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A Subsystem Identification Technique towards Battery State of Health
Monitoring under State of Charge Estimation Errors
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Abstract— Previous work framed the battery State of Health
(SoH) monitoring problem as an inaccessible subsystem identi-
fication problem and conceived an approach to monitor SoH via
side reaction current density estimation when State of Charge
(SoC) is perfectly known. In practice, however, SoC is only
estimated, and even an SoC estimation error of less than 1%
can significantly undermine the accuracy of the SoH estimation.
In this paper, the development of a new inaccessible subsystem
identification technique, called the Two Step Filter, is presented
in a linear setting to estimate the SoC error and SoH variable
simultaneously and hence allow for SoH monitoring even under
SoC estimation errors. The potential of the Two Step Filter is
demonstrated on a linearized battery model example. The result
shows that the filter can successfully track the side reaction
current density despite the presence of an SoC estimation error
of 1%.

I. INTRODUCTION

Battery State of Health (SoH) is a critical input to battery
management systems for balancing the trade-off between
maximizing performance and minimizing degradation. How-
ever, SoH is not a physical quantity that can be directly
measured. Thus, SoH is deduced from other quantities, which
this paper refers to as SoH indicators.

Based on the selection of SoH indicators, the methods to
obtain SoH can be divided into two categories. Most methods
track degradation through its effects such as capacity fade
or rising internal resistance [1], [2], [3], [4]. The simplicity
of these methods is their key advantage. However, such
effects can be inaccurate in representing the SoH as they are
related not only to the battery SoH, but are also influenced
by environmental conditions and use patterns [5]. The sec-
ond category of methods estimates various electrochemical
variables as SoH indicators [6], [7], [8], [9]. The benefit
of using these variables is that they can uniquely indicate
the level of degradation independent of the environmental
conditions and use patterns. The main challenge of using
electrochemical variables as SoH indicators is that these
variables are available only from invasive and/or destruc-
tive methods, so are the inputs and outputs of the battery
health system that governs the dynamics of these variables.
Thus, estimating these electrochemical variables from only
the commonly available measurements of terminal voltage,
current, and temperature presents an inaccessible subsystem
identification problem [9].
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This work belongs to the second category and builds on
the concept of tracking the side reaction current density as
an indicator of battery SoH as first introduced in [9]. The key
motivation for tracking side reaction current density is that
it is a measure for the rate of cyclable Li-ion consumption
due to all degradation mechanisms that are caused by side
reactions [10]. Previous work addresses the challenge of
noninvasive estimation by treating the battery health sub-
system as an inaccessible subsystem of the overall battery
system and leveraging the Retrospective-Cost Subsystem
Identification (RCSI) [11], [7], [8] technique to identify the
subsystem and the side reaction current density, under the
assumption that battery State of Charge (SoC) is known
perfectly [9]. However, an SoC estimation error on the level
of 1% is often expected in practice [12], [3], [13].

Simulation results show that the SoH identification is
sensitive to SoC estimation errors [9]. RCSI can correct for
state estimation errors when the system is both controllable
and observable; however, due to the negligible feedback
from the side reaction current density to the battery electro-
chemical dynamics, the battery system is not controllable.
Furthermore, the fact that there is a feedthrough from the
side reaction current density to the terminal voltage [9] and
that a battery is a marginally stable system due to its energy
storing nature makes the SoC estimation errors persistent.
Hence, a new approach is needed that can track the side
reaction current density under SoC estimation errors for the
method to be practical.

In this paper, a new inaccessible subsystem identification
technique called the Two Step Filter is introduced for SoH
monitoring to overcome the problems caused by persistent
SoC estimation errors. Similar to RCSI, the system is divided
into two parts: the Main System represents the part of the
system that is known and the Subsystem refers to the part
that is unknown and to be identified. In the battery case, they
correspond to the electrochemical dynamics and the health
subsystem, respectively. SoC estimation error is caused by an
initialization error in one of the states of the Main System.
Thus, the first step in the Two Step Filter is a modification of
RCSI to take into account the Main System state error. In the
second step, the estimation goal is expressed as a nonlinear
function of both the battery health subsystem parameter and
the Main System state initialization error. Then, the Modified
Extended Kalman Filter (MEKF) [14] is used to estimate the
unknown subsystem parameter and the Main System state
error. To illustrate the performance of the Two Step Filter, a
linearized battery model example is considered.

The rest of the paper is organized as follows. Section II in-
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troduces the development of the Two Step Filter in a generic,
linear framework. Section III discusses the application of the
Two Step Filter to the linearized battery model. Conclusions
are given in Section IV.

