Adaptive Squaring-Based Control Allocation for Wide Systems with Application to Lateral Flight Control

Ankit Goel, Ahmad Ansari, and Dennis S Bernstein

Abstract—Redundant actuators provide the opportunity to allocate control effort to account for saturation and other input constraints. This is especially true in wide systems, where the number of input channels is greater than the number of outputs. The present paper considers the control allocation problem within the context of adaptive control. In particular, for retrospective cost adaptive control (RCAC), the target model is shown to constrain the direction of the vector of inputs. This directional constraint is used within RCAC to enforce control allocation across the input channels of wide systems. This approach is applied to the allocation of rudder and aileron inputs for lateral flight control.

I. INTRODUCTION

Many control applications possess the mixed blessing of more actuators than controlled outputs. For these applications, the required control inputs can be realized by combinations of redundant actuators, thus providing reliability. At the same time, however, the presence of actuators with similar effect on the system demands that these actuators be used optimally with respect to magnitude and rate saturation, energy usage, and other limitations. This is the control allocation problem [1], [2].

Control allocation is widely studied within the context of aerospace vehicles [3]–[6], where the moments obtainable from control surfaces are limited by these size and depend on the current the aircraft speed. A classical case of actuator redundancy in lateral flight control concerns the use of ailerons and rudders to perform turning maneuvers. Separate use of these actuators for turning yields poor performance, however, due to adverse aileron yaw and adverse rudder roll. Consequently, control allocation can ensure that the ailerons and rudder are used in a desirable combination to perform coordinated turns.

In the present paper, we consider control allocation within the context of retrospective cost adaptive control (RCAC) [7]. RCAC is a direct digital control technique that is applicable to stabilization, command following, and disturbance rejection. A key feature of RCAC discussed in [7] is the role of the filter G_1 in defining the retrospective cost variable. As shown in [7], G_1 serves as a target model for the intercalated transfer function from the virtual external control perturbation to the performance variable. Modeling information concerning the leading numerator sign, relative degree, and nonminimum-phase (NMP) zeros is used to construct G_1.

The present paper extends the development of [7] by focusing on wide (that is, overactuated) systems for the purpose of control allocation. In particular, we show that the applied control input lies in the range of the target model. For example, if the plant is MISO and the target model is chosen to be $G_1(q) = N_1^{-1} q$, where q is the forward shift operator and N_1 is a row vector, then the control input vector is constrained to the direction N_1. For example, if the plant has two inputs and one output and N_1 is chosen to be $N_1 = [3 \ 6]$, then, for all time steps k, $u_1(k)/u_2(k) = 1/2$. Consequently, the target model provides a simple and convenient technique for control allocation in overactuated systems.

The contents of the paper are as follows. Section II states the control allocation problem. Next, Section III reviews RCAC, and Theorem III.1 demonstrates how the target model constrains the allowable directions of the control input. Section IV presents several examples illustrating control allocation for RCAC. Section V applies RCAC to lateral control of the NASA GTM model, while constraining the ratio of aileron and rudder control inputs for lateral turn control. The paper ends with some conclusions and directions for future research.

II. CONTROL ALLOCATION PROBLEM

Consider the MIMO discrete-time plant

\begin{align}
 x(k+1) &= Ax(k) + Bu(k) + D_1w(k), \\
 y(k) &= Cx(k) + D_2w(k), \\
 z(k) &= Ex(k) + E_2w(k),
\end{align}

where $x(k) \in \mathbb{R}^l$, $y(k) \in \mathbb{R}^l$ is the state, $u(k) \in \mathbb{R}^l$ is the control signal, $w(k) \in \mathbb{R}^l$ is the exogenous signal, and $z(k) \in \mathbb{R}^l$ is the performance variable. The components of w can represent either command signals to be followed, external disturbances to be rejected, or both. Figure 1 shows a block diagram representation of (1)–3.

The goal is to develop an adaptive output-feedback controller that produces the control effort in a desired ratio and minimizes z in the presence of the exogenous signal w with limited modeling information about (1)–3.

