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Abstract— An amplitude multiplexing technique for identify-
ing Hammerstein systems with static nonlinearities is presented
in this paper. The input signal to the Hammerstein system
is amplitude multiplexed, and the output of the Hammerstein
nonlinearity is approximated by a continuous piecewise affine
function. The Hammerstein nonlinearity is assumed to pass
through the origin. Using this identification technique, we show
that, in the presence of zero-mean, colored output noise, the
estimates of the Hammerstein nonlinearity and the impulse
response of the linear plant are asymptotically correct up to a
scalar factor.

I. INTRODUCTION

Hammerstein systems extend the class of linear systems by
cascading the linear system with an input nonlinearity. The
input nonlinearity may be static, as in the case of magnitude
saturation, deadzone, and signum nonlinearities, or it may
be dynamic, as in the case of rate saturation or hysteresis.
As these examples suggest, Hammerstein systems arise in
virtually all practical applications of control.

In view of their widespread application, extensive effort
has been devoted to identifying Hammerstein systems [1–
10]. In the most extreme case, the input nonlinearity may
be unknown, and the objective is to identify both the linear
system dynamics and the input nonlinearity. In some ap-
plications, partial information about the input nonlinearity
may be available; for example, the input nonlinearity may be
assumed to be odd or its value at zero may be assumed to be
known or zero. The techniques used to identify Hammerstein
systems typically rely on least squares optimization.

In the present paper, we develop a novel amplitude-
multiplexing technique for identifying Hammerstein systems
with static input nonlinearities. This technique replaces the
input to the Hammerstein system by a collection of signals
obtained by passing the input through multiple saturation
functions whose lower and upper limits partition the range
of the input. Each resulting saturated signal is then shifted
so that the minimum of its absolute value is zero. The input
nonlinearity is then approximated by a linear combination of
the amplitude-multiplexed signals. By applying least squares
optimization, we thus obtain a piecewise-linear approxima-
tion of the input nonlinearity.

A widely used approach to identifying Hammerstein sys-
tems is to approximate the input nonlinearity by a linear
combination of basis functions [11, 12]. Since these basis
functions are known, the scalar control input can be replaced
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by a vector of control “inputs,” whose components are
the basis functions evaluated at each value of the control
input. This leads to a MISO linear identification problem.
An estimate of the input matrix of the nonlinear system
is obtained through a singular value decomposition of the
input matrix estimated for the MISO system. The amplitude-
multiplexing approach of the present paper is based on a
choice of basis functions that leads directly to a continuous,
piecewise-affine approximation of the input nonlinearity.
This technique thus provides an alternative approach to
the continuous, piecewise-affine approximation approach to
Hammerstein system identification given in [10].

The contents of the paper are as follows. In section
II we formulate the problem. In section III we show the
identification technique. Numerical examples are presented
in section IV. We give conclusions in section V.

II. PROBLEM FORMULATION

Consider the discrete-time SISO Hammerstein system
shown in Figure 1, where u is the input, f : R → R is
a static nonlinearity, f(u) is the intermediate signal, and
y is the output of the asymptotically stable, SISO, linear,
time-invariant, discrete-time system G. In the following we
describe a novel identification algorithm where the nonlinear-
ity f and the impulse response of the plant G are estimated
given measurements of the input u and output y.

First, we amplitude multiplex the single input u into n
sub-inputs u1, u2, . . . , un as shown in Figure 2. As Figure
2 illustrates, u is partitioned horizontally at s1, s2, . . . ,
sn+1. The signals u1, u2, . . . , un are then generated by
saturation from the regions between partitions. For example,
u4 is generated by saturating u between s4 and s5 and
then subtracting s4 so that the minimum value of u4 is
zero. Negative-valued partitions are handled differently. For
example, u1 is generated by saturating u between s1 and s2

and then subtracting s2 such that the maximum value of u1

is zero. Specifically, we define the amplitude-multiplexing
function

M(u(k))
4
=
[
u1(k) · · · un(k)