II. THE DEVELOPMENT OF THE TWO STEP FILTER

A. Problem Setup
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Fig. 1. The architecture for the Two Step Filter.

Fig. 1 shows the generic framework for the Two Step
Filter. The True System consists of a known Main System
and an unknown Subsystem. The dynamic equations and
the output equations of the Main System are considered
separately, because the Subsystem is in a closed-loop with
only the output equations due to the assumption that the
Subsystem output u (k) does not affect the dynamics, but
only the the system output yo (k) via direct feedthrough.
The Main System Dynamics block is driven by the external
excitation signal w (k). The Main System Output block is
coupled with the Subsystem via the variables y (k) and u (k).

The System Model part consists of the Main System
Model and the Subsystem Model. The Main System Model
block is assumed to be identical to the Main System block
of the True System with the exception that there may be
initialization errors in the states. The Subsystem Model
block, on the other hand, has the same form as the Subsystem
block in the True System, but its parameters are unknown.

Note that the input and output of the Subsystem is
not directly measurable; i.e., the Subsystem is inaccessible.
Instead, the output error z (k) = 9o (k) — yo (k) is used
to estimate the Subsystem parameters; hence, this is an
inaccessible subsystem identification problem. The goal of
the algorithm is to identify the unknown Subsystem under

the presence of the Main System state estimation error
z (k) — z (k).

B. The System

The equations of the Main System are

x(k+1)= Az (k) + Fw (k), (1)
y (k) = Cz (k) + Du (k) + Jw (k) , (2)
Yo (k‘) = Fix (ki) + Fsu (k?) + Fsw (k?) , 3)

whereas the Subsystem is described by the equation

u (k) =0y (k), C)
where the parameter 6 is unknown.

The features of this framework that are important for the
context of this work are as follows:

1) There is no feedback from the Subsystem output, u (k),
into the Main System Dynamics. This architecture is
motivated by the battery health problem where the
health subsystem in a battery has a negligible impact
on the SoC dynamics (i.e., Main System Dynamics).

2) The output yo (k) is a function of the Main System
state x (k) and the Subsystem output u (k). This is mo-
tivated by the approximation in battery health problem
that the effect of the health subsystem on the terminal
voltage can be considered as a direct feedthough.

3) The Main System is marginally stable where matrix A
is diagonal with at least one eigenvalue being 1. This
property is due to the battery being an energy storage
device.

C. Estimation Setup

It is assumed that the Main System is known and can
be modeled accurately. Hence, the Main System Model is
described by the following set of equations:

& (k+1) = Az (k) + Fw (k) (5)
§(k) = Ci (k) + Da (k) + Jw (), (6)
?jo (k?) :Elz(k)+E2u (k)—‘-Eg’LU (k), (7

The Subsystem Model is assumed to have the same form
as (4), but with an unknown parameter; i.e.,

i (k) =0 (k) g (k). ®)

Therefore, the goal is to estimate the true Subsystem

parameter 0 with 6 (k) so that the Subsystem output u (k)
can be estimated.

Estimating 6 and (k) with § using the structure of Fig.
1 is a challenge due to two reasons:

1) Due to the features 1) and 3) above, the main system
state error & (k) — x (k) is persistent, which affects the
estimation of u (k).

2) Due to the feature 2), the difference z (k) = yo (k) —
yo (k) can be caused by either the difference between
4 (k) and u (k) or the state difference Z (k) — x (k).
The unique determination of w (k) from only the
measurement of yo (k) is not possible given that x (k)
is not measured.

These difficulties make the estimation of 6 using RCSI

challenging under the presence of main system state error.
Hence, a new approach is described below.
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D. The Two Step Filter
Assume that A € R™*" is organized as

| Im O
A= { 0 A ] ©)
where I, represents the identity matrix of dimension m
(m < n) and

A1
A2
A= (10)
>\n—m
with )\; < 1 for all 7.
The main system state vector is =« =
[ @1 (k) Ty (k) ]T where the states x1, 2o, -, Zm

are such that their initialization errors are persistent. Define
the persistent state vectors ¢ (k) and ¢ (k) as

T

¢ Tm |, (1)
2 . . 1T
C= i Em | (12)
Let d represent the constant main system state difference
vector,

[ o

e e

&1 (k) — x1 (k)

d2 k) —C(k) = : eR™. (13)
Let & and C consist of the elements of £ and C,

respectively, that correspond to the persistent states:

&= Eia Eim | € Rlwx™, (14)

C=[Cy Cm | € RIV™, (15)

where [, and [, are the length of yy and y, respectively.
1) The First Step: Assume that the initial estimation errors
in all the asymptotically stable main system states diminish
when time step is larger than a constant 7'. For any k£ > T,

the error z (k) is expressed as a function of u (k), @ (k) and
d:

el

z (k) = 90 (k) — yo (k)
= & [Ck) = C ()| + Ea it (k) — u (k)]
=&d+ By [u (k) —u(k)].