In this paper, we consider overactuated systems, that is, $l_\mu > l_\nu$. In overactuated systems, the control input required to generate a desired output is not unique. For example, consider step command following for a two-input, one-output LTI plant. At steady state,

\begin{equation}
 y_{\infty} = C(I − A)^{-1}Bu_{\infty},
\end{equation}

where $y_{\infty} \in \mathbb{R}$ is the asymptotic output of the plant, and $u_{\infty} \in \mathbb{R}^2$ is the asymptotic control input. Since $C(I − A)^{-1}B$ is a
wide matrix, it follows that the asymptotic control input \(u_\infty \) is not unique. The goal of the control allocation problem is thus to achieve the specified performance objectives while confining the control input vector \(u \) to a chosen subspace that constrains the direction of the allowable control inputs.

![Block diagram representation of the adaptive control allocation problem with the adaptive controller \(G_c \) and plant \(G \). The goal is to design the controller \(G_c \) that produces the control effort in a desired ratio such that the plant output \(y \) follows the reference command \(r \) in presence of process noise \(d \) and measurement noise \(v \).](image)

Fig. 1: Block diagram representation of the adaptive control allocation problem with the adaptive controller \(G_c \) and plant \(G \). The goal is to design the controller \(G_c \) that produces the control effort in a desired ratio such that the plant output \(y \) follows the reference command \(r \) in presence of process noise \(d \) and measurement noise \(v \).

III. RCAC Algorithm

We consider a dynamic compensator represented by an ARMA model with a built-in integrator. The control \(u(k) \) is thus given by

\[
 u(k) = \sum_{i=1}^{n_u} P_i(k) u(k-i) + \sum_{i=1}^{n_z} Q_i(k) z(k-i),
\]

where the coefficient matrices \(P_i(k) \in \mathbb{R}^{l_u \times l_u}, Q_i(k), R(k) \in \mathbb{R}^{l_u \times l_z} \) are updated by the RCAC algorithm.

We rewrite (5) as

\[
 u(k) = \Phi(k) \Theta(k),
\]

where the regressor matrix \(\Phi(k) \) is defined by

\[
 \Phi(k) \triangleq I_{l_u} \otimes \phi^T(k) \in \mathbb{R}^{l_u \times l_u},
\]

where

\[
 \phi(k) \triangleq [\hat{\mu}(k-1)^T \ldots \hat{\mu}(k-n_z)^T z(k-1)^T \ldots z(k-n_z)^T]^T,
\]

\[
 \Theta(k) \triangleq \text{vec} \left[P_1(k) \ldots P_{n_u}(k) Q_1(k) \ldots Q_{n_z}(k) \right] \in \mathbb{R}^{l_0},
\]

\[
 l_0 \triangleq l_u^2 n_u + l_u l_z n_z, \text{ where } \otimes \text{ is the Kronecker product, and vec} \text{ is the column-stacking operator.}
\]

A. Retrospective Performance Variable

We define the retrospective performance variable \(\hat{z}(k) \), we define the retrospective cost function

\[
 J(k, \hat{\theta}) \triangleq \sum_{i=1}^{k-1} \lambda^{k-i} (\hat{z}(i)^T R_c z(i) + \hat{\theta}^T \Phi_b(i)^T N^T R_c N \Phi_b(i) \hat{\theta} + \hat{\theta}^T \Phi_b(i) R_c \Phi_b(i) \hat{\theta} + \lambda^{k-i} R_0 \hat{\theta} \hat{\theta}^T R_0^T \hat{\theta}),
\]

where \(R_c, R_t, R_u, \) and \(R_0 \) are positive-definite matrices, and \(\lambda \leq 1 \) is the forgetting factor. The following result uses recursive least squares (RLS) to minimize (11).

