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I. Introduction

Despite the vast range of control laws that have been developed for spacecraft atti-
tude control, the development of an attitude control system remains a labor-intensive,
time-consuming process. Among the many reasons for this is the fact that attitude con-
trol systems typically depend on a high-fidelity characterization of the spacecraft inertia,
including the directions of the principal axes and the principal moments of inertia. To
alleviate the need for inertia modeling, this paper focuses on spacecraft attitude con-
trol laws that require little or no modeling of the spacecraft’s mass distribution. The
desire for inertia-free control laws stems from the fact that determining the mass prop-
erties of a spacecraft is a tedious and expensive process. Furthermore, fuel usage, shape
changes due to on-orbit deployment of structural components, articulated appendages,
and docking may change the mass distribution of a spacecraft in ways that are difficult
to model.

Inertia-free attitude control laws are available for motion-to-rest maneuvers under
various types of actuation. For the case of magnetic torquing, the classical “bdot” control
law [1, 2] uses rate measurements and measurements of the magnetic field to bring the
spacecraft to rest at an unspecified attitude, while the inertia-free control laws given
in [3–5] bring the spacecraft to a specified attitude. An adaptive inertia-free attitude
control law is given in [6] within the context of achieving minimum-time maneuvers.
Inertia-free control laws for motion-to-rest and tracking are given in [7–9].

Attitude control laws can exploit various parameterizations of the rotation group
SO(3) [10]. Euler angles are conceptually the simplest representation, but these suffer
from the inability to represent all angular velocities at certain 90-degree attitudes; this
phenomenon is called gimbal lock since it is reminiscent of the physical constraint on
the motion of a 3-gimbal mechanism. A related obstacle arises in the use of Rodrigues
(Gibbs) parameters and modified Rodrigues parameters, which have singularities at 180
degrees and 360 degrees attitude, respectively [11, pp. 102–111]. The most common
attitude representation is based on the Euler parameters (quaternions), which are el-
ements of the four-dimensional unit sphere S3. The advantage of Euler parameters is
the fact that they can represent all attitudes and all angular velocities, with the slight
disadvantage that, unlike Euler angles, Rodrigues parameters, and modified Rodrigues
parameters, which involve three parameters, Euler parameters involve four parameters
that must satisfy a constraint.

A more subtle drawback of Euler parameters, however, is the fact that they provide
a double cover of SO(3), that is, each physical attitude is represented by two elements of
S3. This means that the desired attitude has two representations, and thus a controller
designed to yield global asymptotic stability on the set of Euler parameters could inad-
vertently command the spacecraft to needlessly rotate a full 360 degrees. To illustrate
these difficulties in a simpler context, we can consider rotation of a rigid body about a
fixed axis, that is, motion around a circle. Covering the unit circle with the real line and
with the origin 0 viewed as distinct from 2π leads to controllers that rotate the body
needlessly from 2π to zero. The difficulty is due to the fact that 0 and 2π represent
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distinct values on the real line R but correspond to the same physical configuration.
In three-dimensional rotation, the same phenomenon arises from the fact that S3 is a
double cover of SO(3). This is the unwinding problem, which refers to unnecessary and
undesirable rotation away from and back to the desired physical orientation [12]. The
inertia-free, quaternion-based control laws in [8, 13, 14] exhibit unwinding.

There are two distinct approaches to avoiding unwinding. The traditional approach
is to implement a logic statement that confines the Euler parameters to a unit hemi-
sphere in four-dimensional space, which effectively removes the double covering of the
rotation matrices by the Euler parameters. This approach is taken, for example, in [15].
The drawback of this approach, however, is the fact that it introduces a discontinuity
and therefore a discontinuous control law, which can lead to chattering in the presence
of noise. This issue and associated complications are addressed in [16]. Additional
complications relating to discontinuous differential equations are discussed in [17].

An alternative approach to avoiding unwinding is to represent attitude in terms
of rotation matrices. Although this approach would seem inefficient due to the need
to update 9 parameters satisfying 6 constraints, rotation matrices provide a one-to-one
representation of physical attitude without attitude or angular-velocity singularities [18].
Attitude control on SO(3) thus provides the ability to implement continuous control laws
that do not exhibit unwinding [19–21]. Inertia-free control laws on SO(3) are developed
in [22]. Attitude estimation in terms of rotation matrices is studied in [23–25].

Since SO(3) is a compact manifold, every continuous vector field on it necessarily
possesses more than one equilibrium, in fact, at least four. This means that global con-
vergence on SO(3) under continuous time-invariant control is impossible. Consequently,
the objective of [20–22] is almost global stabilization, where the spurious equilibria are
saddle points. Although the spurious equilibria can slow the rate of convergence for
certain initial conditions, this approach provides an alternative to the complications of
discontinuous control laws.

II. Objectives of this Study

As outlined above, this paper focuses on the control of rigid spacecraft using inertia-
free control laws based on rotation matrices. The control laws that we consider are of
three types. The first type comprises fixed-gain attitude control laws (FGAC). These
control laws take the form of PD/PID control laws tailored to the nonlinear character-
istics of spacecraft dynamics. Since linearized rigid-body dynamics comprise a double
integrator about each principal axis, we expect that asymptotic tracking of attitude
ramp commands (that is, spin maneuvers) about each principal axis is possible with-
out integral action. Therefore, the primary role of integral control is to reject constant
disturbances. In the simplest case of PD control only, an FGAC controller that uses
rotation matrices is given in [26]. We also consider an extension of the PD control law
that includes integral action. We refer to these control laws as SO(3)/0 and SO(3)/3,
respectively. FGAC extensions to reaction wheels and control moment gyros (CMG’s)
are presented in [27,28].
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The second type of controller is an extension of fixed-gain attitude control laws to
include an on-line estimate of the spacecraft inertia. This type of control law, called
estimation-based attitude control (EBAC), is considered in [8] using quaternions and
in [22] using rotation matrices. The control law given in [22] includes 9 integrators,
three of which are in the feedback path and 6 of which arise from the inertia estimate
but are not in the feedback path. We also consider a simplification of this control law that
involves only the integrators arising from the inertia estimate. We refer to these control
laws as SO(3)/9 and SO(3)/6, respectively. The EBAC controller given in [22] applies
to thrusters without saturation; extensions to address saturation are given in [29]. The
EBAC controller is developed for reaction wheels in [27]. Extensions to the case of fixed-
speed, single-gimbal CMG’s with velocity-commanded gimbals is considered in [28]. This
approach provides direct control of the gimbal rates without an intermediary steering
law as in [30].

The third type of controller is retrospective cost attitude control (RCAC), which is
based on a retrospective cost criterion for updating the controller. Retrospective cost
adaptive control is developed for linear systems in [31–36] for stabilization, command
following, disturbance rejection, and model reference control. This approach has been
employed in [37,38] to investigate the ability of RCAC to control systems with unmodeled
nonlinearities. We take a similar approach in the present paper by applying RCAC to
spacecraft attitude control. Our results are based on the application of RCAC to attitude
control involving thrusters in [39] and reaction wheels in [40].

For each control law we consider various types of torque actuation. These include
magnetic torquers, thrusters, reaction wheels, and single-gimbal CMG’s. Magnetic tor-
quers require electrical energy, which is renewable, and provide low levels of torque to
modify the angular momentum of the spacecraft. Thrusters can also modify the angular
momentum of the spacecraft, but require a source of consumable on-board fuel, which
limits the life of the spacecraft. Like magnetic torquers, reaction wheels and CMG’s re-
quire only electrical energy, but are not able to modify the total angular momentum of
the spacecraft-plus-wheels. Consequently, the cumulative effect of torque disturbances
causes reaction wheels and CMG’s to spin up, and these devices must subsequently be
de-saturated by magnetic torquers and/or thrusters.

We assume that for thrusters and wheels the spacecraft is fully actuated in the
sense that the actuators can provide torque about three independent spacecraft axes.
However, the torque produced on the spacecraft by magnetic torquers lies in the plane
that is perpendicular to the local direction of Earth’s geomagnetic field. The spacecraft
is thus, at each time instant, underactuated. Nevertheless, Earth’s geomagnetic field
is sufficiently varying in time and space that, for orbits not coinciding with Earth’s
magnetic equator (when using a nonrotating dipole model of the geomagnetic field), the
spacecraft is controllable [41].

Since the spacecraft inertia is unknown, we do not assume that we know the direc-
tions of the principal axes of inertia. However, we assume that a body-fixed frame is
specified and that the alignment of the sensors and actuators is also specified relative
to that frame. We view the attitude sensor (for example, a star tracker) as the truth

325



sensor, and thus its alignment relative to the body frame is assumed to be exact and
known. The alignment of the gyros and actuators relative to the body-fixed frame is
also assumed to be exact and known except where noted.

To illustrate various control laws, we consider two basic scenarios, namely, motion-
to-rest (M2R) maneuvers and motion-to-spin (M2S) maneuvers, where “rest” and “spin”
refer to motion relative to an inertial frame. An M2R maneuver may begin from either
rest or an arbitrary angular velocity. Hence, M2R includes maneuvers commonly referred
to as slews, detumbling, and stabilization. The goal is to have the spacecraft come to rest
with a specified attitude in the sense that a specified body axis is pointing in a specified
inertial direction. If the M2R and M2S maneuvers begin from zero angular velocity, then
we use the terminology rest-to-rest (R2R) and rest-to-spin (R2S), respectively. In some
cases we consider the more limited objective of bringing the spacecraft to rest without
specifying an inertial direction.

An M2S maneuver aims to bring the spacecraft from an arbitrary initial angular
velocity and attitude to a constant angular velocity relative to an inertial frame. Conse-
quently, the goal is to have the spacecraft rotate at a constant rate about a body-fixed
axis whose inertial direction is fixed. Specified spin maneuvers can be used, for exam-
ple, to provide momentum bias to the spacecraft, or to achieve nadir pointing along a
circular orbit. Although the spacecraft inertia is unknown, and thus the directions of
the principal axes of inertia are unknown, we consider commanded spins about both
principal and non-principal axes in order to demonstrate how these control laws perform
in this situation. A commanded spin about a principal axis has the advantage that, once
the spacecraft reaches the desired spin, no additional torque is needed in the absence of
disturbances except possibly to maintain a spin about the minimum and intermediate
axes, where the latter is naturally unstable and the former is unstable due to energy
dissipation. Of course, a commanded spin about a non-principal axis requires constant,
nonzero torques, and thus is more sensitive to torque saturation.

For each of these scenarios, we consider various effects that can degrade the per-
formance of the controller, with the goal of assessing the ability of the control laws to
deal with effects that are not explicitly addressed by the control laws. For example, dur-
ing M2R and M2S maneuvers, the spacecraft may be subjected to torque disturbances.
These disturbances may be due to atmospheric drag, solar pressure, magnetic torques,
gravity gradients, and on-board devices, and thus they may depend on the attitude of
the spacecraft as well as its location along its orbit. The disturbances may be constant,
sinusoidal, or random, with possibly unknown spectrum.

The sensors used for attitude control may be corrupted by noise. We view the
attitude sensor as the truth sensor, and thus the control system attempts to have the
measured attitude follow the attitude command. The gyro measurements, however, may
be corrupted by bias (drift), sinusoidal, or random noise with unknown spectrum. In
addition, the gyros may be misaligned in an unknown way relative to the attitude sensor.
Likewise, the actuators may be misaligned relative to the attitude sensor.

