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ABSTRACT

Discrete-time adaptive disturbance rejection has broad engineering and scientific applications. It
is most relevant in active noise and vibration control. Disturbance rejection algorithms can be of
two types, feed-forward or feedback. The latter generally exhibit superior performance since they
take into account the effect of the feedback path from control to measurement. In this paper we
propose an optimal adaptive feedback disturbance rejection algorithm. The main result is based on a
controller parameter update law derived from a retrospective cost function. The proposed algorithm
requires minimal plant information and does not require a measurement of the disturbance. This
work extends earlier work on ARMARKOV adaptive controllers in several ways. First, we employ
an ARMA model stucture for both plant and the controller instead of a µ-MARKOV parameter-
ization thus reducing the number of tunable parameters. Next, the step size function is replaced
by an optimal gain matrix. Finally, the proposed algorithm is reformulated in a way that online
computations are reduced. The effectiveness of the algorithm in rejecting tonal disturbances with
unknown frequency and phase is demonstrated via simulation.

1 Introduction

A large portion of the feedback adaptive control literature is devoted to proving stability of the
closed loop system and boundedness of solutions [1–6]. However in many applications the plant is open-loop
stable or stability can be achieved with a controller based on a nominal model and the overriding concern is
performance with respect to disturbance rejection [7–12].

In [13–15] a disturbance rejection algorithm based on ARMARKOV models was presented which
has proved successful in applications and exhibits significant robustness [16]. This method uses non-minimal
plant and controller parameterizations which are equivalent to successive self substitution of the model.
The additional parameters introduced into the model as a result of self substitution are in fact the Markov
parameters of the underlying physical model. The advantages of using µ-Markov parameterizations for sys-
tem identification have been studied in the literature [17]. However the rationale for using a non-minimal
controller structure is not evident and the benefits of such a formulation, if any, are unclear. Also the AR-
MARKOV algorithm uses the gradient method for the controller update which can lead to slow convergence.

In the present paper we utilize minimal time series models to describe both the plant and controller
and thus avoid over parameterization. We also improve upon the parameter update equations developed in
[13–15] by reformulating the equations for the retrospective cost function defined in [13] to obtain a linear
parametric model of the retrospective cost in terms of the controller parameters. This reformulation allows
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the use of recursive least squares to update the parameter vector, which is an optimal estimator for a linear
parametric model with constant coefficients [18].

The formulation used in this paper also divides the controller computations into an off-line compo-
nent related to structural information which is assumed to be known and an online component which uses
temporal information. This approach alleviates some of the burden of online computation thus making the
algorithm amenable to real-time implementation.

The contents of the paper are as follows. In section 2 we develop the dynamical equations for the
extended TITO model. The disturbance rejection problem based on the TITO model and retrospective
performance is defined in section 3. The retrospective performance is reformulated in section 4 to bring it to
the standard linear parametric form. Section 5 desribes the disturbance rejection algorithm. Advantages of
the optimal algorithm compared to the ARMARKOV algorithm are demonstrated via simulation in section
6. Finally some concluding remarks are made in section 7.

2 The Extended TITO Model

Consider the linear discrete-time TITO system shown in Figure 1. Let the control vector u(k) ∈

Gyw

(Reference)

Gzw

(Primary)
Gzu

(Secondary)

Gyu

(Feedback)
-

- -

-

w(k)

u(k)

z(k)

y(k)

Figure 1: The Standard Problem

Rmu , the measurement vector y(k) ∈ Rly , the disturbance vector w(k) ∈ Rmw and the performance vector
z(k) ∈ Rlz . The time histories of z(k) and y(k) can be described by the time series model

z(k) =
n∑

j=1

−ajz(k − µ− j + 1) +
n∑

j=0

Bjw(k − j) +
n∑

j=0

Cju(k − j) (2.1)

y(k) =
n∑

j=1

−ajy(k − µ− j + 1) +
n∑

j=0

Djw(k − j) +
n∑

j=0

Eju(k − j) (2.2)

where aj ∈ R, Bj ∈ Rlz×mw , Cj ∈ Rlz×mu , Dj ∈ Rly×mw , and Ej ∈ Rly×mu .