Proposition III.1. Let \(P(0) = R_0^{-1} \) and \(\theta(0) = 0 \). Then, for all \(k \geq 1 \), the retrospective cost function (11) has a unique global minimizer \(\hat{\theta}(k) \), which is given by

\[
 \hat{\theta}(k) = \theta(k-1) - P(k) \begin{bmatrix} N \Phi_b(k-1) \\ \Phi(k-1) \end{bmatrix}^T \begin{bmatrix} R_c & 0 \\ 0 & R_u \end{bmatrix} - \frac{N \Phi_b(k-1) \Theta(k-1) + \Theta(k-1) - N U_b(k-1)}{\Phi(k-1)},
\]

(12)

Proposition III.1. Let \(P(0) = R_0^{-1} \) and \(\theta(0) = 0 \). Then, for all \(k \geq 1 \), the retrospective cost function (11) has a unique global minimizer \(\hat{\theta}(k) \), which is given by

\[
 \hat{\theta}(k) = \theta(k-1) - P(k) \begin{bmatrix} N \Phi_b(k-1) \\ \Phi(k-1) \end{bmatrix}^T \begin{bmatrix} R_c & 0 \\ 0 & R_u \end{bmatrix} - \frac{N \Phi_b(k-1) \Theta(k-1) + \Theta(k-1) - N U_b(k-1)}{\Phi(k-1)},
\]

(12)

where

\[
 P(k) = \lambda^{-1} P(k-1) - \lambda^{-1} P(k-1) \begin{bmatrix} N \Phi_b(k-1) \\ \Phi(k-1) \end{bmatrix}^T \begin{bmatrix} N \Phi_b(k-1) \\ \Phi(k-1) \end{bmatrix} + \frac{N \Phi_b(k-1) \Theta(k-1) + \Theta(k-1) - N U_b(k-1)}{\Phi(k-1)},
\]

(13)

Furthermore, the control input at step \(k \) is given by

\[
 \hat{u}(k) = \Phi(k) \hat{\theta}(k).
\]

(15)

C. The Target Model \(G_t \)

The following result shows that the control \(u(k) \) is constrained to the subspace spanned by the transposes of the coefficients of \(G_t \).

Theorem III.1. Let \(R_\theta = \beta I_{l_u}, R_u = \gamma I_{l_u} \) and let \(\theta(k) \) be given by (15). Let \(\Phi \triangleq I_u \otimes \phi^T \), where \(\phi \in \mathbb{R}^{l_u} \), and \(l_\phi = l_u / l_u \). Then, for all \(k \geq 1 \),

\[
 \Phi \Theta(k) \in \mathcal{R} \left[\begin{bmatrix} N_1^T \\ \vdots \\ N_m^T \end{bmatrix} \right].
\]

(16)
The following proposition follows from Theorem III.1.

Proposition III.2. Let \(R_\theta = \beta I_{l_\theta} \), \(R_u = \gamma I_{l_u} \) and let \(\theta(k) \) be given by (15). Then, for all \(k \geq 1 \),

\[
u(k) = \Phi(k)\theta(k) \in \mathcal{R}\left([N_{l_\theta}^T \quad \cdots \quad N_{l_u}^T]\right).
\] (17)

IV. Illustrative Examples

In this section, we present several examples demonstrating control allocation based on RCAC.

A. Colocated actuators

Consider the two-input, one-output discrete-time system

\[
x(k+1) = Ax(k) + Bu(k),
\] (18)

\[
y(k) = Cx(k),
\] (19)

where

\[
A = \begin{bmatrix}
-0.2650 & -0.2225 & -0.0938 & -0.1211 \\
-0.0727 & 0.3296 & 0.0594 & -0.3238 \\
0.2661 & -0.2316 & 0.1396 & 0.2074 \\
-0.2016 & -0.1591 & 0.8285 & 0.1352 \\
\end{bmatrix},
\] (20)

\[
B = \begin{bmatrix}
0.8752 \\
0.3179 \\
0.2732 \\
0.6765 \\
\end{bmatrix},
\] (21)

\[
C = \begin{bmatrix}
0.8700 \\
0.2437 \\
0.8429 \\
0.5577 \\
\end{bmatrix}.
\] (22)

The identical columns of \(B \) indicate that the two actuators are colocated. Let the command \(r \) be a unit step. We set

\[
G_t(q) = N_1q^{-1} = \begin{bmatrix} 0.5 & 1 \end{bmatrix} q^{-1},
\] (23)

\(n_c = 2 \), and \(R_0 = 10^{-3}I_{l_u} \). With this choice of \(G_t \), the control input \(u(k) \) produced by RCAC is such that \(u_2(k) = 2u_1(k) \) for all \(k \). Figure 2 shows the closed-loop response of the system.