Finally, the operation of the actuators may be affected by nonlinearities. For exam-
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ple, all real actuators are subject to magnitude saturation, whose range is usually known.
In addition, an unknown deadzone nonlinearity may be present in the actuators, while
a known deadzone nonlinearity may be intentionally introduced to limit fuel consump-
tion for stationkeeping. Finally, thrusters are usually operated in an on-off mode, which
constitutes a nonlinearity whose characteristics are usually known.

III. Spacecraft Model, Assumptions, and Control Objectives

As a spacecraft model, we consider a single rigid spacecraft bus controlled by mag-
netic torquers, thrusters, reaction wheels, or single-gimbal CMG’s. The spacecraft’s
angular momentum H, relative to its center of mass with respect to the inertial frame
resolved in the spacecraft frame, depends on the type of torque actuation used and is
detailed below for the aforementioned cases. We consider only the rotational motion of
the spacecraft and not the translational motion of the spacecraft’s center of mass; there-
fore we consider only the torque τactuator applied by the force or torque actuators. We
assume that a body-fixed frame is defined for the spacecraft, whose origin is chosen to
be the center of mass, and that an inertial frame is specified for determining the attitude
of the spacecraft. The spacecraft equations of motion are given by Euler’s equation and
Poisson’s equation

Jω̇ = H × ω + τactuator + zdist, (1)

Ṙ = Rω×, (2)

where ω ∈ R
3 is the angular velocity of the spacecraft frame with respect to the inertial

frame resolved in the spacecraft frame, ω× is the cross-product matrix of ω, J ∈ R
3×3

is the constant, positive-definite inertia matrix of the spacecraft including wheels if
present, that is, the inertia tensor of the spacecraft relative to the spacecraft center of
mass resolved in the spacecraft frame, and R = OIn/SC ∈ R

3×3 is the rotation tensor
that transforms the inertial frame into the spacecraft frame resolved in the spacecraft
frame, and where OIn/SC is the orientation (direction cosine) matrix that transforms
components of a vector resolved in spacecraft frame into the components of the same
vector resolved in inertial frame.

The components of the vector τactuator represent the torque inputs about each axis of
the spacecraft frame, which depends on the chosen torque actuation as detailed below.
The vector zdist represents disturbance torques, that is, all internal and external torques
applied to the spacecraft aside from control torques, which may be due to onboard com-
ponents, gravity gradients, solar pressure, atmospheric drag, or the ambient magnetic
field. For convenience in (1), (2) we omit the argument t, recognizing that ω, R, u, and
zdist are time-varying quantities.
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A. Measurement Sensors

Both rate (inertial) and attitude (noninertial) measurements are assumed to be
available. Gyro measurements yrate ∈ R

3 are assumed to provide measurements of the
angular velocity resolved in the spacecraft frame, that is,

yrate = ω. (3)

For simplicity, we assume that gyro measurements are available without noise and with-
out bias. In practice, bias can be corrected by using attitude measurements.

Attitude is measured indirectly through direction measurements using sensors such
as star trackers and represented as the output

yattitude = R. (4)

When attitude measurements are given in terms of an alternative attitude representation,
such as quaternions, Rodrigues’s formula can be used to determine the corresponding
rotation matrix. Attitude estimation on SO(3) is considered in [23–25].

The objective of the attitude control problem is to determine control inputs such
that the spacecraft attitude given by R follows a commanded attitude trajectory given
by the possibly time-varying C1 rotation matrix Rd(t). For t ≥ 0, Rd(t) is given by

Ṙd(t) = Rd(t)ωd(t)
×, (5)

Rd(0) = Rd0, (6)

where ωd is the desired possibly time-varying angular velocity. The error between R(t)
and Rd(t) is given in terms of the attitude-error rotation matrix

R̃
△
= RT

dR, (7)

which satisfies the differential equation

˙̃R = R̃ω̃×, (8)

where the angular-velocity error ω̃ is defined by

ω̃
△
= ω − R̃Tωd.

B. Attitude Error

A scalar measure of attitude error is given by the rotation angle e(t) about the
eigenaxis needed to rotate the spacecraft from its attitude R(t) to the desired attitude
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Rd(t). This angle, called the eigenaxis attitude error, is given by

e(t) = cos−1(1
2
[tr R̃(t)− 1]). (9)

C. Spacecraft Inertia

Since the control laws in this paper require little or no inertia modeling, we consider
examples that span the range of possible inertia matrices for rigid bodies. We view the
inertia of a rigid body as determined by its principal moments of inertia, that is, the
diagonal entries of the inertia tensor resolved in a principal body-fixed frame, in which
case the inertia matrix is a diagonal matrix. If the inertia tensor is resolved in a non-
principal body-fixed frame, then the diagonal entries are the moments of inertia and the
off-diagonal entries are the products of inertia. The off-diagonal entries of the inertia
matrix are thus a consequence of an unknown rotation between a principal body-fixed
frame and the chosen body-fixed frame.

Figure 1 shows the triangular region of feasible principal moments of inertia of a
rigid body. There are five cases that are highlighted for the principal moments of inertia
λ1 ≥ λ2 ≥ λ3 > 0, where λ1, λ2, λ3 satisfy the triangle inequality λ1 < λ2 + λ3. Let m
denote the mass of the rigid body. The point λ1 = λ2 = λ3 corresponds to a sphere of

radius R =
√

5λ1

2m
, a cube whose sides have length L =

√

6λ1

m
, and a cylinder of length L

and radius R, where L/R =
√
3 and R =

√

2λ1

m
. The point λ1 = λ2 = 2λ3 corresponds

to a cylinder of length L and radius R, where L/R = 3 and R =
√

2λ1

m
. The point

λ1 =
6
5
λ2 = 2λ3, located at the centroid of the triangular region, corresponds to a solid

rectangular body with sides L1 =
√

8λ1

m
> L2 =

√

4λ1

m
> L3 =

√

2λ1

m
.

The remaining cases in Figure 1 are nonphysical, limiting cases. The point λ1 =

2λ2 = 2λ3 corresponds to a thin disk of radius R =
√

2λ1

m
. The point λ1 = λ2 and λ3 = 0

corresponds to a thin cylinder of radius R = 0 and length L =
√

12λ1

m
. Finally, points

along the line segment λ1 = λ2+λ3, where λ2 > λ3 correspond to thin rectangular plate

with sides of length L1 =
√

12λ2

m
> L2 =

√

12λ3

m
.

For all simulations of the inertia-free control laws, we view the principal axes as the
nominal body-fixed axes, and thus the nominal inertia matrix is a diagonal matrix whose
diagonal entries are the principal moments of inertia. Then, to demonstrate robustness,
we vary the principal moments as well as the orientation of the body-fixed frame relative
to the principal axes. For convenience, we normalize λ1 = 10 kg-m2, and we choose the
inertia matrices J1, J2, J3, J4, J5 to correspond to the points noted in Figure 1. These
matrices, which correspond to the sphere, cylinder with L/R = 3, centroid, thin disk,
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and thin cylinder, respectively, are defined as

J1 = diag(10, 10, 10), J2 = diag(10, 10, 5), J3 = diag(10, 25/3, 5),

J4 = diag(10, 5, 5), J5 = diag(10, 10, 0.1). (10)

The inertia matrix J3 corresponding to the centroid of the inertia region serves as the
nominal inertia matrix, while the inertia matrices J1, J2, J4, J5 are used as perturbations
to demonstrate robustness of the control laws. A perturbation J(α) of Ji in the direction
of Jj thus has the form

J(α) = (1− α)Ji + αJj, (11)

where α ∈ [0, 1]. Finally, in order to facilitate numerical integration of Euler’s equation,
note that J5 is chosen to be a nonsingular approximation of the limiting inertia of a thin
cylinder.
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Figure 1. Feasible region of the principal moments of inertia λ1, λ2, λ3 of a rigid body
satisfying 0 < λ3 ≤ λ2 ≤ λ1, where λ1 < λ2 + λ3. The shaded region shows all feasible values
of λ2 and λ3 in terms of the largest principal moment of inertia λ1. The open dots and
dashed line segment indicate nonphysical, limiting cases.
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D. Thrusters

For a rigid spacecraft actuated by three independent thrusters, the angular momen-
tum has the form H = Jω, while the actuator torque τactuator = τthruster is due to the
thrusters. Therefore, in this case (1) becomes

Jω̇ = (Jω)× ω + τthruster + zdist. (12)

Furthermore, the torque due to the thrusters has the form Bu, where the components
of the vector u ∈ R

3 represent three independent torque inputs, and the matrix B ∈
R

3×3 determines the applied torque about each axis of the spacecraft frame due to u.
Therefore, in this case (12) becomes

Jω̇ = (Jω)× ω +Bu+ zdist. (13)

Thrusters may operate in continuous or on-off mode. In the latter case, the on-off
nonlinearity must be considered separately. In addition, it may be desirable to introduce
a deadzone nonlinearity and possibly hysteresis logic to avoid chattering and save fuel
during stationkeeping.

E. Magnetic Torquers

For a rigid spacecraft actuated by three magnetic torque devices, and without on-
board momentum storage, it follows that H = Jω, which, when substituted into (1),
yields the equations of motion for a spacecraft with magnetic torquers. For the case of
M2R, these equations have the form

Jω̇ = (Jω)× ω + τmag + zdist, (14)

where the vector τmag ∈ R
3 represents the torque on the spacecraft generated by the

magnetic actuators. The vector can be written as [42]

τmag(t) = u(t)× b(t) = −b(t)×u(t), (15)

where u(t) is the magnetic dipole moment generated by the currents in the magnetic ac-
tuators measured in ampere-square meters (A-m2), and where b(t) = [bx(t) by(t) bz(t)]

T

is Earth’s geomagnetic field measured in teslas (T) and resolved in the body-fixed frame.
For a discussion on generating magnetic dipole moments from magnetic torquer rods,
see [43]. Defining

B(t)
△
= −b(t)×, (16)

we can rewrite (14) as,

Jω̇ = (Jω)× ω +Bu+ zdist. (17)
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Note that we have dropped the argument t for convenience.

F. Reaction Wheels

Consider a spacecraft actuated by three axisymmetric wheels attached to a rigid bus
in a known and linearly independent, but not necessarily orthogonal, configuration with
an arbitrary and unknown orientation relative to the spacecraft principal axes. Each
wheel is mounted so that it rotates about one of its own principal axes passing through
its own center of mass. However, we do not assume that each wheel’s axis of rotation
passes through the center of mass of the bus, nor do we assume that the wheels are
balanced with respect to the bus in order to preserve the location of the center of mass
of the bus. Thus the center of mass of the spacecraft and the center of mass of the bus
may be distinct points.

Let the spacecraft be denoted by SC, and let C denote its center of mass. Although
the spacecraft is not a rigid body, the axial symmetry of the wheels implies that C is
fixed in both the bus and the spacecraft. Assume a bus-fixed frame FB, three wheel-fixed
frames FWi

, whose x-axes are aligned with the rotation axes of their respective wheels,
and an Earth-centered inertial frame FE. Furthermore, let JSC denote the inertia matrix
of the spacecraft (that is, bus Jb plus wheels Jw) relative to the spacecraft’s center of
mass resolved in FB, and let Jα denote the inertia matrix of the wheel assembly resolved
in FB. The angular momentum of the spacecraft relative to its center of mass with
respect to the inertial frame is given by

H = JSCω + Jαν. (18)

Therefore, (1) has the form

JSCω̇ = (JSCω + Jαν)× ω + τRW + zdist, (19)

ν̇i = OB/Wi
e1ui, i = 1, 2, 3, (20)

where

Jα
△
=
[

α1OB/W1
e1 α2OB/W2

e1 α3OB/W3
e1

]

,

u
△
=









u1

u2

u3









, ν
△
=







ν1
ν2
ν3







△
=









∫ t

0
u1(s) ds

∫ t

0
u2(s) ds

∫ t

0
u3(s) ds









,

the components u1, u2, u3 of u are the angular accelerations of the wheels relative to the
spacecraft frame with respect to an inertial frame, and e1 = [1 0 0]T.