For the purpose of comparison we first develop the µ-ARMARKOV model used in [13–15]. However,
later we demonstrate that the algorithm presented achieves superior performance without the use of non-
minimal models i.e. with µ = 1. Self substitution of (2.1) and (2.2) µ− 1 times leads to the µ-ARMARKOV
model

z(k) =
n∑

j=1

−ãjz(k − µ− j + 1) +
n+µ−1∑

j=0

B̃jw(k − j) +
n+µ−1∑

j=0

C̃ju(k − j) (2.3)

y(k) =
n∑

j=1

−ãjy(k − µ− j + 1) +
n+µ−1∑

j=0

D̃jw(k − j) +
n+µ−1∑

j=0

Ẽju(k − j) (2.4)

where ãj ∈ R, B̃j ∈ Rlz×mw , C̃j ∈ Rlz×mu , D̃j ∈ Rly×mw , and Ẽj ∈ Rly×mu .
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Define the regressor vectors given by

ϕu(k)
4
=




u(k)
...

u(k − n− µ + 1)


 ∈ R(n+µ)mu , (2.5)

ϕzw(k)
4
=




z(k − µ)
...

z(k − n− µ + 1)
w(k)

...
w(k − n− µ + 1)




∈ R[(n+µ−1)lz+(n+µ)mw], (2.6)

and

ϕyw(k)
4
=




y(k − µ)
...

y(k − n− µ + 1)
w(k)

...
w(k − n− µ + 1)




∈ R[(n+µ−1)ly+(n+µ)mw]. (2.7)

Then (2.3) and (2.4) can be written as

z(k) = θzwϕzw(k) + θzuϕu(k) (2.8)
y(k) = θywϕyw(k) + θyuϕu(k) (2.9)

where

θzw
4
=

[
ã1Ilz · · · ãnIlz B̃0 · · · B̃n+µ−1

] ∈ Rlz×[(n+µ−1)lz+(n+µ)mw] (2.10)

θyw
4
=

[
ã1Ily · · · ãnIly D̃0 · · · D̃n+µ−1

] ∈ Rly×[(n+µ−1)ly+(n+µ)mw] (2.11)

θzu
4
=

[
C̃0 · · · C̃n+µ−1

] ∈ Rlz×(n+µ)mu (2.12)

θyu
4
=

[
Ẽ0 · · · Ẽn+µ−1

] ∈ Rly×(n+µ)mu (2.13)

Now define the extended performance vector Z(k), extended measurement vector Y (k), and extended
control vector U(k) by

Z(k)
4
=




z(k)
...

z(k − p + 1)


 ∈ Rp·lz (2.14)

Y (k)
4
=




y(k)
...

y(k − p + 1)


 ∈ Rp·ly (2.15)

U(k)
4
=




u(k)
...

u(k − pc + 1)


 ∈ Rpc·mu (2.16)
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where pc
4
= µ + n + p− 1. Also define the extended regressor vectors

Φzw(k)
4
=




z(k − µ)
...

z(k − µ− n− p + 2)
w(k)

...
w(k − µ− n− p + 2)




∈ R(n+p−1)lz+(n+µ+p−1)mw), (2.17)

and

Φyw(k)
4
=




y(k − µ)
...

y(k − µ− n− p + 2)
w(k)

...
w(k − µ− n− p + 2)




∈ R(n+p−1)ly+(n+µ+p−1)mw). (2.18)

Then the extended form of (2.3) and (2.4) can be written as

Z(k) = WzwΦzw(k) + BzuU(k) (2.19)
Y (k) = WywΦyw(k) + ByuU(k) (2.20)

where

Wzw ∈ Rplz×[(n+p−1)lz+(n+µ+p−1)mw)]

Wyw ∈ Rply×[(n+p−1)ly+(n+µ+p−1)mw)]

Bzu ∈ Rplz×pcmu

Byu ∈ Rply×pcmu

3 Adaptive Disturbance Rejection Problem

Now consider the TITO system with an adaptive feedback controller as shown in Figure 2. We

Gc

Gyw

(Reference)

Gzw

(Primary)
Gzu

(Secondary)

Gyu

(Feedback)
-

-

]
¾

w(k)

u(k)

z(k)

y(k)

Figure 2: The Adaptive Standard Problem

make the following assumptions about the TITO plant.