B. Independent actuators

We reconsider the plant in Example IV-A with the modified input matrix

\[
B = \begin{bmatrix}
0.8752 & 0.0712 \\
0.3179 & 0.1966 \\
0.2732 & 0.5291 \\
0.6765 & 0.1718 \\
\end{bmatrix}.
\] (24)

Let the command \(r \) be a unit step. We set

\[
G_t(q) = N_1q^{-1} = \begin{bmatrix} 0.5 & 1 \end{bmatrix} q^{-1},
\] (25)

\(n_c = 2 \), and \(R_0 = 10^{-3}I_{l_u} \). With this choice of \(G_t \), the control input produced by RCAC is in the direction \(N_1^T \). Figure 3 shows the closed-loop response of the system.

C. Uncontrollable channels

We reconsider the plant in Example IV-A with the modified input matrix

\[
B = \begin{bmatrix}
b_1 & b_2 \end{bmatrix} = \begin{bmatrix}
0.8826 & 0.0984 \\
0.5405 & 0.2135 \\
0.0808 & 0.5128 \\
0.3543 & 0.2059 \\
\end{bmatrix}.
\] (26)

Note that \((A,b_1) \) and \((A,b_2) \) each have one uncontrollable mode, but \((A,B) \) is controllable. Hence, \(u_1 \) and \(u_2 \) must work together to achieve the control objective. Let the command \(r \) be a unit step. We set

\[
G_t(q) = N_1q^{-1} = \begin{bmatrix} 0.5 & 1 \end{bmatrix} q^{-1},
\] (27)

\(n_c = 2 \), and \(R_0 = 10^{-3}I_{l_u} \). With this choice of \(G_t \), the control input produced by RCAC is in the direction \(N_1^T \). Figure 4 shows the closed-loop response of the system.

V. Lateral Control Allocation for an Aircraft

We now apply RCAC to the NASA generic transport model (GTM) [8]–[11], where the goal is to demonstrate control allocation for lateral motion. The GTM model includes an aerodynamic data base, trim function, and interface to facilitate feedback control from realistic sensors to thrust and control surfaces.

Fig. 2: Example IV-A. Control allocation for setpoint command following. (a) shows the response \(y \), (b) shows the control signal \(u \) generated by RCAC, (c) shows the controller coefficients \(\theta \) adapted by RCAC, and (d) shows the control signals. In (d), the direction of \(N_1^T \) is shown in red.

Fig. 3: Example IV-A. Control allocation for setpoint command following. (a) shows the response \(y \), (b) shows the control signal \(u \) generated by RCAC, (c) shows the controller coefficients \(\theta \) adapted by RCAC, and (d) shows the control signals. In (d), the direction of \(N_1^T \) is shown in red.

Fig. 4: Example IV-A. Control allocation for setpoint command following. (a) shows the response \(y \), (b) shows the control signal \(u \) generated by RCAC, (c) shows the controller coefficients \(\theta \) adapted by RCAC, and (d) shows the control signals. In (d), the direction of \(N_1^T \) is shown in red.

5142
A. Control Architecture

Let \dot{V}_{AC}, h, τ, β, γ denote the airspeed, altitude, turn rate, sideslip angle, and flight-path angle, respectively. The aircraft lateral control inputs are a and r, which denote ailerons and rudder, respectively. We define the measurement increment $\delta \tau(k) \triangleq \tau(k) - \tau_{\text{trim}}$, where the subscript “trim” refers to the initial trim flight, and k denotes the current time step. We choose the sample time to be 0.1 sec. The performance variable z is given by the error signal

$$z(k) \triangleq \tau(k) - \tau_{\text{cmd}}(k) = \delta \tau(k) - \delta \tau_{\text{cmd}}(k),$$