The reaction-wheel torque has the form

τRW = −Jαu. (21)

332



Therefore, defining

B
△
= −Jα, (22)

the equations of motion for a spacecraft with reaction wheels have the form

Jscω̇ = (Jscω + Jαν)× ω +Bu+ zdist, (23)

ν̇i = OB/Wi
e1ui, i = 1, 2, 3. (24)

Note that (24) is a kinematic relation describing the angular acceleration of wheel i.
In practice, a servo loop is closed around each reaction wheel in order to produce the
desired angular acceleration.

G. CMG’s

Consider a spacecraft actuated by three orthogonal single-gimbal CMG’s with spher-
ical gyro wheels attached to a rigid bus. Each CMG is mounted so that its gimbal is
free to rotate about an axis passing through the center of mass of the gyro wheel. For
simplicity, the gimbals are assumed to be massless. However, we do not assume that
each gimbal’s axis of rotation passes through the center of mass of the bus, nor do we
assume that the CMG’s are balanced with respect to the bus in order to preserve the
location of its center of mass. Thus the center of mass of the spacecraft and the center
of mass of the bus may be distinct points.

Let the spacecraft be denoted by SC”, and let C denote its center of mass. Although
the spacecraft is not a rigid body, the spherical symmetry of the gyro wheels implies that
C is fixed in both the bus and the spacecraft. Let ci denote the center of mass of the
ith gyro wheel. We assume a bus-fixed frame FB, three gimbal-fixed frames FGi

whose
y-axes are aligned with the rotation axes of their respective gimbals, three gyro-wheel-
fixed frames FWi

whose x-axes are aligned with the rotation axes of their respective
gyro wheels, and an Earth-centered inertial frame FE. The angular momentum of the
spacecraft relative to its center of mass with respect to the inertial frame is given by

H = JSCω +
3
∑

i=1

βiωWi
. (25)

In this case (1) becomes

JSCω̇ =

(

JSCω +
3
∑

i=1

βiωWi

)

× ω − Jβu̇+ τCMG + zdist, (26)
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where

Jβ
△
=









β1 0 0

0 β2 0

0 0 β3









, u
△
=









u1

u2

u3









,

and the scalar control ui is the angular velocity of the ith gimbal. Furthermore, the
CMG actuator torque τCMG has the form

τCMG = Bu, (27)

where

B
△
=
[

β1

(

ω×
W1

− ω×
)

e1 β2

(

ω×
W2

− ω×
)

e2 β3

(

ω×
W3

− ω×
)

e3

]

. (28)

Note that the actuator matrix B given by (28) is state-dependent and thus time-varying.

Substituting (27) and (28) into (26) yields Euler’s equation for a spacecraft with
CMG’s given by

JSCω̇ =

(

JSCω +
3
∑

i=1

βiωWi

)

× ω +Bu+ z′dist, (29)

where

z′dist
△
= zdist − Jβu̇. (30)

Note that we consider u̇ as a component of the disturbance.

IV. Fixed-Gain Attitude Control (FGAC)

In this section we describe the FGAC control laws for each type of actuation. These
control laws involve gains that are, in most cases, constant, and must be chosen by
the user based on considerations of control authority and desired closed-loop response.
Although the response of the spacecraft depends on the actual inertia of the spacecraft,
convergence properties are guaranteed regardless of the spacecraft inertia, which need
not be known.

A. FGAC for Thrusters

The following preliminary results concerning rotation matrices are needed. Let I
denote the 3× 3 identity matrix, and let Mij denote the i, j entry of the matrix M. The
following result provides some properties of a function of rotation matrices that is used
to construct a Lyapunov function.
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Lemma 1. [22] Let A ∈ R
3×3 be a diagonal positive-definite matrix and let R be a

rotation matrix. Then the following statements hold:

i) For all i, j = 1, 2, 3, Rij ∈ [−1, 1].

ii) tr (A− AR) ≥ 0.

iii) tr (A− AR) = 0 if and only if R = I.

An inertia-free control law for a rigid spacecraft with three torque inputs is given
by the proportional-derivative-(PD)-type SO(3)/0 control law [22,26]

u = −B−1(KpS +Kvω), (31)

where B is the torque-input matrix, and Kp and Kv are proportional (attitude) and
derivative (angular velocity) gains, respectively. The attitude error S is defined by

S
△
=

3
∑

i=1

ai(R̃
Tei)× ei, (32)

where a1, a2, a3 are distinct positive numbers such that A = diag(a1, a2, a3), e1, e2, e3 are
the standard basis vectors, and the rotation matrix R̃ = RRT

d represents the pointing
error between the current attitude R and the desired attitude Rd. The effect of this
controller on the attitude of a rigid spacecraft follows from the Lyapunov function

V (ω, R̃)
△
= 1

2
ωTJω +Kptr (A− AR̃). (33)

with its time-derivative along the trajectories of the closed-loop system satisfying

V̇ (ω, R̃) = −ωTKvω. (34)

This controller is inertia-free since knowledge of the spacecraft inertia J is not needed
for implementation. Consequently, this controller can be implemented for stabilization
and slew maneuvers without knowledge of the spacecraft’s mass distribution.

The controller (31) is amenable to direct enforcement of saturation bounds. The
following result is given in [22]. Extensions are given in [29].

Proposition 1. Let α and β be positive numbers, let A = diag(a1, a2, a3) be a
diagonal positive-definite matrix with distinct diagonal entries, and let Kp and Kv =
Kv(ω) be given by

Kp =
α

trA
(35)
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and

Kv = β









1
1+|ω1|

0 0

0 1
1+|ω2|

0

0 0 1
1+|ω3|









. (36)

Then, for all t ≥ 0, the control torque given by (31) satisfies

‖u(t)‖∞ ≤ α + β

σmin(B)
, (37)

where σmin(B) denotes the minimum singular value of B.

To include integral action we extend (31) to obtain the SO(3)/3 control law

u = −B−1[KpS +KvK1S +KiCdD
−1CT

d

∫ t

0

(ω̃(s) +K1S(s)) ds+Kvω̃]. (38)

This control law is suggested by the EBAC control law (68) given below, by specializing
u = B−1(v2 + v3). Although SO(3)/3 does not have a known Lyapunov function that
ensures closed-loop stability, simulation results suggest that it is stabilizing for all choices
of gains Kp, Kv, and Ki.

B. FGAC for Magnetic Torquers

A challenge in magnetic actuation is the fact that the magnitude and direction of the
local geomagnetic field may be uncertain. Although geomagnetic field models are avail-
able and are updated periodically [44], these models have limited accuracy, and forecasts
of the geomagnetic field may be erroneous due to unmodeled effects and unpredictable
disturbances [45]. Consequently, it is desirable to develop control techniques for mag-
netic actuation that rely solely on current, on-board measurements of the geomagnetic
field [46].

For magnetic torquing, a quaternion-based FGAC control law that relies solely on
current, on-board measurements of the geomagnetic field and requires knowledge of
the spacecraft inertia matrix is given by (13) of [4]. The proof of stability is based
on averaging theory. We modify this control law to use rotation matrices rather than
quaternions and, inspired by [47], to be inertia free. The proportional-derivative-(PD)-
type SO(3)/0 control law is thus given by

u = − b×(t)

||b(t)||2 Γ̄
−1(ε2KpS + εKvω), (39)
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where

Γ̄
△
= lim

T→∞

∫ T

0

Γ(t)dt = lim
T→∞

∫ T

0

−b×(t)b×(t)

||b(t)||2 ,

and 0 < ε < ε∗ is a scaling of the proportional and derivative gains Kp and Kv, where ε
∗

is the maximum scaling. As mentioned in [4], this condition guarantees that the control
action changes on the order of the natural time variation of Earth’s magnetic field.

C. FGAC for Reaction Wheels

For the following development we assume that Jα is constant, nonsingular, and
known. That is, the spacecraft has three linearly independent, axisymmetric wheels,
with known moments of inertia about their spin axes in a known configuration relative
to the bus. However, Jsc is assumed to be unknown.

The inertia-free control law for reaction-wheel actuation is given by the proportional-
derivative-(PD)-type SO(3)/0 control law [27]

u = J−1
α (KpS +Kvω). (40)

Note that −Jα is substituted for the input matrix B used in (31), but otherwise the con-
troller requires no modification for the case of reaction-wheel actuation. The Lyapunov
function

V (ω, R̃)
△
= 1

2
ωTJscω +Kptr(A− AR̃) (41)

and its derivative

V̇ (ω, R̃) = −ωTKvω (42)

remain unchanged. Since this control law does not regulate the speed of the wheels,
the function V is not a positive-definite function of the angular velocities of the wheels
relative to the bus.

D. FGAC for CMG’s

For the following development we assume that Jβ is constant, nonsingular, and
known. That is, the spacecraft has three orthogonal CMG’s with spherical gyro wheels
with known moments of inertia about their spin axes.

In addition, we assume that the gimbal accelerations u̇ are negligible. We thus
ignore the effect of u̇ in the derivation of the control law by considering it a part of the
disturbance zd. This treatment of u̇ is consistent with [48–50]. We do, however, include
this effect in simulations and show through numerical examples that this is a reasonable
assumption.

A difficulty encountered with CMG’s is that the torque they can generate may be
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confined to a plane perpendicular to the requested torque. When this condition occurs,
the CMG’s are considered to be in a singular state, and gimbal angular velocities that
synthesize the requested torque do not exist. Much of the work on CMG’s has thus
focused on the development of steering laws that modify the requested torque to either
avoid these singular states or steer the controller through them [51–55].

While we do not use an explicit steering law to synthesize the desired torque, the
matrix B in the CMG case is state-dependent and sometimes singular. Borrowing ideas
from the steering-law literature, in the subsequent examples we employ practical, albeit
approximate, methods for inverting B. For example, the singularity-robust (SR) inverse
[56,57] trades off between introducing torque errors in the vicinity of a singularity and the
feasibility of the solution, where feasibility indicates that the gimbal angular velocities
remain bounded, unlike the case of the Moore-Penrose inverse.

The SR inverse is derived from the optimization problem

minimize eTWe, (43)

where e = [τ−Y u u]T, τ is the desired torque in a steering-law formulation of the CMG
problem, and W = diag(W1,W2) is a block-diagonal weight matrix.

The SR inverse is thus given by

Y # = W−1
2 Y T

(

YW2Y
T +W−1

1

)

. (44)

Note that different values of W1 and W2 yield different SR inverses, and that selecting
W1 = 0 and W2 = I yields the Moore-Penrose inverse.

We use the SR inverse in place of the inverse of B in a PD control law for CMG’s.
Since the SR inverse introduces error into the inversion, we test the ability of the control
law to compensate for this disturbance. The inertia-free control law for CMG’s is thus
given by the PD-type SO(3)/0 control law

u = −Y #(KpS +Kvω). (45)

In the simulations below we do not modify the weight matrices W1 and W2 based on
the distance of Y from singularity. Alternative methods, such as the singular-direction
avoidance (SDA) inverse [49], can also be applied.

V. FGAC Examples

A. FGAC Examples Using Thrusters

For all of the examples in this section, we assume that the nominal spacecraft inertia
matrix is given by J3, which corresponds to the centroid in the inertia region shown in
Figure 1 with the body-fixed frame assumed to be a principal body-fixed frame. As in
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Proposition 1, let Kp be given by

Kp =
α

trA
, (46)

let Kv = Kv(ω) be given by

Kv = β









1
1+|ω1|

0 0

0 1
1+|ω2|

0

0 0 1
1+|ω3|









, (47)

where α = β = 1, K1 = I3, Ki = 0.015, and A = diag(1, 2, 3).