Next, a cost function is formulated:

J(w* (k) = z°7 (k) R.2® (k) + u*" (k) Ryw® (k), (17)
where R, and R,, are tunable positive semi-definite weights;
the substituted z (k), z° (k), is defined such that @ (k) in
z (k) is replaced by any substitute u® (k),

22 (k) 2 2 (k) — &1d — Eoti (k) + Eau® (k). (18)

The optimal u, u* (k), is defined to be the minimizer of
J (v® (k)). When R,, = 0, the minimizer of J (u® (k)) also
minimizes z° (k) given that the effect of d in z (k) is not

compensated by u* (k). Let z* (k) denote the z*® (k) that
corresponds to u* (k); i.e.,

2 (k) = 2 (k) — E1d — Byt (k) + Bou* (k).

(16)

19)

Substitute (18) into (17) and find u* (k):
aJ
gz =2u*" (k) (B2"R. B2 + R,) +
ou® us=u*(k)
2(z (k) — &d — Byt (k)" R.Ey = 0. (20)

Note that z (k) € R’ and FEsYR.Es + Ry is symmetric.

The solution to (20) is
u' (k) = —(Ex"R.Ey + R,) E>"R.

[z (k) — &1d — Exu (k)] 2D

The terms that can be constructed from the measurable
signal z (k) and estimated signal @ (k) are lumped into the
variable @ (k):

(k) 2 ~(B"R.E> + R,) E"R.
[ (k) — Exi (k)] . (22)

Therefore,

(k) = (k) — (By"R.Ey+ R,) EyTR.E,d.  (23)

The goal of the first step is to calculate @ (k) from z (k)
and @ (k) as in (22).

2) The Second Step: Ideally it is desired that z* (k)
converges to zero. By substituting (16) into (19), it can be
shown that u* (k) = w (k) when z* (k) = 0. Therefore,
u* (k) in (23) can be constructed as

u” (k) =0y (k). (24)
For k > T, express y (k) using the estimated signals ¢ (k)
and 4 (k):

y (k) = Cz (k) + Du (k) + Jw (k)
=9 (k) —Cd— D (i(k) —u(k))
= [§ (k) — Da (k)] — Cd+ Dy (k). (25)
Therefore,
y (k)= (L, — D) [j (k) — Du (k)]
— (I, — DG)*1 Cd (26)
Substitute (24) and (26) into (23) to obtain
i (k) =0(I, — D8) " (§ (k) — Dt (k))
—6(L, - Do)~ cd
— (By"R.By + R,) E,"R.Ed. (27)

(27) constructs @ (k) with the unknown parameters 6 and
d. Now, any nonlinear estimation method can be used to
estimate § and d from @ (k) calculated in the first step. In
this paper, the Modified Extended Kalman Filter (MEKF)
[14] is used in the second step to estimate ¢ and d.

When the subsystem is SISO and only one of the eigenval-
ues of A is 1, the MEKF algorithm for (27) is as presented
below.

Define the parameter vector as w £ [ 0 d ]T. The

estimation of the parameter vector is defined to be @ (k) £
[ 6(k) d(k) ]T. Let P (k) be the covariance matrix of
@ (k). Then,

(k+1)=0®)+KE [ak) -a@®E)], @8

Pk+1)=(a+1)[P(k) - K(k)H (k) P (k) +Q(K)],
(29)
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N 1 NN (Y 10
@ () = s (989 = Di k) ~ ¢y
— (BEx"R.By + R,) Ey"R.Ed (k), (30)
9t (w)
H (k) =
(k) Ow w=a(k)

iy (98 = Di k) —cd (k)

cotk) T P
T1-pak) (B2 R.E2+ R,)  ExTR.&

b

€2y
1

K (k) =P (k) H" (k) (H (k) P (k) H" (k) + Ry (k)

(32)

Q (k) is the process noise covariance matrix. R; (k) is

the output noise covariance matrix. o € [0, 1] acts like a

forgetting factor with a + 1 = % where ) is the forgetting
factor.