Assumption 3.1. The plant is asymptotically stable.
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Assumption 3.2. The order n of the plant is known.

Assumption 3.3. Bzu is known or can be identified.

Assumption 3.4. y(k) and z(k) are available for measurement.

Assumption 3.5. The disturbance w(k) is not measured.

Let Gc be a strictly proper controller of order nc with µc Markov parameters given by the time
series model

u(k) = −
nc∑

j=1

Γju(k − µc − j) +
nc+µc−1∑

j=1

Υjy(k − j) (3.1)

where Γj ∈ Rmu×mu and Υj ∈ Rmu×ly . Next define q1
4
= ncmu, q2

4
= (nc + µc − 1)ly, q3

4
= (nc + pc − 1)mu,

q4
4
= (nc + µc + pc − 2)ly, q5

4
= q1 + q2 and q6

4
= q3 + q4. Then

u(k) = θc(k)R1Φuy(k), (3.2)

and

U(k) =
pc∑

i=1

Liθc(k − i + 1)RiΦuy(k), (3.3)

where

θc(k)
4
=

[ −Γ1(k) · · · −Γnc(k) Υ1(k) · · · Υnc+µc−1(k)
] ∈ Rmu×q5 , (3.4)

Φuy(k)
4
=




u(k − µc)
...

u(k − µc − nc − pc + 2)
yk−1

...
y(k − µc − nc − pc + 2)




∈ Rq6 , (3.5)

Li
4
=




0(i−1)mu×mu

Imu

0(pc−i)mu×mu


 ∈ Rpcmu×mu , (3.6)

and

Ri
4
=

[
0q1×(i−1)mu

Iq1×q1 0q1×(pc−i)mu
0q1×(i−1)ly 0q1×q2 0q1×(pc−i)ly

0q2×(i−1)mu
0q2×q1 0q2×(pc−i)mu

0q2×(i−1)ly Iq2×q2 0q2×(pc−i)ly

]
∈ Rq5×q6 (3.7)

Now from (2.19)and (3.3)

Z(k) = WzwΦzw(k) + Bzu

pc∑

i=1

Liθc(k − i + 1)RiΦuy(k) (3.8)

Also define the retrospective performance Ẑ(k) function that evaluates the performance of θc(k + 1) based
on the behavior of the system during the previous p steps by

Ẑ(k)
4
= WzwΦzw(k) + Bzu

pc∑

i=1

Liθc(k + 1)RiΦuy(k). (3.9)

Notice that (3.9) has the same form as (3.8) but with θc(k−i+1) replaced by the current controller parameter
block vector θc(k + 1).

Remark 3.1. If the controller parameter vector θc(k) converges, then Ẑ(k)− Z(k) → 0.
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Remark 3.2. Since by assumption w(k) is unavailable for measurement, Φzw(k)is unknown. There-
fore Ẑ(k) cannot be computed from (3.9). However it follows from (2.19) and (3.9) that Ẑ(k) can be computed
using

Ẑ(k) = Z(k)−Bzu

(
U(k)−

pc∑

i=1

Liθc(k + 1)RiΦuy(k)

)
. (3.10)

The objective is to determine a θc that minimize a positive definite function of Ẑ(k).

4 Reformulation Of Retrospective Performance

We will use the following facts from Kronecker algebra.