To evaluate performance for R2R examples, we use the settling-time metric

k0 = min
k>100

{k : for all i ∈ {1, . . . , 100}, e((k − i)Ts) < 0.05 rad}, (48)

where k is the simulation step, Ts is the integration step size, and e(kTs) is the eigenaxis
attitude error at the kth simulation step. This metric is thus the minimum time such
that the eigenaxis attitude error in the 100 most recent simulation steps is less than 0.05
rad.

To illustrate the inertia-free property of the SO(3)/0 and SO(3)/3 FGAC control
laws, the inertia of the spacecraft is varied using

J(α) = (1− α)J3 + αJi, (49)

where α ∈ [0, 1] and i = 1, 4, 5. Figure 2 shows how the R2R settling time depends on
α.

Next, we investigate robustness to thruster misalignment relative to the principal
axes. Here, the inertia matrix is rotated by θ degrees about either the x, y, or z axis.
For a rotation about the x axis, J changes according to

J = O1(θ)JiO1(θ)
T, (50)

where i = 3, 4. Similar relations exist for rotations about the y and z axes. Figure 3
shows how a thruster misalignment of θ deg affects the settling time, where θ is varied
from -180 to +180.

Next, we consider the effect of torque cut-off saturation, that is, where the com-
manded torque is saturated at the maximum allowable value. Figure 4 shows the effect
of increasing saturation levels for SO(3)/0 and SO(3)/3.

Next, we consider R2S maneuvers. As shown in Figure 5, the SO(3)/0 controller
cannot stabilize spins unless they are about a principal axis. For a spin about a principal
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Figure 2. R2R settling time for the FGAC control laws SO(3)/0 and SO(3)/3 using
thrusters as a function of α for various combinations of inertia matrices. The maneuver
is 40-deg rotation about the body-fixed direction [1 1 1]T. Convergence is achieved for
(a) SO(3)/0 and (b) SO(3)/3. Each controller is implemented in all cases with a single
tuning. In all cases, the spacecraft inertia is unknown.

axis, Euler’s equation simplifies to

J11ω̇1 = (J22 − J33)ω2ω3 + u1, (51)

J22ω̇2 = (J33 − J11)ω1ω3 + u2, (52)

J33ω̇3 = (J11 − J22)ω1ω2 + u3. (53)

Therefore, for spins about a principal axis, the equations reduce to a linear second-order
system, in which case integrators in the controller are not required to stabilize spin
commands, as shown in Figure 5.

As discussed above, SO(3)/0 can stabilize spins about only a principal axis. When
the commanded spin is about a non-principal axis, the controller is unable to follow the
command as shown in Figure 6.

The SO(3)/3 controller can achieve spins about a non-principal axis, as shown in
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Figure 3. R2R settling time for the FGAC control laws SO(3)/0 and SO(3)/3 using
thrusters as a function of the principal-frame/body-frame rotation angle θ for rotations
about each of the three principal axes of J3. The maneuver is a 40-deg rotation about the
body-fixed direction [1 1 1]T. (a) For the SO(3)/0 controller, variations in the settling time
are within 18% of the nominal settling time. (b) For the SO(3)/3 controller, variations in
the settling time are within 7% of the nominal settling time.

Figure 7. This controller can also stabilize spins in the presence of a constant torque
disturbance, as shown in Figure 8.

B. FGAC Example Using Magnetic Torquers

We consider a spacecraft in a 450-km circular orbit above the Earth with an inclina-
tion of 87 deg. The International Geomagnetic Reference Field (IGRF) model is used to
simulate Earth’s geomagnetic field as a function of orbital position [44]. The spacecraft
inertia matrix J is given by J3, with the body-fixed frame assumed to be a principal
frame.

We use the SO(3)/0 FGAC controller (39) for a M2R maneuver, where the objective
is to bring the spacecraft from the initial attitude R(0) = I3, with initial angular velocity
ω(0) = [0.025 0.025 − 0.03]T rad/sec, to rest at the desired final orientation Rd = I3.
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Figure 4. R2R settling time for the FGAC control laws SO(3)/0 and SO(3)/3 using
thrusters as a function of torque for various saturation levels on all three axes, for (a)
SO(3)/0 and (b) SO(3)/3. The maneuver is 40-deg rotation about the body-fixed direction
[1 1 1]T. Note that, at low saturation levels, SO(3)/0 stabilizes the spacecraft, whereas
SO(3)/3 does not. Saturation does not affect the performance of SO(3)/0 for saturation
levels greater than 0.3 N-m.

Let Kp = 75, Kv = 75, and ε = 0.0004. These values are chosen to give nominal
magnetic dipole moments around 5 A-m2, and a settling time of around 8 orbits. We
test the controller in a nonlinear simulation of (1)-(2).

Figure 9 shows the eigenaxis attitude error, angular velocity, and magnetic dipole
moment for the simulation described above. The spacecraft comes to rest at the com-
manded attitude within 8 orbits. The maximum magnetic dipole moment generated is
less than 6 A-m2. This quantity can be further tuned by modifying the gains Kp and
Kv.

C. FGAC Example Using Reaction Wheels

We now illustrate the effectiveness of the SO(3)/0 FGAC control law (40) for regu-
lating the spacecraft attitude and angular velocity using reaction-wheel actuators. The
following spacecraft parameters are assumed. The bus inertia matrix Jb is given by
the centroid inertia matrix J3 defined by (10), which is unknown to the controller.
The axes of rotation of the reaction wheels are aligned with the spacecraft body-fixed
frame unit vectors, and the wheel inertias are given by Jw1

= diag(α1, β1, β1) kg-m2,
Jw2

= diag(β2, α2, β2) kg-m
2, and Jw3

= diag(β3, β3, α3) kg-m
2, where α1 = α2 = α3 = 1

and β1 = β2 = β3 = 0.75. The values β1, β2, β3 are unknown to the controller.

As in Proposition 1, Let Kp be given by

Kp =
γ

trA
, (54)
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Figure 5. R2S maneuver for the FGAC control law SO(3)/0 using thrusters for ωd =
[0 0 0.3]T rad/sec. (a) Eigenaxis attitude error, (b) angular velocity components, (c)
torque inputs, and (d) torque input norm. The spacecraft is initially at rest with R = I

and Rd(0) = I.

and let Kv = Kv(ω) be given by

Kv = η









1
1+|ω1|

0 0

0 1
1+|ω2|

0

0 0 1
1+|ω3|









, (55)

where γ = η = 15 and A = diag(1, 2, 3).

Controller (40) is used for an aggressive slew maneuver, where the objective is
to bring the spacecraft from the initial attitude R0 = I3 and initial angular velocity
ω(0) = [1 −1 0.5]T rad/sec to rest at the desired final orientation Rd = diag(1,−1,−1),
which represents a rotation of 180 degrees about the x-axis. The reaction wheels are
initially not spinning relative to the spacecraft, that is, ν(0) = [0 0 0]T rad/sec. No
disturbance is present.

Figures 10(a)-(c) show, respectively, the attitude error, angular-velocity compo-
nents, and angular-velocity components of the wheels. The spacecraft attitude and
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Figure 6. R2S maneuver for the FGAC control law SO(3)/0 using thrusters for ωd =
[0.2 − 0.5 0.3]T rad/sec. (a) Eigenaxis attitude error, (b) angular velocity components, (c)
torque inputs, and (d) torque input norm. The spacecraft is initially at rest with R = I

and Rd(0) = I. The controller spins the spacecraft with the commanded angular rate but
about an incorrect axis, as shown by the attitude error.

angular-velocity components reach the commanded values in about 30 sec. The angular-
velocity components of the reaction wheels approach constant values that are consistent
with the initial, nonzero angular momentum.

D. FGAC Example Using CMG’s

We now illustrate the SO(3)/0 FGAC control law (40) using CMG’s. The following
spacecraft parameters are assumed. The bus inertia matrix Jb is given by J3, which
is unknown to the controller. The axes of rotation of the CMG gimbals are aligned
with the spacecraft body-fixed frame unit vectors, and the wheel inertias are given by
Jw1

= diag(β1, β1, β1) kg-m2, Jw2
= diag(β2, β2, β2) kg-m2, and Jw3

= diag(β3, β3, β3)
kg-m2, where β1 = β2 = β3 = 0.3.
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Figure 7. R2S maneuver for the FGAC control law SO(3)/3 using thrusters for ωd =
[0.2 − 0.5 0.3]T rad/sec. (a) Eigenaxis attitude error, (b) angular-velocity components, (c)
torque inputs, and (d) torque input norm. The spacecraft is initially at rest with R = I

and Rd(0) = I.

Let Kp be given by

Kp = 100
γ

trA
, (56)

and let Kv be given by

Kv = diag(100, 100, 100), (57)

where A = diag(1, 2, 3).

Controller (40) is used for an aggressive slew maneuver, where the objective is
to bring the spacecraft from the initial attitude R0 = I3 and initial angular velocity
ω(0) = [1 −1 0.5]T rad/sec to rest at the desired final orientation Rd = diag(1,−1,−1),
which represents a rotation of 180 degrees about the x-axis. The reaction wheels are
initially not spinning relative to the spacecraft, that is, ν(0) = [0 0 0]T rad/sec. No
disturbance is present.

Figure 11 shows the attitude error, angular-velocity components, gimbal angles, and
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Figure 8. R2S maneuver for the FGAC control law SO(3)/3 using thrusters for ωd =
[0.2 − 0.5 0.3]T rad/sec in the presence of the constant disturbance torque d = [0 0 0.2]T

N-m. (a) Eigenaxis attitude error, (b) angular velocity components, (c) torque inputs,
and (d) torque input norm. The spacecraft is initially at rest with R = I and Rd(0) = I.
The controller is able to reject the disturbance and follow the spin command.

singular values of B. The spacecraft attitude and angular-velocity components reach
the commanded values in about 10 sec. The relative angular-velocity components of
the reaction wheels settle down to constant values that are consistent with the initial,
nonzero angular momentum.

VI. Estimator-Based Attitude Control (EBAC)

The main difference between the EBAC control laws and the FGAC control laws is
that the latter exploit an estimate of the inertia matrix. These control laws are based on
Lyapunov analysis, which also provides disturbance rejection for harmonic disturbances
with known spectrum.
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Figure 9. M2R maneuver for the FGAC control law (39) using magnetic torquers. (a)
Eigenaxis attitude error, (b) angular velocity components, and (c) magnetic dipole mo-
ments. The spacecraft comes to rest at the commanded attitude within 7 orbits, and the
maximum magnetic dipole moment required by the controller is less than 6 A-m2.

A. EBAC for Thrusters

To develop an estimate of the spacecraft inertia, we introduce the notation

Jω = L(ω)γ, (58)

where γ ∈ R
6 is defined by

γ
△
=
[

J11 J22 J33 J23 J13 J12

]T

and

L(ω)
△
=







ω1 0 0 0 ω3 ω2

0 ω2 0 ω3 0 ω1

0 0 ω3 ω2 ω1 0






.
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Figure 10. M2S maneuver for the FGAC control law (40) using reaction wheels and
without disturbance. (a) Eigenaxis error, (b) spacecraft angular velocity components,
and (c) wheel angular velocity components. The objective is to bring the spacecraft from
the initial attitude R(0) = I3 and initial angular velocity ω(0) = [1 − 1 0.5]T rad/sec to
rest at the desired final orientation Rd = diag(1,−1,−1), which represents a rotation of 180
degrees about the x-axis.