where τ_{cmd} is the turn-rate command, and $\delta \tau_{\text{cmd}} \triangleq \tau_{\text{AC,cmd}} - \tau_{\text{AC,trim}}$ is the incremental turn-rate command. Let the requested actuator settings be denoted by

$$a_{\text{req}}(k) \triangleq a_{\text{trim}} + \delta a_{\text{req}}(k),$$

$$r_{\text{req}}(k) \triangleq r_{\text{trim}} + \delta r_{\text{req}}(k),$$

where the first term on the right-hand side is the constant actuator setting for the initial trim, and the second term on the right-hand side is the requested actuator setting increment specified by RCAC. Due to the actuator dynamics, the requested actuator settings may not be equal to the actual actuator settings, which are denoted by

$$a_{\text{actual}}(k) \triangleq a_{\text{trim}} + \delta a_{\text{actual}}(k),$$

$$r_{\text{actual}}(k) \triangleq r_{\text{trim}} + \delta r_{\text{actual}}(k),$$

where the left-hand side is the actual actuator setting, and the second term on the right-hand side is the actual actuator setting increment.

For lateral control, RCAC updates a strictly proper dynamic controller represented in input-output form as

$$[\delta a_{\text{req}}(k) \quad \delta r_{\text{req}}(k)]^T = \Phi(k) \theta(k),$$

where $\Phi(k) \triangleq I_{4u} \otimes \phi^T(k) \in \mathbb{R}^{4u \times 4u}$, and

$$\phi(k) \triangleq \begin{bmatrix} \delta a_{\text{actual}}(k-1) & \delta r_{\text{actual}}(k-1) \\ \vdots & \vdots \\ \delta a_{\text{cmd}}(k-1) \quad \cdots \quad \delta r_{\text{cmd}}(k-1) \\ z(k-1) \quad \cdots \quad z(k-n_c) \\ \delta \beta(k-1) \quad \cdots \quad \delta \beta(k-n_c) \end{bmatrix}^T. \quad (34)$$

As shown in Figure 5, lateral control of GTM uses ailerons and rudder to follow the turn-rate command. In doing so, RCAC uses the turn-rate command as a feedforward signal, turn-rate command-following error as a feedback signal, and sideslip angle as a coupling feedback signal.

![Diagram](5.png)

Fig. 5: Block diagram for lateral control of the NASA GTM model using aileron and rudder to follow turn-rate commands. The error signal z for the control is the difference $\delta \tau - \delta \tau_{\text{cmd}}$. The controller also uses sideslip angle increment for feedback.

B. Simulation Setup

At the start of each example, the aircraft is assumed to be flying in an initial trim without the use of feedback control. The components of the controller coefficient vector θ are thus initially set to zero, that is, $\theta(0) = 0$. RCAC must therefore adapt the components of θ from their initial zero values to suitable nonzero values. As in [12, 13], in order to assist in the transition from open-loop to closed-loop control, we introduce zero-mean white noise with standard deviation 0.001 deg into ailerons and rudder from $t = 10$ sec to $t = 70$ sec. Let $a < 0$, $b < 0$, and define $N_4 \triangleq [a \ b] \in \mathbb{R}^{1 \times 2}$. We set

$$G_t(q) = N_4 q^{-4}, \quad (35)$$

$n_c = 8$, $R_0 = 10^{-2} I_{4u}$, and

$$R_u(k) = \begin{cases} 10 I_2, & z^2(k) > 1, \\ 10.1(z^2(k) - 0.01)I_2, & 0.109 \leq z^2(k) \leq 1, \\ I_2, & z^2(k) < 0.109. \end{cases} \quad (36)$$

Note that $R_u(k)$ increases linearly as a function of z^2 within the interval $[0.01, 1]$. Furthermore, note that, by choosing a
and b, the ratio of the usage of ailerons and rudder can be specified.