]
∈ R1×n, (1)

f G
u yf(u)

Fig. 1. SISO Hammerstein System. u is the input, f represents a static
nonlinearity, f(u) is the intermediate signal, and y is the output of the
linear, time-invariant, discrete-time system G.
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where

ui(k)
4
= sat[si, si+1](u(k))−

{
si if si ≥ 0,
si+1 if si < 0,

(2)

and the saturation function is defined by

sat[a, b](x)
4
=

 a if x < a,
x if a ≤ x ≤ b,
b if x > b.

(3)

We require that the partition values be increasing, that is,
s1 < s2 < · · · < sn+1, and that one of the partition values be
zero. If necessary, the input can be shifted by defining v

4
=

u+b for some constant b and then applying the identification
method to v and y. Furthermore, the input signal u must be
contained within all partitions, that is, s1 ≤ u(k) ≤ sn+1

for all k ≥ 0. Finally, each sub-input up must be persistently
exciting. If this is not the case, singularity problems can arise.

We assume that G is represented by an FIR model as

G(q) =
B(q)

A(q)
, (4)

where A(q) = qµ and B(q) =
∑µ
i=0Hiqi, Hi is the

ith FIR Markov (impulse response) parameter of G, and
µ is the model order. Moreover, we assume that f can
be approximated by a continuous piecewise-affine function
defined by

f̂(u)
4
=M(u) αn, (5)

where
αn
4
=
[
a1 · · · an

]T
, (6)

is unknown. As illustrated in Figure 3, ai is the slope of f̂(u)
between the partition values si, si+1, for all i ∈ {1, . . . , n}.

Define
ef (u)

4
= f(u)− f̂(u) (7)

to be the difference between the actual and the approximated
intermediate signals. If ef tends to zero, then f̂(u) tends to
f(u).

Define the vector of Markov parameters

θµ
4
=
[
H0 · · · Hµ

]
. (8)

In this paper we aim to estimate θµ and the vector of
coefficients αn given the input u and the output y.
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Fig. 2. Illustration of amplitude multiplexing of the input u to obtain
multiple inputs u1, . . . , un. In this illustration, n = 4 and s3 = 0.

III. ESTIMATION OF f AND θµ

We assume here that the Hammerstein nonlinearity passes
through the origin, that is, f(0) = 0.

Consider the block diagram in Figure 4, where u is the
input, y0 is the output, and w is the output noise. We assume
no input noise and w is zero-mean colored noise independent
of u. The signal y represents the measurement of the output
y0, that is,

y = y0 + w. (9)

Let m denote the number of measurements of u and y.
Define

U
4
=

 M(u(1))
...

M(u(m))

 ∈ Rm×n, (10)

which allows us to write the approximated intermediate
signal as

f̂(u(k)) =M(u(k))αn =

n∑
i=1

aiui(k). (11)

Next, note that the output y0(k) of the Hammerstein
system at time k, can be approximated by ŷ0(k), where

ŷ0(k) =

µ∑
i=0

Hif̂(u(k − i))

=

µ∑
i=0

HiM(u(k − i))αn. (12)

u

s1 s2 s3 s4 s5

f 
(u
) a1

a2
a3

a4

^

Fig. 3. Illustration of the approximate nonlinear function f̂(u). The coef-
ficients a1, . . . , an are the slopes of the line segments between partitions.
In this illustration, n = 4 and s3 = 0.

f G

ID +

u f(u)

w

y0

y

Fig. 4. Identification of the Hammerstein system (f,G). u and y0 represent
input and output signals, respectively, where w represents output noise.
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Define the difference between y0 and ŷ0 at time k to be

ey(k)
4
= y0(k)− ŷ0(k). (13)

Therefore, the output y0(k) can be written as

y0(k) =

µ∑
i=0

M(u(k − i))αnHi + ey(k)

= φµ(k)γn,µ + ey(k), (14)

where

φµ(k)
4
=
[
M(u(k)) · · · M(u(k − µ))

]
∈ R1×n(µ+1),

γn,µ
4
= vec (αnθµ) ∈ Rn(µ+1)×1.