With this notation, (73) can be rewritten as

J ˙̃ω = [L(ω̃ + R̃Tωd)γ]
×(ω̃ + R̃Tωd) + L(ω̃ × R̃Tωd − R̃Tω̇d)γ +Bu+ zdist. (59)

Next, let Ĵ ∈ R
3×3 denote an estimate of J , and define the inertia-estimation error

J̃
△
= J − Ĵ .

Letting γ̂, γ̃ ∈ R
6 represent Ĵ , J̃ , respectively, it follows that

γ̃ = γ − γ̂. (60)
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Figure 11. M2R maneuver for the FGAC control law (45) using CMGs and without
disturbance. (a) Eigenaxis error, (b) spacecraft angular velocity components, (c) gimbal
angles, and (d) singular values of B. the objective is to bring the spacecraft from the
initial attitude R(0) = I3 and initial angular velocity ω(0) = [1 − 1 0.5]T rad/sec to rest at
the desired final orientation Rd = diag(1,−1,−1), which represents a rotation of 180 degrees
about the x-axis.

349



Likewise, let ẑdist ∈ R
3 denote an estimate of zdist, and define the disturbance-estimation

error
z̃dist

△
= zdist − ẑdist.

Assuming that the disturbance is harmonic, it follows that zdist can be modeled as
the output of an autonomous system of the form

ḋ = Add, (61)

zdist = Cdd, (62)

where Ad ∈ R
nd×nd and Cd ∈ R

3×nd are known matrices and Ad is a Lyapunov-stable
matrix. In this model, d(0) is unknown, which is equivalent to the assumption that
the amplitude and phase of all harmonic components in the disturbance are unknown.
The matrix Ad is chosen to include eigenvalues of all frequency components that may
be present in the disturbance signal, where the zero eigenvalue corresponds to constant
disturbances. In effect, the controller provides infinite gain at the disturbance frequency,
which results in asymptotic rejection of harmonic disturbance components. In particular,
an integral controller provides infinite gain at DC in order to reject constant disturbances.
In the case of orbit-dependent disturbances, the frequencies can be estimated from the
orbital parameters. Likewise, in the case of disturbances originating from on-board
devices, the spectral content of the disturbances may be known. In other cases, it may
be possible to estimate the spectrum of the disturbances through signal processing. Since
zd is harmonic, Ad can be chosen to be skew symmetric, which we do henceforth. Let
d̂ ∈ R

nd denote an estimate of d, and define the disturbance-state estimation error

d̃
△
= d− d̂.

Theorem 1. Let Kp be a positive number, let K1 ∈ R
3×3, let Q ∈ R

6×6 and
D ∈ R

nd×nd be positive definite, let A = diag(a1, a2, a3) be a diagonal positive-definite
matrix, and define

S
△
=

3
∑

i=1

ai(R̃
Tei)× ei.

Then the Lyapunov candidate

V (ω̃, R̃, γ̃, d̃)
△
= 1

2
(ω̃ +K1S)

TJ(ω̃ +K1S) +Kptr (A− AR̃) + 1
2
γ̃TQγ̃ + 1

2
d̃TDd̃ (63)

is positive definite, that is, V is nonnegative, and V = 0 if and only if ω̃ = 0, R̃ = I,
γ̃ = 0, and d̃ = 0.

Theorem 2. Let Kp be a positive number, let Kv ∈ R
3×3, K1 ∈ R

3×3, Q ∈ R
6×6,

and D ∈ R
nd×nd be positive definite, assume that AT

dD +DAd is negative semidefinite,
let A = diag(a1, a2, a3) be a diagonal positive-definite matrix, define S and V as in
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Theorem 1, and let γ̂ and d̂ satisfy

˙̂γ = Q−1[LT(ω)ω× + LT(K1Ṡ + ω̃ × ω − R̃Tω̇d)](ω̃ +K1S), (64)

where

Ṡ =
3
∑

i=1

ai[(R̃
Tei)× ω̃]× ei, (65)

and

˙̂
d = Add̂+D−1CT

d (ω̃ +K1S), (66)

ẑdist = Cdd̂. (67)

Furthermore, let

u = B−1(v1 + v2 + v3), (68)

where

v1
△
= −(Ĵω)× ω − Ĵ(K1Ṡ + ω̃ × ω − R̃Tω̇d), (69)

v2
△
= −ẑdist, (70)

and

v3
△
= −Kv(ω̃ +K1S)−KpS. (71)

Then,

V̇ (ω̃, R̃, γ̃, d̃) = −(ω̃ +K1S)
TKv(ω̃ +K1S)−KpS

TK1S + 1
2
d̃T(AT

dD +DAd)d̃ (72)

is negative semidefinite.

The closed-loop spacecraft attitude dynamics have the form

J ˙̃ω = [J(ω̃ + R̃Tωd)]× (ω̃ + R̃Tωd) + J(ω̃ × R̃Tωd − R̃Tω̇d) + τactuators + zdist, (73)

and the control law (68)-(71) can be expressed as

J ˙̃ω = [L(ω)γ̃]×ω + L(ω̃ × R̃Tωd −RTω̇d)γ̃ − L(K1Ṡ)γ̂ + z̃dist −Kv(ω̃ +K1S)−KpS.
(74)

From Lemma 3 and Lemma 4 of [22], the closed-loop system consisting of (64)-(67)
and (74) has four disjoint equilibrium manifolds. These equilibrium manifolds in R

3 ×
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SO(3)× R
6 × R

3 are given by

Ei =
{

(ω̃, R̃, γ̃, d̃) ∈ R
3 × SO(3)× R

6 × R
3 : R̃ = Ri, ω̃ ≡ 0, (γ̃, d̃) ∈ Qi

}

, (75)

where, for all i ∈ {0, 1, 2, 3}, Qi is the closed subset of R6 × R
3 defined by

Qi
△
= {(γ̃, d̃) ∈ R

6 × R
3 : [L(RT

i ωd)γ̃]
×(RT

i ωd)− L(RT
i ω̇d)γ̃ + Cdd̃ = 0, ˙̃γ = 0, ˙̃d = Add̃}.

Furthermore, the equilibrium manifold (ω̃, R̃, (γ̃, d̃)) = (0, I,Q0) of the closed-loop sys-
tem given by (64)-(67) and (74) is locally asymptotically stable, and the remaining
equilibrium manifolds given by (0,Ri,Qi), for i ∈ {1, 2, 3} are unstable. Finally, the set
of all initial conditions converging to these equilibrium manifolds forms a lower dimen-
sional submanifold of R3 × SO(3)× R

6 × R
3.

Saturation techniques for the EBAC controller are discussed in [29].

B. EBAC for Reaction Wheels

We invoke the same assumptions presented in Section IV.C. The EBAC controller
for reaction-wheel actuators is given by [27]

u = −J−1
α (v1 + v2 + v3), (76)

where

v1
△
= −(Ĵscω + Jαν)× ω − Ĵsc(K1Ṡ + ω̃ × ω − R̃Tω̇d), (77)

and v2, v3 remain unchanged and are given by (70)-(71). Similarly, the Lyapunov func-
tion (63) and its derivative (72) are the same. As in the FGAC case, this control law
does not regulate the speed of the wheels, so the function V is not a positive-definite
function of the angular velocities of the wheels relative to the bus.

C. EBAC for CMG’s

As in the reaction-wheel case, we invoke the assumptions presented in Section IV.D.
The EBAC controller for CMG’s is given by [28]

u = B#(v1 + v2 + v3), (78)

where B# is the SR-inverse of B,

v1
△
= −(Ĵscω +

3
∑

i=1

βiωWi
)× ω − Ĵsc(K1Ṡ + ω̃ × ω − R̃Tω̇d), (79)

and v2, v3 remain unchanged and are given by (70)-(71).
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VII. EBAC Examples

A. EBAC Examples Using Thrusters

We illustrate two EBAC control laws using thrusters. SO(3)/6 is obtained from the
EBAC control law (68) by specializing u = B−1(v1 + v3) and SO(3)/9 is given by (68).

To illustrate the inertia-free property of the SO(3)/6 and SO(3)/9 FGAC control
laws, the inertia of the spacecraft is varied using (49), where α ∈ [0, 1] and i = 1, 4, 5.
Figure 12 shows how the R2R settling time depends on α.
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Figure 12. R2R settling time for the EBAC control laws SO(3)/6 and SO(3)/9 using
thrusters as a function of α for various combinations of inertia matrices. The maneuver
is 40-deg rotation about the body-fixed direction [1 1 1]T. Convergence is achieved for
(a) SO(3)/6 and (b) SO(3)/9. Each controller is implemented in all cases with a single
tuning.

Robustness in relation to thruster misalignment is also tested, and the results are
shown in Figures 13 and 14. Simulations are performed using both J3 and J4.

Figure 14 shows how thruster misalignment affects the spacecraft with inertia J1.

We also test the effect of saturation on the EBAC control laws SO(3)/6 and SO(3)/9,
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Figure 13. R2R settling time for the EBAC control laws SO(3)/6 and SO(3)/9 using
thrusters as a function of the principal-frame/body-frame rotation angle θ for rotations
about each of the three principal axes of J3. The maneuver is a 40-deg rotation about the
body-fixed direction [1 1 1]T. (a) For the SO(3)/6 controller, variations in the settling time
are within 15% of the nominal settling time. (b) For the SO(3)/9 controller, variations in
the settling time are within 2% of the nominal settling time.

for various inertia cases. Figure 15 shows that SO(3)/6 and SO(3)/9 are more sensitive
to saturation than the FGAC control laws SO(3)/0 and SO(3)/3.

Figure 16 and Figure 17 illustrate how the EBAC and FGAC control laws handle
disturbance torques about the minor axis. Note that the SO(3)/0 and SO(3)/6 control
laws cannot reject constant disturbances.

Figure 18 shows that the SO(3)/6 controller is able to follow spin commands about
a non-principal axis, albeit with large settling times.

As illustrated in Figure 19, in the presence of a disturbance, the SO(3)/6 EBAC
control law cannot follow spin commands, and the resulting spin is about an incorrect
axis.

The SO(3)/9 EBAC control law can perform R2S maneuvers, as shown in Figure
20. The controller can also stabilize spins with constant disturbance torques as shown
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Figure 14. R2R settling time for the EBAC control laws SO(3)/6 and SO(3)/9 using
thrusters as a function of the principal-frame/body-frame rotation angle θ for rotations
about each of the three principal axes of J4. The maneuver is a 40-deg rotation about the
body-fixed direction [1 1 1]T. (a) For the SO(3)/6 controller, variations in the settling time
are within 14% of the nominal settling time. (b) For the SO(3)/9 controller, variations in
the settling time are within 18% of the nominal settling time.

in Figure 21.

Next, we consider a gravity gradient disturbance torque τg modeled by [30, pp.
386–390]

τg = 3n2(OSC/Le3)
×J(OSC/Le3), (80)

where n
△
=
√

µ/r3E is the orbital angular velocity, µ is the gravitational parameter, rE is
the Earth radius, e3 is the third column of the 3× 3 identity matrix, and OSC/L ∈ R

3×3

is the orientation matrix of the spacecraft frame FSC relative to the local-vertical-local-
horizontal frame FL. We assume that the satellite orbit is circular and equatorial.

