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Abstract 
This paper examines finite-time stability of homoge- 

neous systems. The main result is that a homogeneous 
system is finite-time stable if and only if it is asymptoti- 
cally stable and has a negative degree of homogeneity. 

1. Introduction 
Most of the available techniques for feedback stabiliza- 

tion lead to closed-loop systems with Lipschitzian dynam- 
ics. The convergence in such systems can at best be expo- 
nential with infinite settling time. Finite-time convergence, 
however, implies nonuniqueness of solutions (in backward 
time) which is not possible in the presence Lipschitz con- 
tinuous dynamics. It is interesting to study systems that 
exhibit finite-time convergence, not only because of the 
faster convergence, but also because such systems seem to 
perform better in the presence of uncertainties and distur- 
bances [a ,  71. 

Homogeneous systems have attracted attention in re- 
cent years as a means of studying the stability or stabiliz- 
ability of general nonlinear systems [3, 41. However, ho- 
mogeneous systems of negative degree as well finite-time 
stable homogeneous systems have not been treated in the 
literature. In this paper, we show that there exists a con- 
nection between the two. 

Our main result is that  a homogeneous system is finite- 
time stable if and only if it is asymptotically stable and has 
negative degree of homogeneity. This result offers consider- 
able simplification over sufficient Lyapunov conditions that 
involve differential inequalities [l, 71. 

We also show that a finite-time stable homogeneous 
system has a smooth homogeneous Lyapunov function that 
satisfies a finite-time differential inequality. 

2. Finite-time Stability 
Consider the system 

! x t )  = f(Y(t)), (1) 
where f :  IR" -+ IR" is continuous and f (0 i  = 0. We will 
assume that for every initial condition in IR , (1) possesses 
a unique solution in forward time which is defined on [0, CO). 
In this case, the solutions of (1) define a Continuous global 
semi-flow II, on IR". 

Definition 1. The origin is said to be a finite-time- 
stable equilibrium of (1) if there exists an open neighbor- 
hood N of the origin and a function T: N -+ [0, CO), called 
the settling tame function such that the following state- 
ments hold: 

1. T(0)  = 0 and T ( z )  + 0 as z -+ 0. 

2 .  For every z E N\{O}, II,t(z) E N\{O}, t E [O,T(z)) ,  
and &(z) = 0 for all t 2 T ( z ) .  

3. For every open set U, such that 0 E U, C A', there 
exists an open subset U6 of Af containing 0, such that 
for every z E U6\{0}, &(z) E U,, t 2 0. 
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The origin is said to be a globally finite-time stable equilib- 
rzum if it is a finite-time stable equilibrium and N can be 
chosen to be IR". 

Note that ii) implies that T is positive definite on N. 
It can also be shown that under the various assumptions 
above, T is continuous on N. It should be pointed out that 
zz) and iii) in Definition 1 above do not imply i) [7]. The 
following result appears in [l] and is reproduced here for 
completeness. 

Suppose there exists an open neigh- 
borhood V of the origin, a C1 positive-definite function 
V :  V + IR, and real numbers k > 0 and a E ( O , l ) ,  
such that V + kVa is negative semidefinite on V ,  where 
V ( z )  = g ( z ) f ( z ) .  Then the origin is a finite-time stable 
equilibrium of (1). Moreover, if T is the settling time func- 
tion, then T ( z )  5 * V ( Z ) ' - ~  for all z in some open 
neighborhood of the origin. 

It can be shown that if the origin is a finite-time equilib- 
rium, then there exists a continuous Lyapunov function sat- 
isfying the hypotheses of Theorem 1 [l]. However, there are 
systems with finite-time stable equilibria for which there 
exists no continuously differentiable Lyapunov function sat- 
isfying the hypotheses of Theorem 1 [7] .  

Theorem 1. 

3. Homogeneity 
We adopt the intrinsic coordinate-free approach to ho- 

mogeneity described in [4]. Let U be a smooth (at least 
C') complete vector field on Et" such that the origin is a 
globally exponentially stable equilibrium of the differential 
equation y(t) = -v(y(t)). Let @ denote the globally de- 
fined flow of U. A function V : IR" + IR, is said to be 
homogeneous of degree 1 E Et with respect to U if 

for t E IR. The flow Qt carries level sets of a homogeneous 
function to level sets. The vector field f on IR" is said to  
be homogeneous of degree m with respect to Y if 

for t E IR, where (at*),  denotes the push-forward at  2 E 
IR" of the diffeomorphism Q t .  The flow Qt carries integral 
curves o f f  to integral curves off  after a reparametrization 
[4]. More precisely, 

as 0 II,c = ge-m5t 0 a,. 
Often, we shall simply use "homogeneous" to mean "ho- 
mogeneous with respect to  d' 

It is a simple matter to verify using equations ( 2 )  and 
(3) that for V a homogeneous function of degree 1 and f a 
homogeneous vector field of degree m, the Lie-derivatives 
L,V and L ,  f are defined and satisfy L,V = lV, L ,  f = mf 
[4] and L f  V ,  if defined, is homogeneous of degree m + I [4]. 

It can be shown using (2) that  there exists no continu- 
ous homogeneous function of negative degree. It is perhaps 
for this reason that homogeneity with negative degree is 
not usually considered. However, homogeneity with neg- 
ative degree need not pose such problems in the case of 
vector fields. 

