roberson, R. E., 1968, "Notes on the Thomson-Tait-Chetaev Stability 
Theorem," The Journal of the Astronautical Sciences, Vol. 15, pp. 319-324. 

Shieh, L. S„ Mehio, M. M„ and Dib, H. M., 1987, "Stability of the 

Second Order Matrix Polynomial," IEEE Transactions on Automatic Con­
trol, Vol. AC-32, pp. 231-233. 

Walker, J. A., 1970, "On the Stability of Linear Discrete Dynamic 
Systems," ASME Journal of Applied Mechanics, Vol. 37, pp. 271-275. 

Walker, J. A., and Schmitendorf, W. E., 1973, "A Simple Test for 
Asymptotic Stability in Partially Dissipative Symmetric Systems," ASME 
Journal of Applied Mechanics, Vol. 40, pp. 1120-1121. 

Walker, J. A., 1991, "Stability of Linear Conservative Gyroscopic Sys­
tems," ASME Journal of Applied Mechanics, Vol. 58, pp. 229-232. 

Wimmer, H. K., 1974, "Inertia Theorems for Matrices, Controllability, 
and Linear Vibrations," Linear Algebra and its Applications, Vol. 8, pp. 
337-343. 

Wu, J.-W., and Tsao, T. -C, 1994, "A Sufficient Condition for Linear 
Conservative Gyroscopic Sytems," ASME Journal of Applied Mechanics, 
Vol. 61, pp. 715-717. 

Zajac, E. E., 1964, "The Kelvin-Tait-Chataev Theorem and Further 
Extensions," The Journal of the Astronautical Sciences, Vol. 11, pp. 46-49. 

Zajac, E. E., 1965, "Comments on 'Stability of Damped Mechanical 
Systems' and a Further Extension," AIAA Journal, Vol. 3, pp. 1794-1750. 

Special 50th Anniversary Design Issue JUNE 1995, Vol. 117/153 

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 12/30/2013 Terms of Use: http://asme.org/terms