Rotating the inertial frame FIn about the z-axis by π/2 rad, then about x-axis by
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Figure 15. R2R settling time for the EBAC control laws SO(3)/6 and SO(3)/9 using
thrusters as a function of torque for saturation on all three axes using the inertia matrices
(a) centroid, (b) sphere, (c) thin disk, and (d) thin cylinder . The maneuver is 40-deg
rotation about the body-fixed direction [1 1 1]T. Note that convergence improves as the
saturation level increases.
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Figure 16. R2R steady-state error for the EBAC control law SO(3)/6 using thrusters as a
function of the magnitude of a constant disturbance about the minor axis. The maneuver
is a 40-deg rotation about the body-fixed direction [1 1 1]T. Note that the performance of
SO(3)/6 is substantially better than the performance of SO(3)/0.
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Figure 17. R2R settling time for the EBAC control laws SO(3)/3 and SO(3)/9 using
thrusters as a function of the magnitude of a constant torque disturbance about the
minor axis. The maneuver is 40-deg rotation about the body-fixed direction [1 1 1]T. Note
that the performance of SO(3)/3 improves in relation to SO(3)/9 as the magnitude of the
disturbance increases.
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Figure 18. R2S maneuver for the EBAC control law SO(3)/6 using thrusters for ωd =
[0.2 − 0.5 0.3]T rad/sec. (a) Eigenaxis attitude error, (b) angular-velocity components, (c)
torque inputs, and (d) torque input norm. The spacecraft is initially at rest with R = I

and Rd(0) = I.

358



0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (sec)

E
ig
en

a
x
is
A
tt
it
u
d
e
E
rr
o
r
(r
a
d
)

(a)

0 100 200 300 400 500 600 700 800
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (sec)

A
n
g
u
la
r
V
el
o
ci
ty

C
o
m
p
o
n
en

ts
(r
a
d
/
se
c)

 

 

ω1

ω2

ω3

(b)

0 100 200 300 400 500 600 700 800
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (sec)

T
or
q
u
e
In
p
u
ts

(N
-m

)

 

 

u1

u2

u3

(c)

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (sec)

T
or
q
u
e
In
p
u
t
N
or
m

(N
-m

)

(d)

Figure 19. R2S maneuver for the EBAC control law SO(3)/6 using thrusters for ωd =
[0.2 − 0.5 0.3]T rad/sec in the presence of a constant disturbance torque d = [0 0 0.2]T N-m.
(a) Eigenaxis attitude error, (b) angular velocity components, (c) torque inputs, and (d)
torque input norm. The spacecraft is initially at rest with R = I and Rd(0) = I. The
controller cannot reject the disturbance and the resulting spin is about an incorrect axis.

−π/2 rad, and, finally, about y-axis by −nt rad, OIn/L is given by

OIn/L =







sin(nt) 0 − cos(nt)

− cos(nt) 0 − sin(nt)

0 1 0






. (81)

Furthermore, OSC/L = OSC/InOIn/L. If the body frame is a principal-axis frame, then the
gravity gradient disturbance torque τg is given by

τg = 3n2







−(J22 − J33)OSC/L23
OSC/L33

−(J33 − J11)OSC/L33
OSC/L13

−(J11 − J22)OSC/L13
OSC/L23






, (82)

where J11, J22, J33 are the diagonal entries of J and [OSC/L13
OSC/L23

OSC/L33
]T is the

third column of OSC/L.
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Figure 20. R2S maneuver for the EBAC control law SO(3)/9 using thrusters for ωd =
[0.2 − 0.5 0.3]T rad/sec. (a) Eigenaxis attitude error, (b) angular velocity components, (c)
torque inputs, and (d) torque input norm. The spacecraft is initially at rest with R = I

and Rd(0) = I.

The SO(3)/3 and SO(3)/9 EBAC control laws are able to reject gravity gradient
disturbances, as shown in Figure 22 and Figure 23.

Figures 24 and 25 show the closed loop performance of the SO(3)/3 and SO(3)/9
controllers maintaining a fixed inertial pointing. Both controllers are able to follow the
command in the presence of a gravity gradient disturbance.

B. EBAC Examples Using Reaction Wheels

Consider the maneuver presented in Section V.C in the presence of an unknown
constant nonzero disturbance torque τdist = [0.7 − 0.3 0]T N-m. The EBAC controller
(76) is used in place of the FGAC controller (40) since (40) lacks an integrator and thus
has a constant steady-state error bias due to the persistent disturbance. The parameters
of the controller (76) are chosen to be K1 = I3, A = diag(1, 2, 3), γ = η = 1, D = I3,
and Q = I6.

Figures 26(a)-(f) show, respectively, the attitude error, angular velocity components,
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Figure 21. R2S maneuver for the EBAC control law SO(3)/9 using thrusters for ωd =
[0.2 − 0.5 0.3]T rad/sec in the presence of a constant disturbance torque d = [0 0 0.2]T N-m.
(a) Eigenaxis attitude error, (b) angular velocity components, (c) torque inputs, and (d)
torque input norm. The spacecraft is initially at rest with R = I and Rd(0) = I. The
controller is able to reject the disturbance and follow the spin command.

relative-angular-velocity components of the wheels, angular momentum, disturbance-
estimate errors, and inertia-estimate errors. The spacecraft attitude and angular velocity
components reach the commanded values in about 50 sec. Figure 26(c) indicates that
the reaction-wheel rotational speed grows unbounded. Figure 26(d) shows that the total
angular momentum of the spacecraft increases consistently with the constant disturbance
torque acting on the spacecraft.

Consider, now, a spin maneuver with the spacecraft initially at rest and R(0) = I3.
The desired attitude is Rd(0) = I3, and the commanded angular velocity is ωd = [0.5 −
0.5 − 0.3]T rad/sec. We assume that no disturbance is present. Figures 27(a)-(e) show,
respectively, the attitude error, angular-velocity components, relative-angular-velocity
components of the wheels, angular momentum, and inertia-estimate errors. For this
maneuver, the spin command consists of a specified time history of rotation about a
specified body axis aligned in a specified inertial direction. The controller achieves the
commanded motion within about 100 sec.
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Figure 22. Gravity gradient disturbance rejection for the FGAC control law SO(3)/3 using
thrusters. (a) Eigenaxis attitude error, (b) torque input, (c) torque input (magnified), and
(d) disturbance torque. The maneuver is a 90-deg rotation about the body-fixed direction
[0 1 0]T. The spacecraft is stabilized, and the disturbance torque is rejected.

362



0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

E
ig
en
a
x
is
A
tt
it
u
d
e
E
rr
o
r
(r
a
d
)

 

 

θ

(a)

0 50 100 150 200 250
−6

−4

−2

0

2

4

6

Time (sec)

T
o
rq
u
e
In
p
u
t
(N

-m
)

 

 

u1

u2

u3

(b)

0 500 1000 1500 2000 2500 3000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−5

Time (sec)

T
or
q
u
e
In
p
u
t
M
ag
n
ifi
ed

(N
-m

)

 

 

u1

u2

u3

(c)

0 500 1000 1500 2000 2500 3000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−5

Time (sec)

G
ra
v
it
y
G
ra
d
ie
n
t
T
or
q
u
e
(N

-m
)

 

 

τg1

τg2

τg3

(d)

Figure 23. Gravity gradient disturbance rejection for the EBAC control law SO(3)/9 using
thrusters. (a) Eigenaxis attitude error, (b) torque input, (c) torque input (magnified), and
(d) disturbance torque. The maneuver is a 90-deg rotation about the body-fixed direction
[0 1 0]T. The spacecraft is stabilized, and the disturbance torque is rejected.
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Figure 24. Gravity gradient disturbance for the FGAC control law SO(3)/3 using
thrusters. (a) Disturbance torque, and (b) torque input. The desired motion is an equa-
torial orbital movement with fixed inertial pointing given by Rd = R(0) = I. Inertial frame
pointing is achieved despite the presence of an attitude-dependent sinusoidal disturbance
due to gravity gradients.
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Figure 25. Gravity gradient disturbance for the EBAC control law SO(3)/9 using
thrusters. (a) Disturbance torque, and (b) torque input. The desired motion is an equa-
torial orbital movement with fixed inertial pointing given by Rd = R(0) = I. Inertial frame
pointing is achieved despite the presence of an attitude-dependent sinusoidal disturbance
due to gravity gradients.
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Figure 26. M2R maneuver for the EBAC control law (76) using reaction wheels with
the unknown constant disturbance torque τdist = [0.7 − 0.3 0]T N-m. (a) Eigenaxis attitude
error, (b) spacecraft angular velocity components, (c) wheel angular velocity components,
(d) spacecraft angular momentum relative to its center of mass with respect to the inertial
frame resolved in the inertial frame, (e) disturbance estimate errors, and (f) inertia esti-
mate errors. The spin rate of the reaction wheels grows unbounded, and the total angular
momentum of the spacecraft is not conserved due to the constant disturbance torque.
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Figure 27. M2S maneuver for the EBAC control law (76) using reaction wheels. The
desired attitude is Rd(0) = I3, and the commanded angular velocity is ωd = [0.5 −0.5 −0.3]T

rad/sec. (a) Eigenaxis attitude error, (b) spacecraft angular velocity components, (c)
wheel angular velocity components, (d) spacecraft angular momentum relative to its center
of mass with respect to the inertial frame resolved in the inertial frame, and (e) inertia
estimate errors. No disturbance is present.
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C. EBAC Examples Using CMG’s

Consider the maneuver presented in Section V.D in the presence of an unknown
constant nonzero disturbance torque τdist = [0.35 −0.015 0]T N-m. Note that the EBAC
controller (78) is used in place of the FGAC controller (40) since (40) lacks an integrator
and thus has a constant steady-state error bias due to the persistent disturbance. The
parameters of the controller (78) are chosen to be K1 = I3, A = diag(1, 2, 3), D = I3,
and Q = I6.

Figures 28(a)-(e) show, respectively, the attitude error, angular-velocity compo-
nents, gimbal angles, inertia-estimate errors, and singular values of B. The spacecraft
attitude and angular velocity components reach the commanded values in about 35 sec.
Figure 28(c) indicates that the CMG gimbal angles grow unbounded.

Next, we consider a spin maneuver with the spacecraft initially at rest and R(0) = I3.
The desired attitude is determined by Rd(0) = I3, and the commanded angular velocity
is ωd = [0.005 − 0.005 − 0.003]T rad/sec. We assume that no disturbance is present.
Figures 29(a)-(e) show, respectively, the attitude error, angular-velocity components,
gimbal angles, inertia-estimate errors, and singular values of B. For this maneuver, the
spin command consists of a specified time history of rotation about a specified body axis
aligned in a specified inertial direction. The controller achieves the commanded motion
within about 20 sec.
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Figure 28. M2R maneuver for the EBAC control law (78) using CMG’s with the unknown
constant disturbance torque τdist = [0.35 − 0.015 0]T N-m. (a) Eigenaxis attitude error, (b)
spacecraft angular velocity components, (c) gimbal angles, (d) inertia estimate errors, and
(e) singular values of B.