For all the following examples, GTM is initialized with the trim

$$V_{AC}(0) = V_{AC, \text{trim}} = 100.6 \text{ kt}, \quad \gamma(0) = \gamma_{\text{trim}} = 0 \text{ deg},$$
$$\tau(0) = \tau_{\text{trim}} = 0 \text{ deg/sec}, \quad \beta(0) = \beta_{\text{trim}} = 0 \text{ deg}, \quad \alpha(0) = \alpha_{\text{trim}} = 3 \text{ deg}, \quad h(0) = 8000 \text{ ft}. \quad (37)$$

The incremental turn-rate command is given by

$$\delta \tau_{\text{cmd}}(k) = \begin{cases}
0, & k < 1000, \\
\min \{5, 0.005(k - 1000)\} \text{ deg/sec}. & k \geq 1000,
\end{cases} \quad (38)$$

In addition to the turn-rate command, the aircraft is commanded to hold the airspeed and altitude. Note that the control is constrained in the direction N_4^T.

C. Horizontal Circular Flight With Equalized Control Allocation

We set $a = -1$ and $b = -1$, and thus the control allocation is equalized between the ailerons and rudder channels. Figure 6 shows that, after the initial adaptation, the maximum command-following error for turn-rate is 0.35 deg/sec. At $t = 300 \text{ sec}$, the command-following error for turn-rate is 0.06 deg/sec. Figures 7(a) and 7(b) show the RCAC generated ailerons and rudder settings, respectively. Note that the transients from $t = 10 \text{ sec}$ to $t = 70 \text{ sec}$ is due to the actuator noise warmup. Figure 8(a) shows θ converges after the initial adaptation, and subsequently brings the aircraft back to its initial trim at $t = 80 \text{ sec}$. Figure 8(b) shows the requested and actual control signals. Note that the control is constrained in the direction N_4^T.

D. Horizontal Circular Flight With Unequalized Control Allocation

We now set $a = -2$ and $b = -1$, and thus the control allocation is unequalized among the ailerons and rudder channels. Figure 9 shows that, after the initial adaptation, the maximum command-following error for turn-rate is 0.16 deg/sec. At $t = 300 \text{ sec}$, the command-following error for turn-rate is 0.04 deg/sec. Figures 10(a) and 10(b) show the RCAC generated ailerons and rudder settings, respectively. Note that the transients from $t = 10 \text{ sec}$ to $t = 70 \text{ sec}$ is due to the actuator noise warmup. Figure 11(a) shows θ converges after the initial adaptation, and subsequently brings the aircraft back to its initial trim at $t = 80 \text{ sec}$. Figure 11(b) shows the requested and actual control signals. Note that the control is constrained in the direction N_4^T.

Fig. 6: Horizontal circular flight with equalized lateral control allocation. After the initial adaptation, the maximum command-following error for turn-rate is 0.35 deg/sec. At $t = 300 \text{ sec}$, the command-following error for turn-rate is 0.06 deg/sec.

Fig. 7: Horizontal circular flight with equalized lateral control allocation. (a) Requested and actual ailerons settings. (b) Requested and actual rudder settings.

Fig. 8: Horizontal circular flight with equalized lateral control allocation. (a) θ converges after the initial adaptation, and subsequently brings the aircraft back to its initial trim at $t = 80 \text{ sec}$. (b) The requested and actual control signals are constrained in the direction N_4^T.

Fig. 9: Horizontal circular flight with unequalized lateral control allocation. (a) Requested and actual ailerons settings. (b) Requested and actual rudder settings.
Initial Adaptation

![Graph](image)

Initial Adaptation Time (sec)

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Initial Adaptation Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>250</td>
<td>300</td>
</tr>
</tbody>
</table>

Turn Rate τ (deg/s)

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Turn Rate τ (deg/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.04</td>
</tr>
<tr>
<td>50</td>
<td>0.16</td>
</tr>
<tr>
<td>100</td>
<td>0.2</td>
</tr>
<tr>
<td>150</td>
<td>0.24</td>
</tr>
<tr>
<td>200</td>
<td>0.28</td>
</tr>
<tr>
<td>250</td>
<td>0.32</td>
</tr>
<tr>
<td>300</td>
<td>0.36</td>
</tr>
</tbody>
</table>