Fact 4.1. Let ⊗ denote the Kronecker product and let W ∈ Rl×m, X ∈ Rm×q, Y ∈ Rq×r and
Z ∈ Rr×t. Then

vec [XY Z] =
(
ZT ⊗X

)
vec [Y ] (4.1)

and

WX ⊗ Y Z = (W ⊗ Y ) (X ⊗ Z) (4.2)

From (3.10) it follows that

Ẑ(k) = Z(k)−Bzu

(
U(k)−

pc∑

i=1

Liθc(k + 1)RiΦuy(k)

)
(4.3)

= Z(k)−BzuU(k) +
pc∑

i=1

BzuLiθc(k + 1)RiΦuy(k)

Use (4.1) to get

Ẑ(k) = Z(k)−BzuU(k) +
pc∑

i=1

(
ΦT

uy(k)RT
i

)⊗ (BzuLi)vec [θc(k + 1)]

Now use (4.2) to get

Ẑ(k) = Z(k)−BzuU(k) +
(
ΦT

uy(k)⊗Bzu

) pc∑

i=1

(
RT

i ⊗ Li

)
vec [θc(k + 1)]

Define q7
4
= pcmuq6, q8

4
= muq5,

ξ(k)
4
= Z(k)−BzuU(k) ∈ Rplz , (4.4)

Λz
4
= −

pc∑

i=1

(
RT

i ⊗ Li

) ∈ Rq7×q8 , (4.5)

GT(k)
4
=

(
ΦT

uy(k)⊗Bzu

)
Λz ∈ Rplz×q8 , (4.6)

and

Θ(k + 1)
4
= vec [θc(k + 1)] ∈ Rq8 .

Then we obtain the linear prediction error model

Ẑ(k) = ξ(k)− GT(k)Θ(k + 1). (4.7)
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To express the control u(k) in terms of Θ(k + 1) we note that

u(k) = Imu
θc(k)R1Φuy(k). (4.8)

Again using (4.1) and (4.2) we have

u(k) =
(
ΦT

uy(k)⊗ Imu

) (
RT

1 (k)⊗ Imu

)
vec [θZ(k + 1)] .

Define

Λu
4
=

(
RT

1 (k)⊗ Imu

) ∈ Rmuq6×q8 , (4.9)

and

UT(k)
4
=

(
ΦT

uy(k)⊗ Imu

)
Λu ∈ Rmu×q8 . (4.10)

Then

u(k) = UT(k)Θ(k + 1). (4.11)

5 Adaptive Disturbance Rejection Algorithm

Consider the weighted retrospective performance cost function

J(k)
4
=

k∑

j=1

λk−j
[
ẐT(j)Ẑ(j)

]

=
k∑

j=1

λk−j
[
ξ(k)− GT(k)Θ(k + 1)

]T [
ξ(k)− GT(k)Θ(k + 1)

]
(5.1)

where 0 < λ ≤ 1 is a temporal weighting function. A recursive estimate of the Θ(k) that minimizes J(k)
can be easily derived. See for example [18]. The RLS estimate for Θ(k) is given by

Θ̂(k + 1) = Θ̂(k) + P(k + 1)G(k)
[
ξ(k)− GT(k)Θ̂(k)

]
(5.2)

P(k + 1) =
1
λ

[
P(k)− P(k)G(k)

(
λI + GT(k)P(k)G(k)

)−1 GT(k)P(k)
]

(5.3)

The adaptive disturbance rejection algorithm may be summarized as follows.

1. Compute Λz and Λu off line using (4.5) and (4.9).

2. Intialize Φuy(k), Θ(k) and P(k).

3. Compute u(k) using (4.11).

4. Update Θ(k) and P(k) using (5.2) and (5.3).

5. Use z(k), y(k) and u(k) to update Φuy(k) in accordance with (3.5).

6. Go to step 3.

6 Examples

Example 6.1. Consider the lumped parameter model of the serially connected structure shown in
Figure 3. Let m1 = .... = m4 = 5 kg, k1 = .... = k5 = 2 N/m and c1 = .... = c5 = 0.01 N/m/s. Then the
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m1

-

m2

-

m3

-

m4

-w(k)u(k) z(k)y(k)

c1 c2 c3 c4 c5

k1 k2 k3 k4 k5

Figure 3: Serially Connected Structure

state equations for the structure are given by

ẋ = Ax + Bu + D1w (6.1)
z = E1x (6.2)
y = Cx (6.3)

where

A =




0 0 0 0 1.0 0 0 0
0 0 0 0 0 1.0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−5.0 2.5 0 0 −0.01 0.005 0 0
2.5 −5.0 2.5 0 0.005 −0.01 0.005 0
0 2.5 −5.0 2.5 0 0.005 −0.01 0.005
0 0 2.5 −5.0 0 0 0.005 −0.01




,

B =




0
0
0
0

0.5
0
0
0




, D1 =




0
0
0
0
0

0.5
0
0




,

E1 =
[

0 0 1 0 0 0 0 0
]
,

and

C =
[

0 0 0 1 0 0 0 0
]
.