It follows that

Ψy,m = Φµ,mγn,µ + Ψw,m + Ψey,m, (15)

where

Ψy,m
4
=

[
y(µ) · · · y(m)

]T ∈ R(m−µ+1)×1,

Φµ,m
4
=

[
φT
µ (µ) · · · φT

µ (m)
]T∈R(m−µ+1)×n(µ+1),

Ψw,m
4
=

[
w(µ) · · · w(m)

]T ∈ R(m−µ+1)×1,

Ψey,m
4
=

[
ey(µ) · · · ey(m)

]T ∈ R(m−µ+1)×1.

The least squares estimate γ̂n,µ,m of γn,µ is given by

γ̂n,µ,m = arg min
γ̄n,µ

‖Ψy,m−Φµ,mγ̄n,µ‖F , (16)

where γ̄n,µ ∈ Rn(µ+1)×1, and || . ||F denotes the Frobenius
norm. It follows from (16) that

ΦT
µ,mΨy,m = ΦT

µ,mΦµ,mγ̂n,µ,m, (17)

that is,

ΦT
µ,m

[
Ψŷ0,m + Ψw,m + Ψey,m

]
= ΦT

µ,mΦµ,mγ̂n,µ,m,
(18)

where

Ψŷ0,m
4
=

[
ŷ0(µ) · · · ŷ0(m)

]T ∈ R(m−µ+1)×1,

Ψey,m
4
=

[
ey(µ) · · · ey(m)

]T ∈ R(m−µ+1)×1.

Dividing (18) by m and taking the limit yields,

lim
m→∞

1

m
ΦT
µ,m

[
Φµ,mγn,µ + Ψw,m + Ψey,m

]
=

lim
m→∞

1

m
ΦT
µ,mΦµ,mγ̂n,µ,m. (19)

Note that,

lim
m→∞

1

m
ΦT
µ,mΨw,m

wp1
= 0n(µ+1)×1. (20)

Moreover, suppose that we choose n such that
limm→∞Ψey,m is negligible for all k ≥ 0. It follows
from (19) that

lim
m→∞

1

m
ΦT
µ,mΦµ,mγn,µ

wp1
= lim

m→∞

1

m
ΦT
µ,mΦµ,mγ̂n,µ,m,

(21)

that is,
lim
m→∞

γ̂n,µ,m
wp1
= γn,µ. (22)

Define
Γ
4
= (αnθµ)

T ∈ R(µ+1)×n,

and note that the rank of Γ is 1. Moreover, Γ can be written
as

Γ =
[

Γ1 · · · Γn
]
, (23)

where
Γi
4
= aiθ

T
µ , (24)

for i = 1, . . . , n. Note that,

γn,µ = vec(ΓT). (25)

To obtain αn from Γ, note that

Γi
ai

=
Γj
aj
, (26)

for all i, j ∈ {1, . . . , n}. That is,

Γi =
ai
aj

Γj . (27)

Solving the over-constrained linear equation (27) in a least-
squares sense yields

ai
aj

=
ΓT
j Γi

ΓT
j Γj

, (28)

for all i, j ∈ {1, . . . , n}. We then note that

ΓTΓαn = (αnθµ) (αnθµ)
T
αn

=

 µ∑
i=0

H2
i

n∑
j=1

a2
j

αn,

= λαn, (29)

where

λ
4
=

µ∑
i=0

H2
i

n∑
j=1

a2
j ∈ R. (30)

Note from (29) that αn is an eigenvector of the matrix ΓTΓ,
then for any nonzero β ∈ R, βαn is also an eigenvector
of ΓTΓ, and βλ is the eigenvalue that corresponds to the
eigenvector βαn. Moreover, since rank(Γ) = 1, it follows
that rank(ΓTΓ) = 1, therefore, βαn is the eigenvector of
ΓTΓ that corresponds to the only nonzero (i.e. the biggest)
eigenvalue, which is βλ.