E. Estimation of the Subsystem Output

Because there is a persistent difference between i (k)
and x (k), the input to the subsystem model ¢ (k) will not
converge to the true subsystem input y (k). Therefore, even
when 6 (k) converges to 6, the output of the subsystem model
4 (k) will not converge to the subsystem output u (k) unless
a correction based on d (k) is introduced.

To estimate the subsystem output u (k), ¢ (k) should be
corrected with d (k). Let @' (k) and ¢ (k) denote the cor-
rected estimates of the subsystem output u (k) and subsystem
input y (k), respectively, which can be derived as follows.

The difference between § (k) and y (k) is given as

g (k) —y(k)=Cd+ D (a(k) —u(k))
—Cd+D (é (k) (k) — ey(k))
Solving for y (k) yields
y (k) = (I, — DO) " [(Ily — Db (k;)) i (k) — Cd} . (34)

Replacing d and 6 with their estimates d and 6, we obtain

(33)

¥ ) =00~ (1, - DOW) cd).  (35)
Then,
o' (k) = 0y (k)
=0 (k) |5 (k) — (Ily — Db (k))_l cd(k)] . (36)

III. LINEARIZED BATTERY MODEL EXAMPLE

In this section, the Two Step Filter is used in a linearized
battery model example to estimate the subsystem parameter
and the persistent main system state error, which pertain
to the battery SoH and SoC estimation error, respectively.
The subsystem parameter is also estimated with RCSI. The
advantage of the Two Step Filter is highlighted with a
comparison between the estimation results of the Two Step
Filter and those of RCSI.

The battery model used in this section is the linearization
of an electrochemical-based battery model around a partic-
ular operating point. Both the electrochemical-based battery

model and its linearized version have the same form as the
True System in Fig. 1.

The nonlinear battery model is based on [9], [6] and
is summarized here briefly. The main system states in the
battery model follow linear dynamics:

x(k+1)= Az (k) + FI (k), 37)

where z (k) = [ 21 a2 ]T € R? is the main system
state, and I (k) is the input current. A is diagonal with the
eigenvalue associated with the first state being 1. There is no
term containing the subsystem output u (k) in (37). Hence,
the initialization error in the first state is persistent. This state
is used for the calculation of the solid-electrolyte interphase
concentration as follows:

Csen (k) = Csen (k) + Dsenl (k) (38)
1
Cse, (k) = — [nLi — enLnAncse’n (k)] s (39)
P epLpAy

where ¢, (k) and cge p (k) are the solid-electrolyte inter-
phase concentration in the anode and cathode, respectively.
Csen (k) is a measurement of battery SoC; therefore, the
persistent error in the initialization of the first state leads to
a persistent error in SoC.

The output of the system is the terminal voltage V' (k) and
is given by

V (k) = Uset,p (Cse,p (k) = Uretn (Cse,n (K))

RT
o (& (oep (K) 1 (R))
1/ (Coep (), 1 (1) +1)

— —1In (571 (Cse,n (k) aI (k)) +

(40)

V& (oo (0) 1 (K)) + 1)  Rowd (k).

(
The input y (k) to the health subsystem is
T

y (k) — eﬁp [Mn(cse,n (k) I(k),Jsa(k))+Uret,n(Cse,n(k))] .

The subsystem has the following linear static form:
u (k) = _Z.O,sdas,ne%Umf’de (k) : (42)
The details of the battery model and the nomenclature are
omitted here due to limited space, but can be found in [9],
[6].
Define w (k) = I (k), yo (k) =V (k) and u (k) = Jsq (k).
Then, the nonlinear model can be written as

(41)

x(k+1)= Az (k) + Fw (k), (43)
y (k) = f(z(k),u(k),wk)), (44)
Yo (k) = g (z (k) u(k),w(k)), (45)
u (k) =0y (k). (46)

Compared with the model in [9], this model contains no
feedback of w (k) in the main system dynamics (43). This
change is justified due the negligible influence of u (k) on
the states compared with the influence of the external input
w (k). This change makes the model suitable for the Two
Step Filter.

The battery model (43) - (46) can be linearized around
different points for given SoC (x (k)) and current (w (k)),
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Fig. 2. The main system states in the true system and the system model.

leading to a linear system with the form of (1) - (4). Here,
as an example, the battery model is linearized around the
point SoC' = 0.7 with 0.1C constant charge current. The
resulting parameters are:

1 0
A‘[o 0.96]’

F=[998x10* 213x10* |,
C=]541x1071 565 x1077 |,

D =[121x107°],J = [1.35],

Ey=[ -510x107"? —533x 107 |,

Ey=[119%x107"] B3 = [-1.38 x 107?]
0 = —1862.16.