368



0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

ï3

Time (sec)

E
ig

e
n
a
x
is

 A
tt

it
u
d
e
 E

rr
o
r 

(r
a
d
)

(a)

0 5 10 15 20 25 30
ï0.01

ï0.008

ï0.006

ï0.004

ï0.002

0

0.002

0.004

0.006

0.008

0.01

Time (sec)

A
n
g
u
la

r 
V

e
lo

c
it
y
 C

o
m

p
o
n
e
n
ts

 (
ra

d
/s

e
c
)

 

 
t

1

t
2

t
3

(b)

0 5 10 15 20 25 30
ï0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

G
im

b
a
l 
A

n
g
le

s
 (

ra
d
)

 

 
q

1

q
2

q
3

(c)

0 5 10 15 20 25 30
4

5

6

7

8

9

10

Time, sec

In
e
rt

ia
ï

E
s
ti
m

a
te

 E
rr

o
rs

 (
k
g
ï

m
2
)

 

 

J̃1

J̃2

J̃3

0 5 10 15 20 25 30
ï2

ï1

0

1

2

3

4
x 10

ï4

Time (sec)

In
e
rt

ia
ï

E
s
ti
m

a
te

 E
rr

o
rs

 (
k
g
ï

m
2
)

 

 

J̃4

J̃5

J̃6

(d)

0 5 10 15 20 25 30
4

4.5

5

5.5

6

6.5

7

7.5

Time (sec)

S
in

g
u
la

r 
v
a
lu

e
s
 o

f 
B

 

 
m

1

m
2

m
3

(e)

Figure 29. M2S maneuver for the EBAC control law (78) using CMG’s. The de-
sired attitude is determined by Rd(0) = I3, and the commanded angular velocity is
ωd = [0.005 − 0.005 − 0.003]T rad/sec. (a) Eigenaxis attitude error, (b) spacecraft an-
gular velocity components, (c) gimbal angles, (d) inertia estimate errors, and (e) singular
values of B. No disturbance is present.
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VIII. Retrospective Cost Attitude Control (RCAC)

In this section we provide a brief description of the retrospective cost adaptive con-
trol technique. This technique is based on discrete-time adaptive control algorithms de-
veloped for linear systems. In particular, in [31] a Lyapunov-function-based proof of sta-
bility and convergence is provided for stabilization, command following, and disturbance-
rejection problems. This result applies to minimum-phase linear systems that are SISO
or MIMO and possibly open-loop unstable, where the commands and disturbances are
generated by a Lyapunov-stable exogenous system (that is, the command and distur-
bance are sums of sinusoids and steps) [58]. Within this class of systems, the adaptive
controller of [31] requires a bound on the first nonzero Markov parameter as well as
bounds on the order of the plant dynamics and exosystem dynamics.

A restrictive assumption in [31], however, as in many other adaptive control ap-
proaches (especially those that invoke positive realness or almost positive realness), is
the restriction to minimum-phase systems. The issue of nonminimum-phase (NMP)
zeros can be circumvented by implementing full-state sensing, which implies that the
plant has no zeros. However, in many applications, full-state feedback corresponds to
unrealistic sensing requirements. To address this case, retrospective cost adaptive con-
trol has been developed for nonminimum-phase systems. The earliest version of this
algorithm can be traced to [59], with subsequent development in [34, 60]. As shown
in [34], no knowledge of the poles of the system is needed; no positive real or almost
positive real assumptions need to be satisfied; no constraint on the allowable relative
degree must be satisfied; no prior parameter set is needed; persistent excitation is not
needed; the commands and disturbances may be uncertain in terms of amplitude, phase,
and spectrum; and no matching conditions are required on either the plant uncertainty
or the exogenous disturbances. In addition, for plants that are Lyapunov stable, precise
knowledge of the nonminimum-phase zeros is not needed [35,36,61,62].

Retrospective cost adaptive control is a direct-digital approach, which means that
retrospective cost adaptive control is a discrete-time control law that can be used for
sampled-data implementation without first producing a continuous-time control law.
Direct digital control does not require controller digitization, and thus facilitates em-
bedded code generation. For identification-based modeling, the required discrete-time
modeling information can be obtained from the sampled data. In particular, RCAC
can use knowledge of Markov parameters, which depend on the sampled discrete-time
dynamics at the prescribed sample rate. Least-squares methods [63] can then be used
to estimate the required discrete-time modeling information. Finally, retrospective cost
adaptive control does not require signal derivatives, either directly or as filtered versions.

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) + Bu(k), (83)

y0(k) = E1x(k), (84)

z(k) = y0(k)− E0r(k), (85)
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where x(k) ∈ R
lx , y0(k) ∈ R

ly , z(k) ∈ R
lz , u(k) ∈ R

lu , r(k) ∈ R
lw , and k ≥ 0.

A. Retrospective Cost

For i ≥ 1, define the Markov parameter of Gzu given by

Hi
△
= E1A

i−1B. (86)

For example, H1 = E1B and H2 = E1AB. Let n be a positive integer. Then, for all
k ≥ n,

x(k) = Anx(k − n) +
n
∑

i=1

Ai−1Bu(k − i) (87)

thus

z(k) = E1A
nx(k − n) + H̄Ū(k − 1)− E0r(k), (88)

where

H̄
△
=
[

H1 · · · Hn

]

∈ R
lz×nlu

and

Ū(k − 1)
△
=







u(k − 1)
...

u(k − n)






∈ R

nlu .

Next, assume we know lH Markov parameters, rearrange the columns of H̄ and the
entries of Ū(k − 1) then partition the resulting matrix and vector so that

H̄Ū(k − 1) = H
′U ′(k − 1) +HU(k − 1). (89)

where U ∈ R
lHlu and U ′ ∈ R

(n−lh)lu . Furthermore, H ∈ R
lz×lHlu and H′ ∈ R

lz×lu(n−lH)

are the known and unknown Markov parameters respectively. For example, if H̄ =
[

H1 H2 H3

]

, we can divide it into H′ =
[

H1 H3

]

with U ′(k− 1) =

[

u(k − 1)

u(k − 3)

]

then H = H2 with the corresponding U = u(k − 2). We can rewrite (88) as

z(k) = S(k) +HU(k − 1), (90)

where

S(k)
△
= E1A

nx(k − n)− E0r(k) +H
′U ′(k − 1) (91)
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collects all the unknown parameters of the system.

Let s be a positive integer, then for j = 1, . . . , s, we add a delay kj in (90) so that
0 ≤ k1 ≤ k2 ≤ · · · ≤ ks. The delayed performance is

z(k − kj) = Sj(k − kj) +HjUj(k − kj − 1). (92)

where

Sj(k − kj)
△
= E1A

nx(k − kj − n)− E0r(k − kj) +H
′
jU

′
j(k − kj − 1), (93)

and (89) becomes

H̄Ū(k − kj − 1) = H
′
jU

′
j(k − kj − 1) +HjUj(k − kj − 1). (94)

We stack z(k − k1), . . . , z(k − ks), and define the extended performance

Z(k)
△
=







z(k − k1)
...

z(k − ks)






∈ R

slz . (95)

Therefore,

Z(k)
△
= S̃(k) + H̃Ũ(k − 1), (96)

where

S̃(k)
△
=







S1(k − k1)
...

Ss(k − ks)






∈ R

slz , (97)

and Ũ(k − 1) has the form

Ũ(k − 1)
△
=







u(k − q1)
...

u(k − qg)






∈ R

glu , (98)

where k1 ≤ q1 < q2 < · · · < qg ≤ ks + n. The vector Ũ(k − 1) is formed by stacking
U1(k − k1 − 1), . . . , Us(k − ks − 1) and removing copies of repeated components, and
H̃ ∈ R

slz×glu is constructed according to the structure of Ũ(k − 1).

We also define the retrospective performance,

ẑ(k − kj)
△
= Sj(k − kj) +HjÛj(k − kj − 1), (99)

where the past controls Uj(k− kj − 1) in (92) are replaced by the retrospective controls
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Ûj(k − kj − 1), which are computed in (108) below. As in (95), we define the extended
retrospective performance

Ẑ(k)
△
=







ẑ(k − k1)
...

ẑ(k − ks)






∈ R

slz , (100)

thus

Ẑ(k) = S̃(k) + H̃
ˆ̃U(k − 1), (101)

where the components of ˆ̃U(k−1) ∈ R
l
Ũ are the components of Û1(k−k1−1), . . . , Ûs(k−

ks−1) ordered in the same way as the components of Ũ(k−1). Subtracting the extended
performance in (96) from the extended retrospective performance in (101) yields

Ẑ(k) = Z(k)− H̃Ũ(k − 1) + H̃
ˆ̃U(k − 1). (102)

Thus, we define the retrospective cost function

J( ˆ̃U(k − 1), k)
△
= ẐT(k)R(k)Ẑ(k), (103)

where R(k) ∈ R
lzs×lzs is a positive-definite performance weighting.

The goal is to determine the retrospective controls ˆ̃U(k − 1) that minimize the

retrospective performance Ẑ(k). These retrospectively optimized control values ˆ̃U(k−1)
are then used to update the controller. To this end we solve the optimization problem
in (103).

Expanding (103) with (102) yields

J( ˆ̃U(k − 1), k) = ˆ̃U(k − 1)TA(k) ˆ̃U(k − 1) + ˆ̃UT(k − 1)BT(k) + C(k), (104)

where

A(k)
△
= H̃

TR(k)H̃, (105)

B(k)
△
= 2H̃TR(k)[Z(k)− H̃Ũ(k − 1)], (106)

C(k)
△
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃Ũ(k − 1) + ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1).

(107)

Given a full column rank H̃, A(k) is positive definite and J( ˆ̃U(k − 1), k) has a unique
global minimizer which is the optimized retrospective control

ˆ̃U(k − 1) = −1

2
A

−1(k)B(k). (108)
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B. Controller Construction

We design a strictly proper time-series controller of order nc given by

u(k) =
nc
∑

i=1

Mi(k)u(k − i) +
nc
∑

i=1

Ni(k)z(k − i), (109)

where, for all i = 1, . . . , nc, Mi(k) ∈ R
lu×lu and Ni(k) ∈ R

lu×lz . The control (109) can
be expressed as

u(k) = θ(k)φ(k − 1), (110)

where

θ(k)
△
= [M1(k) · · · Mnc

(k) N1(k) · · · Nnc
(k)] ∈ R

lu×nc(lu+lz) (111)

and

φ(k − 1)
△
=





















u(k − 1)
...

u(k − nc)

z(k − 1)
...

z(k − nc)





















∈ R
nc(lu+lz). (112)

C. Recursive Least Squares Update of θ(k)

Define the cumulative cost function

JR(θ(k))
△
=

k
∑

i=qg+1

λk−i‖φT(i− qg − 1)θT(k)− ûT(i− qg)‖2

+ λk(θ(k)− θ(0))P−1(0)(θ(k)− θ(0))T, (113)

where ‖ · ‖ is the Euclidean norm and, for some ε ∈ (0, 1), λ(k) ∈ (ε, 1] is the forgetting
factor, and P (0) ∈ R

nc(lu+lz)×nc(lu+lz) is the initial covariance matrix. Minimizing (113)
yields

θT(k)
△
= θT(k − 1) + β(k)P (k − 1)φ(k − qg − 1)

· [φT(k − qg − 1)P (k − 1)φ(k − qg − 1) + λ(k)]−1[θ(k − 1)φ(k − qg − 1)− û(k − qg)]
T,

(114)
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where β(k) is a switch on the control such that

β(k) =

{

0 k < kon
1 k ≥ kon

(115)

and kon is the time step at which we wish the controller to start operating.

The error covariance is updated by

P (k)
△
= [1− β(k)]P (k − 1) + β(k)λ−1(k)P (k − 1)− β(k)λ−1(k)P (k − 1)φ(k − qg − 1)

· [φT(k − qg − 1)P (k − 1)φ(k − qg − 1) + λ(k)]−1φT(k − qg − 1)P (k − 1).
(116)

We initialize the error covariance matrix as P (0) = γI, where γ > 0. Furthermore, the

updates (114) and (116) are based on the gth component of ˆ̃U(k − 1). However any or

all of the components of ˆ̃U(k − 1) may be used in the update of θ(k) and P (k).