Finally, once βαn has been obtained, we can obtain θµ
using the averaging equation,

θµ =
(|βa1|+ · · ·+ |βan|)θµ
(|βa1|+ · · ·+ |βan|)

(31)

= β
sgn(βa1)Γ1 + · · ·+ sgn(βan)Γn

|βa1|+ · · ·+ |βan|
. (32)

Note from (32) that the vector of Markov parameters is
identified up to a scalar factor.
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IV. NUMERICAL EXAMPLES

In this section we show examples with odd, even, and
neither odd nor even nonlinearities for both cases of smooth
and nonsmooth nonlinearities. Let u be a realization of the
uniformly distributed random process U with the probability
density function

p(u) =

{
1
2a , |u| ≤ a,
0, |u| > a.

(33)

To show that the estimated nonlinearity and impulse
response are asymptotically correct up to a scalar factor β,
in each of the following examples we plot the actual nonlin-
earity and impulse response and the estimated nonlinearity
and impulse response after modifying them using the correct
scalar β.

Example 4.1: Consider the Hammerstein system

f(u) = u3, (34)

G =
−3z2 − 1.2z + 0.5

z3 + 1.2z2 + 0.28z − 1
. (35)

Let U be white and have the uniform pdf (33) with a = 3.
We set m = 10, 000, µ = 40, n = 6, and the partition values
s1 = −∞, s2 = −2, s3 = −1, s4 = 0, s5 = 1, s6 = 2, s7 =
+∞. In this example we use noise-free data. Figure 5 shows
the actual and estimated nonlinearities and Figure 6 shows
the actual and estimated Markov parameters of G. Note that
the estimation is close for both of the nonlinearity and the
Markov parameters.

Example 4.2: Consider the Hammerstein system

f(u) = u2 (36)

G =
0.7z4 + 2.6z3 + 4z2 + 2z − 2.5

z4 + 0.4z3 + 0.43z2 + 0.5z + 0.05
. (37)

Let U be white and have the uniform pdf (33) with a =
3. We set m = 10, 000, µ = 40, n = 60, and the
partition values sp = −3,−2.9,−2.8, . . . , 2.8, 2.9, 3, for
p = 1, 2, 3, . . . , 59, 60, 61, respectively. In this example we
use noise-free data. Figure 7 shows the actual and estimated
nonlinearities and Figure 8 shows the actual and estimated
Markov parameters of G. Note that the estimation is close
for both of the nonlinearity and the Markov parameters.
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Fig. 5. Actual and estimated nonlinearities for Example 4.1, where f(u) =
u3. Note that the estimated and actual nonlinearities are close to each other.

Example 4.3: Consider the Hammerstein system

f(u) = 10 sin(u2) + u3 (38)

G =
1.3z3 + 0.13z2 − 2.28z − 1.27

z5 − 0.5z4 + 0.46z3 − 0.17z2 − 0.16z − 0.02
. (39)

Let U be white and have the uniform pdf (33) with a =
3. We set m = 10, 000, µ = 40, n = 60, and the
partition values sp = −3,−2.9,−2.8, . . . , 2.8, 2.9, 3, for
p = 1, 2, 3, . . . , 59, 60, 61, respectively. In this example we
use noise-free data. Figure 9 shows the actual and estimated
nonlinearities and Figure 10 shows the actual and estimated
Markov parameters of G. Note that the estimation is close
for both of the nonlinearity and the Markov parameters.