The plant has modes at 0.1555 Hz, 0.2958, 0.4072 and 0.4787 Hz. The mass m2 is excited at the modal
frequency of 0.1555 Hz. The simualtion results with the ARMARKOV controller and the optimal controller
described in section 5 are shown in Figure 4 and Figure 5, respectively.

Notice that the the ARMARKOV controller uses 50 + 24 = 74 tunable tunable parameters while
the RLS based controller uses 16 tunable parameters. The RLS based controller has significantly smaller
transients and converges faster than the ARMARKOV algorithm.

Example 6.2. Consider the rectangular crossection acoustic duct shown in shown in Figure 6. We
treat the duct as a one dimensional waveguide with spatial coordinate x, where 0 ≤ x ≤ L. We use the
mathematical model for the acoustic duct derived in [19], where we have assumed that the speed of acoustic
waves is 343 m/s, the density of air is 1.21 kg/m3 and the duct has five modes. Let the disturbance speaker be
placed at xd, the control speaker at xc, the performance microphone at xp and the measurement microphone
at xm. Then for L = 6 m, xd = 0.1 m, xp = 0.15 m, xm = 5.9 m and xc = 0.5.95 m the state space matrices
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Figure 4: Closed loop response with ARMARKOV controller for Example 6.1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1.5

−1

−0.5

0

0.5

1

1.5

2

Optimal update with  λ = 0.98 n
c
 = 8,  µ = 1,  µ

c
 = 1 and p = 1

Time in Samples

D
is

pl
ac

em
en

t o
f m

4 (
m

et
er

s)

Figure 5: Closed loop response with RLS controller for Example 6.1
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for the acoustic duct model are given by

A =




0.9645 0.0004 0 0 0 0 0 0 0 0
−140.4030 0.9383 0 0 0 0 0 0 0 0

0 0 0.8618 0.0004 0 0 0 0 0 0
0 0 −534.3447 0.8120 0 0 0 0 0 0
0 0 0 0 0.7010 0.0004 0 0 0 0
0 0 0 0 −1115.1480 0.6318 0 0 0 0
0 0 0 0 0 0 0.4950 0.0003 0 0
0 0 0 0 0 0 −1788.9550 0.4116 0 0
0 0 0 0 0 0 0 0 0.2594 0.0003
0 0 0 0 0 0 0 0 −2445.8760 0.1682




,

B =




0
0.0075

0
0.0215

0
0.0332

0
0.0418

0
0.0469




, D1 =




0
0.0150

0
0.0429

0
0.0658

0
0.0823

0
0.0912




,

E1 =
[

46.4308 0 138.1492 0 226.4659 0 309.2063 0 384.3330 0
]
,

and

C =
[

30.9715 0 92.5754 0 153.1650 0 212.0764 0 268.6643 0
]
.

The duct has modes at 85.4167 Hz, 170.8333 Hz, 256.25 Hz, 341.6667 Hz and 427.0833 Hz. The mass
disturbance speaker is excited at the modal frequency of 427.0833 Hz. The simualtion results with the
ARMARKOV controller and the optimal controller described in section 5 are shown in Figure 7 and Figure
8, respectively.

7 Conclusions

In this paper we present a method for adaptive disturbance rejection that requires minimal plant
information and does not require a measurement of the disturbance. The algorithm presented uses a retro-
spective performance like [13–15] but does not use non-minimal plant or controller structure. Performance
achieved in terms of transient response and speed of convergence is superior to the ARMARKOV algorithm.
A formal proof of closed loop stability with the presented algorithm will appear in a subsequent paper.
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Figure 7: Closed loop response with ARMARKOV controller for Example 6.2
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Figure 8: Closed loop response with RLS controller for Example 6.2
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