The Main System state is initialized at z (1) =
[ —1x10® —60 ]T, which corresponds to a 1% error in
the SoC with respect to the operating point of SoC' = 0.7.
The Main System Model state is initialized at & (1) =
[0 0 ]T for both the Two Step Filter and RCSI. The initial
error in the first state is persistent, thus d = & (1)—zy (1) =
1 x 10%. Note that there is also an initial error in the second
state. However, the second state is asymptotically stable and
the error diminishes with time. Fig. 2 presents both the true
Main System state x (k) and the Main System Model state
Z (k). It confirms that only the error in the first state is
persistent.

Therefore in the Two Step Filter, the true parameter
vector is w = [ 6 d ]T = [ —1862.16 1 x 108 }T.
The estimated parameter vector with the Two Step Filter is
initialized at & (1) = [ (1) d(1) ] =[0 0] The
parameters in the Two Step Filter are set as follows: the
weights in the cost function of the first step are set to be
R, = I, and R, = 0; the initial covariance matrix is set to
be Py = 1015; the parameters in the MEKF are set to be
Q (k) = 107215, Ry (k) = 10%1; and o = 0.01.

The details and definitions of RCSI parameters can be
found in [9]. RCSI estimates only the subsystem parameter
0 with fgcsy, which is also initialized at fgcs (1) = 0. The
parameters in RCSI are set as follows: the weights of the cost
function are R, = I; and R, = 0; the Markov parameter

is set to be Hy = FE»; initial covariance matrix is set to be
Py = 10°I,; the parameters in Kalman Filter are set to be
Q = 11, Rk = 0.5]1 and R1 =0.

Assuming a nominal battery capacity of 2.3Ah, a constant
charge current of 0.1C corresponds to an external input of
w (k) = —0.23.

To quantify the accuracy of the estimation, the following
relative estimation errors with the Two Step Filter are de-
fined:

>

AG (k) 2 % « 100%, (47)
Ad (k) 2 %‘l_d x 100%, (48)
Au(k) 2 W x 100%. (49)

The relative estimation errors for the subsystem parameter
and the subsystem output with RCSI are defined similarly
and denoted by Afrcsr and Augcsy, respectively.

Fig. 3 (a) presents the estimation results of w =
[ 6 d ]T. It shows that the Two Step Filter estimations
0 (k) and d can be far away from their true values when
k is small, but converge to 6 and d when k£ > 2000.
The RCSI estimation éRCSI under the same main system
state estimation error is also illustrated. § and éRCSI are
close before k& = 2000, but éRCSI does not converge to the
true 0 after £ > 2000. Fig. 3 (b) presents the estimation
of the subsystem output u (k) = Jsq (k). The Two Step
Filter estimation 4 (k) can track the change in u (k) after
2000 steps, while a constant bias is present between the
RCSI estimation tgcs; and u. Fig. 3 (c) shows the relative
estimation errors of the Two Step Filter when £ > 3500
and those of RCSI when £ > 10. It can be observed that
|AO (k)|, |Ad (k)| and |Aw (k)| are all smaller than 0.5%
when &k > 3500 for the Two Step Filter, while both Afgrcsy
and Awugcs are larger than 450% for RCSI.

IV. CONCLUSION

In this paper, a new subsystem identification algorithm,
the Two Step Filter, is developed. The Two Step Filter
can estimate both the subsystem parameter and the per-
sistent main system state estimation error simultaneously
for marginally stable systems as exemplified by the SoH
monitoring problem in batteries when SoC estimation errors
are present.

A linearized battery model example is presented as an
application of the Two Step Filter. The simulation results
show that with the Two Step Filter the relative estimation er-
rors of the subsystem parameter, main system state error and
the subsystem output are all within +0.5% after 3500 steps,
while the relative estimation errors with RCSI are larger than
450% for the same example under the same persistent Main
System state estimation errors. The example demonstrates
that the Two Step Filter can not only significantly improve
the accuracy of subsystem estimation under the presence
of persistent Main System state estimation errors, but also
provide an estimation of these errors.
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Fig. 3. The estimation results in the linearized battery model.

In this paper, MEKF is used in the second step as

the

nonlinear estimation method. One alternative estimation

method to MEKEF is the Unscented Kalman Filter (UKF)
[15], which will be included in a future study.

The results in this paper show the potential of the Two Step
Filter in accurately identifying the battery health subsystem
under the influence of the SoC estimation error. Future work
will focus on the application of the Two Step Filter to the
nonlinear battery model.
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