V 0 at = eltv ( 2 )  

f 0 Q t ( z )  = e m t ( Q t * ) , ( f ( z ) )  (3) 

(4) 
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The map A : ( 0 , ~ )  x IR" + IR" given by Ak(z) = 
@ l n ( k ) ( z ) ,  k > 0, z E IR" is called the homogeneous dilation 
associated with the vector field v while v is said to  be 
the Euler vector field of the dilation A.  Functions and 
vector fields homogeneous with respect t o  v are said to  be 
homogeneous with respect to the corresponding dilation A.  

The dilations often considered in the literature [3, 41 
are of the form Ak(z1,. . .,z,) = ( k r l z l , .  . . , kT"z,) where 
21,. . . ,z, are suitable coordinates on IR" and T I , .  . . , T, 

are positive real numbers. The Euler vector field of such a 
dilation is given by v = rizi&, which is linear and 
has the flow at(.) = A,t(z). Using (a), it is easy to  see 
that  a function V is homogeneous of degree 1 if and only 
if V(k"z1 , .  . . , k r n z n )  = k 'V( z1 , .  . . ,zn), k > 0. A vector 
field f is homogeneous of degree m if and only if the ith 
component fi is homogeneous of degree m + ri. It follows 
that a continuous vector field can have negative degree m 
for m > - mini=1,..., ri. 

Example 1. Consider the vector field f = 
f1 (21 ,~2)= + f z ( Z l , m ) &  on IR. with f i (z1,  Q) = 2 2  

and fz(z1,z2) = -$sign(z2)lx:21a - &sign(z l ) lz l ) f i ,  
where cy E (0, l),  m > 0. We notice that f1(k2-"z1, k z ~ )  = 
k z 2  = k(2-")+("-1) fl(x1, z2), while f 2 ( k 2 - " z l ,  11-22) = 
k " f 2 ( z l ,  2 2 )  = k1t (a-1) f2(z1 ,  2 2 ) .  Hence, we conclude 
that the vector field f is homogeneous of negative de- 
gree CY - l with respect to  the dilation, Ak(z l ,z2)  = 

4. Finite-time Stability and Homogeneity 
In this section we consider the finite-time stability of 

(1) under the assumption that f is homogeneous of degree 
m with respect t o  a vector field L/ having the flow Cp. It will 
be instructive to  first study the finite-time stablity of scalar 
homogeneous systems. The continuous scalar system 

a 2 

(IE2-21, k z z ) .  

Y(t) = -csign(y(t))ly(t)l" (5) 
is homogeneous of degree 1 - cy, cy > 0, with respect to  the 
dilation Ak (z) = k z .  The following observations can easily 
be made by directly integrating (5). 

1. If the origin is finite-time stable, the degree of homo- 
geneity is negative (that is, cy < 1). 

2.  The origin is finite-time stable if and only if it is 
asymptotically stable (c > 0) and the degree of ho- 
mogeneity is negative ( a  < 1). 

The  following proposition is a generalization of the first 
observation above. The proof uses the property that @ 
carries integral curves o f f  to  integral curves o f f .  

Suppose the origin is a finite-time 
stable equilibrium of f. Then the origin is globally finite- 
time stable, the settling time T is homogeneous of degree 
-m, and m < 0. 

The  following lemma is needed in the proofs of subse- 
quent results. 

Lemma 1. If V is a continuous positive-definite func- 
tion homogeneous of degree 1 such that L j  V is continuous, 
then for all z E IR" 

Proposition 1. 

The following proposition provides a converse to  The- 
orem 1. The  proof uses Proposition 1, Lemma 1 and the 
converse Lyapunov result given in [3]. 

Proposition 2. Suppose the origin is a finite-time 
stable equilibrium o f f .  Then there exists k > 0,  CY E ( 0 , l )  
and a C" homogeneous Lyapunov function V such that 

The following theorem, which is a generalization of ob- 
servation 2 above, is the main result of this paper. 

Theorem 2. The origin is a finite-time stable equi- 
librium of f if and only if the origin is an asymptotically 
stable equilibrium of f and m < 0. 

Example 2. As an application of Theorem 1, we prove 
that for CY E (0 ,1) ,  the feedback law U = 4(z11z2) = 
-sign(z2)lzzla - sign(z1)lzl lfi renders the origin finite- 
time stable for the double integrator 

The closed-loop system is given by the vector-field f in 
Example 1 where we have seen that for Q < 1, f is 
homogeneous of negative degree. To show asymptotic 
stability, consider the Lyapunov function V(z1 ,  zz) = 
fmz i  + y l z 1 I k  which is C1 for cy E (0, 1). We com- 
pute L f V ( z 1 , z a )  = Iz211+a. The only invariant set in 
{(XI, z2) : L f V ( z l , x 2 )  = O} is the origin and by LaSalle's 
theorem, the closed-loop system is asymptotically stable. 
Theorem 2 above now guarantees finite-time stability. Note 
that the controller 4 does not depend on the mass m. 

The simplification provided by Theorem 2 over Theo- 
rem 1 can be seen by comparing the proof of finite-time 
stability in Example 2 above to that given for the con- 
trollers proposed in [5, 61. 

5. Conclusions 
This paper establishes a connection between the rate of 

convergence in a homogeneous system and the degree of ho- 
mogeneity. Our main result reduces checking for finite-time 
stability to  checking for asymptotic stability along with a 
simple algebraic computation of the degree of homogeneity 
and thus offers considerable simplification over Lyapunov 
conditions involving differential inequalities. 
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