D. Performance Variable for Spacecraft Attitude Control

RCAC requires a vector performance variable, and thus the rotation matrix governed
by Poisson’s equation (2), cannot be used directly. We therefore reformulate the attitude
error dynamics by using the vector function of the attitude error matrix presented in [22].
For i = 1, 2, 3, let ei denote the ith column of the 3 × 3 identity matrix and let Aatt =
diag(a1, a2, a3) be a diagonal positive-definite matrix, then

za
△
=

3
∑

1

ai(R̃
Tei)× ei, (117)

is a 3 × 1 vector measure of attitude error. Note that za = 0 when R̃ = I3. Thus, we
use za as the attitude performance variable. We define the angular rate performance as

zω
△
= ω − R̃Tωd. (118)

The combined performance variable for the attitude control problem is given by

z =

[

zω
za

]

. (119)
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Parameter Description Value

nc Controller order 3

P0 Initial error covariance used in the RLS update 100I

R Performance weighting to compute the retrospective cost function I

s Number of data points used for retrospective cost computation 1

ks Delay used to construct the extended performance vector 1

θ0 Initial controller coefficients 0

λ(k) Forgetting factor 1

h Controller time step 0.1

kon Number of time steps to wait before applying first control action 81

Aatt Weighting on the attitude error matrix R̃ used in za I3

Table 1. RCAC Parameters.

IX. RCAC Examples

A. M2R Maneuvers Using Thrusters

Let the spacecraft inertia matrix be defined by Jsc = J3. In the absence of distur-
bances, we consider a M2R maneuver involving an eigenaxis rotation of 40◦ about the
body fixed direction [1 1 1]T with the spacecraft initially at R(0) = I3

The RCAC parameters used are shown in Table 1. For the M2R problem, we utilize
the inertia-free Markov parameter

Ĥ1 =

[

hBsc

h2Bsc

]

. (120)

where h is the controller time step and we assume Bsc = I3. Furthermore, we apply a
proportional saturation to the commanded control input by scaling the control vector
as

usat =

{

u, u ∈ B,

ηu, u /∈ B,
(121)

where B is a boundary defined by the saturation limits and η is the maximum scaling
such that usat ∈ B, that is,

η = max
η∈(0,1]

{η : ηu ∈ B}. (122)
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1. Inertia Variations

We use two approaches to examine the effect of inertia variations on the settling
M2R time. First we begin with the centroid inertia J3 and move towards the other
inertia types according to

Jsc = (1− α)J3 + αJi, for i = 1, 2, 4, 5. (123)

We vary the weighting α and examine the settling time for the M2R maneuver in Figures
30 and 31.
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Figure 30. M2R settling time for the RCAC control law using thrusters. The inertia Jsc
starts at the centroid value J3 and moves toward the sphere J1, cylinder J2, and thin disk
J4 inertias according to (123). The saturation level is set at 1 N-m.

For the second approach we again start with the centroid inertia J3. We examine the
M2R settling time as the actuator and sensor axes are rotated away from the principal
axis according to

Jsc = Ri(φ)J3Ri(φ)
T. (124)

Where Ri(φ) ∈ R
3×3 for i = 1, 2, 3 is the rotation matrix given by Rodrigues’ formula

R(φ, ei) = cos(φ)I3 + (1− cos(φ))eie
T
i + sin(θ)e×i , (125)

where φ is the misalignment angle and ei is the ith column of the 3× 3 identity matrix.
We examine the settling time as a function of θ in Figure 32.
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Figure 31. M2R settling time for the RCAC control law using thrusters. The inertia Jsc
starts at the centroid value J3 and moves toward the thin cylinder inertia J5 according to
(123). The saturation level is set at 1 N-m.

2. Saturation Level

We examine the M2R settling time for RCAC under varying levels of saturation.
We define the boundary B in (121) by setting saturation limits for each axis

ulim = umax

[

1 1 1
]T

N-m. (126)

We let Jsc = J3 and vary umax. Figure 33 shows the settling time as a function of
saturation level.

3. On-Off Thrusters

We introduce an input nonlinearity in the form of on-off thrusters. The applied
control torque to the spacecraft is

u = sign(ucmd)uon (127)

where uon is a positive scalar and ucmd is the commanded torque computed using RCAC.
We examine the effect of the on-off nonlinearity on the M2R settling time. We let Jsc = J3
and vary the thruster torque uon. Figure 34 shows that as uon increases the spacecraft
takes more time to complete the maneuver.

378



ï!"# ï!## ï"# # "# !## !"#
!$

!%

!&

'#

''

'$

'%

()*+,-./01,.,-1)/2)34*5/q/67*38

9
*
,,
4-)
3
/:
-;
*
/6
<
*
=
8

/

/

>.?1+/2@-<

(),*+;*7-.,*/2@-<

>-)1+/2@-<

Figure 32. M2R settling time for the RCAC control law using thrusters. The inertia
Jsc starts at the centroid value J3 and is rotated about each principal axis by φ. The
saturation level is set at 1 N-m on each axis.

4. Constant Disturbance

We examine the effect of disturbances on the M2R settling time. We let Jsc = J3
and consider a constant unknown disturbance zdist about each principal axis of the form

zdist = βei, (128)

where ei is the ith column of the 3 × 3 identity matrix. We vary the disturbance level
β and examine its effect on M2R settling time. Figure 35 shows the settling time as a
function of the disturbance level β.

B. M2S Maneuvers Using Thrusters

For the M2S maneuver, we again take the spacecraft inertia to be Jsc = J3 and let
the spacecraft be initially at rest so that R(0) = I. We test four maneuvers. First, we
command the spacecraft to spin about each of the principal axes so that

ωd = 0.1ei rad/sec, for i = 1, 2, 3. (129)
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Figure 33. M2R settling time for the RCAC control law using thrusters as a function of
saturation level umax for RCAC using thrusters.
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Figure 34. M2R settling time for the RCAC control law using on-off thrusters as a function
of the thrust level uon.

where ei is the ith column of I3. For the fourth test we command the spacecraft to spin
about the non-principal body-fixed axis

ωd =
0.1√
3

[

1 1 1
]T

rad/sec. (130)

We command a 40◦ eigenaxis rotation about the vector [1 1 1]T. However, the desired
attitude evolves according to Ṙd = Rdω

×. Figure 36 shows the closed-loop response for
the M2S maneuver.

C. M2R Maneuvers Using Reaction Wheels

Consider the rigid body defined by the inertia tensor Jsc = J3 with three orthogonal
reaction wheels. The moment of inertia about each wheel’s rotational axis is JWi

= 0.1
kg/m2 and the spin axis for each wheel resolved in the wheel’s frame is eWi

= [1 0 0]T

for i = 1, 2, 3. Furthermore, the wheels are aligned with the body axes of the spacecraft
such that each wheel’s spin axis is parallel to the principal moments of inertia of the
spacecraft so that the orientation matrices from the wheel frame Wi to the spacecraft

380



! !"# !"$ !"% !"& !"' !"( !") !"* !"+ #
!

#!!

$!!

%!!

&!!

'!!

(!!

)!!

*!!

+!!

#!!!

,-./012345678696:;7̀ 7<=ï>?

@
6
//
:-4
A
7B
->
6
7<
.
6
5
?

Figure 35. M2R closed-loop performance for the RCAC control law using thrusters.
Settling time as a function of the constant disturbance magnitude β about each principal
axis. The number of previous time steps in the retrospective cost is set to s = 1. The
saturation level is set at 1 N-m, which is sufficient to reject the disturbance for all β ∈ [0, 1].

body frame are

OB/Wi
= I3, i = 1, 2, 3. (131)

Using these matrices in the spacecraft dynamics in (19) and the reaction wheel dynamics
in (20) result in the input matrix

Bsc = −diag(JW1
, JW2

, JW3
). (132)

We consider a M2R maneuver involving an eigenaxis rotation of 40◦ about the body
fixed direction [1 1 1]T with the spacecraft initially at R(0) = I3 and no disturbances.
The reaction wheels are initially at rest so that

νi(0) =
[

0 0 0
]T

rad/sec, i = 1, 2, 3. (133)

For the RCAC parameters, we use Table 1 and set s = 1. We use the inertia-free
Markov parameter

Ĥ1 = −
[

hB̂sc

h2B̂sc

]

, (134)

where B̂sc = I3. Note that we do not use knowledge of the wheel inertias JWi
. The

negative sign in Ĥ1 accounts for the negative sign in Bsc. As in the thruster case
we introduce a proportional saturation on the control input, in this case the angular
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Figure 36. M2S performance for the RCAC control law using thrusters. (a) Eigenaxis
attitude error, (b) angular velocity components, and (c) euclidean norm of performance
variable. The spacecraft is commanded to spin about each principal body-fixed axis as
well as a non-principal axis. The number of previous time steps in the retrospective cost
is set to s = 1, and the inertia-free Markov parameter Ĥ1 is given by (120). The saturation
level is set at 1 N-m.

acceleration of the wheel.

1. Inertia Variations

For the reaction wheel case we test variations in the spacecraft inertia Jsc and the
wheel inertias JWi

. First, we start with the centroid inertia J3 and vary the inertia
according to (123). Figure 37 shows the settling time for the M2R maneuver as a
function of the inertia parameter α.

In the second approach we use the spacecraft inertia Jsc = J3 and let the reaction
wheel spin axis inertias JWi

= αJ . We vary the reaction wheel inertia parameter JRW
and examine the settling time for the M2R maneuver in Figure 38.
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Figure 37. M2R settling time for the RCAC control law using reaction wheels. The inertia
Jsc starts at the centroid value J3 and moves toward the sphere J1, cylinder J2, thin disk
J4, and thin cylinder J5 according to (123). The saturation level is set at 0.1 rad/sec2.
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Figure 38. M2R closed-loop performance for the RCAC control law using reaction wheels.
The settling time is plotted as a function of the reaction-wheel spin-axis inertia αJ . The
saturation level is set at 0.1 rad/sec2.
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D. M2S Maneuvers Using Reaction Wheels

For the M2S maneuver, we again take the spacecraft inertia to be Jsc = J3, the
reaction wheel inertias JWi

= 0.1 kg-m2 and let the spacecraft be initially at rest so that
R(0) = I. As in the thruster examples, we test four maneuvers: spins about each of the
principal axes and a spin about a non-principal axis.

For the desired attitude, we command an 40◦ eigenaxis rotation about the vector
[1 1 1]T. The desired attitude evolves according to Ṙd = Rdω

×. Figure 39 shows the
closed-loop response for the M2S maneuver.
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Figure 39. M2S performance for the RCAC control law using reaction wheels. (a) Eige-
naxis attitude error, (b) angular velocity components, and (c) euclidean norm of perfor-
mance variable, The spacecraft is commanded to spin about each principal axis as well as
a non-principal axis. The number of previous time steps in the retrospective cost is set
to s = 1, and the inertia-free Markov parameter Ĥ1 is given by (134). The saturation level
is set at 0.1 rad/sec2.
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X. Future Research

This study has focused on rotation-matrix-based, inertia-free control laws for M2R
and M2S maneuvers. To examine the performance of these control laws we consid-
ered the effects of possibly unmodeled disturbances, sensor noise, sensor and actuator
misalignment, and actuator nonlinearities. Future work will consider additional effects,
including time-varying inertia due, for example, to on-orbit deployment of structural
components [64]; non-rigid motion due, for example, to structural modes and fuel slosh;
multibody spacecraft involving articulated components; time delays in the feedback path
that are possibly unknown and time varying; underactuation and undersensing possibly
due to failed actuators and sensors; mixed actuation architectures, for example, a com-
bination of magnetic torquers and wheels; alternative control devices, such as devices for
atmospheric drag modification; and, finally, the interaction between attitude and orbital
dynamics.
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