Example 4.4: In this example we repeat Example 4.3
using output noise with SNR of 4. Figure 11 shows the
actual and estimated nonlinearities and Figure 12 shows the
actual and estimated Markov parameters of G. Note that
the estimation is close for both of the nonlinearity and the
Markov parameters.

Example 4.5: Consider the Hammerstein system

G =
1.1z2 − 0.33z − 0.31

z3 + 0.1z2 + 0.35z − 0.33
. (40)

and f(u) is a deadzone nonlinearity which begins at -0.504
and ends at 0.5. Let U be white and have the uniform pdf
(33) with a = 3. We set m = 10, 000, µ = 40, n = 60, and
the partition values sp = −3,−2.9,−2.8, . . . , 2.8, 2.9, 3, for
p = 1, 2, 3, . . . , 59, 60, 61, respectively. In this example we
use noise-free data. Figure 13 shows the actual and estimated
nonlinearities and Figure 14 shows the actual and estimated
Markov parameters of G. Note that the estimation is close
for both of the nonlinearity and the Markov parameters.

Example 4.6: Consider the Hammerstein system where,

G =
1.1z3 − 0.22z2 − 1.75z + 1

z3 − 0.6z2 − 0.54z + 0.46
. (41)

and the nonlinearity f(u) is a square wave as shown in
Figure 15. Let U be white and have the uniform pdf (33)
with a = 3. We set m = 10, 000, µ = 40, n = 60, and
the partition values sp = −3,−2.9,−2.8, . . . , 2.8, 2.9, 3, for
p = 1, 2, 3, . . . , 59, 60, 61, respectively. In this example we
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Fig. 6. Actual and estimated Markov parameters of G for Example 4.1,
where G(z) as given in (35). Note that the estimated and actual Markov
parameters are close to each other.
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Fig. 7. Actual and estimated nonlinearities for Example 4.2, where f(u) =
u2. Note that the estimated and actual nonlinearities are close to each other.
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Fig. 8. Actual and estimated Markov parameters of G for Example 4.2,
where G(z) as given in (37). Note that the estimated and actual Markov
parameters are close to each other.

use noise-free data. Figure 15 shows the actual and estimated
nonlinearities and Figure 16 shows the actual and estimated
Markov parameters of G. Note that the estimation is close
for both of the nonlinearity and the Markov parameters.

V. CONCLUSIONS

In this paper we introduced a novel amplitude multiplexing
technique for identifying Hammerstein systems with static
nonlinearities that pass through the origin. The input to the
Hammerstein system was replaced by a collection of signals
obtained by passing the input through multiple saturation
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Fig. 9. Actual and estimated nonlinearities for Example 4.3, where f(u) =
10 sin(u2)+u3. Note that the estimated and actual nonlinearities are close
to each other.
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Fig. 10. Actual and estimated Markov parameters of G for Example 4.3,
where G(z) as given in (39). Note that the estimated and actual Markov
parameters are close to each other.
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Fig. 11. Actual and estimated nonlinearities for Example 4.4, where
f(u) = 10 sin(u2) + u3 and output SNR is 4. Note that the estimated
and actual nonlinearities are close to each other. Comparing Figure 9 with
shows the effect of noise.

functions whose lower and upper limits partition the range
of the input. Moreover, the output of the Hammerstein non-
linearity was approximated by a continuous piecewise linear
function. Using the identification technique presented in this
paper, we showed that the estimates of the Hammerstein
nonlinearity and the impulse response of the linear plant
were asymptotically correct up to a scalar factor. We showed
different examples including even, odd, and neither even nor
odd nonlinearities for both cases of smooth and non-smooth
nonlinearities.
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Fig. 15. Actual and estimated nonlinearities for the square wave nonlinear-
ity f(u) from Example 4.6. Note that the estimated and actual nonlinearities
are close to each other.
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Fig. 16. Actual and estimated Markov parameters of G for Example 4.6,
where G(z) as given in (41). Note that the estimated and actual Markov
parameters are close to each other.
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