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1 Introduction 

Recursive identification methods using 
time-domain data have been developed in [l, 21 
utilizing a gradient-based identification technique for 
estimating the Markov parameters of a system. This 
identification technique utilizes the ARMARKOV 
representation of a time-invariant finite-dimensional 
system which relates the current output of a system 
to past outputs as well as current and past inputs. 
While the ARMARKOV representation has the same 
form as an ARMA representation, the ARMARKOV 
representation explicitly contains Markov parameters 
of the system. 

Appropriate "stacking" of time-delayed AR- 
MARKOV representations yields a block-Toeplitz 
weight matrix which contains Markov parameters and 
which maps a vector of past outputs and inputs to 
a vector of current and past outputs. The recursive 
update law given in El] is based upon a gradient that 
preserves the block-zero structure of the block-Toeplitz 
weight matrix. In the presence of a persistent input 
sequence, this gradient method guarantees that the 
estimated weight matrix converges to the actual weight 
matrix. 

In this paper, we introduce a quasi-Newton method 
that utilizes a more efficient quasi-Newton update di- 
rection to estimate the Markov parameters recursively 
from time-domain input-output data. The step size is 
given by an explicit expression analogous to the optimal 
step size derived for the gradient method. 

2 ARMARKOV Representations 

Consider the discrete-time finite-dimensional 
linear time-invariant system 

z ( k  + 1) = A z ( k )  + Bu(k),  (2.1) 
y(k) = C z ( k ) + D u ( k ) ,  (2.2) 

where A E Rnxn, B E Rnxm, C E R'xn,  and D E 
'RIXm. The Markov parameters Hj  are defined by 

(2.3) 
A 

A 
H j  = D, j = -1, 

= G A ~ B ,  j > o ,  

and satisfy 
M -- 

G ( z )  2 C(z1-  A)-lB + D = E Hjz-(j+'). (2.4) 

The ARMA transfer function representation of G ( z )  

j=-1 

is given by 

1 
G(z )  = (Bozn + BIZ"-' + . . . + Bn) 7 

Zn + a1zn-l  + .+a, 
(2.5) 

where det(z1- A) = zn + a1zn-' + + .  . + a, and Bi E 

representation of G(z ) ,  it contains only the first Markov 
parameter Bo = H-1. 

The ARMA time-domain representation of G ( z )  
corresponding to (2.5) is given by 

R l x m  , z . = 0 , .  . . , n. Although (2.5) provides a rational 

y(k) = -~ly(k-l)- .  . .-~,y(B-n)+Bo~(k)+. . .+B,u(k-n). 
(2.6) 

Replacing 6 by IC - 1 in (2.6) and substituting p - 1 
times yields the ARMARKOV time-domain represen- 
tation of G ( z )  

n 

Y(k) = - @ p , j Y ( k  - c1 - j + 1) + 
j = 1  

D c Hj-au(k - j + 1) + 
j=1 

n 

B,, j  '(le - /I - j + ')I (2.7) 
j = 1  

where aCr,1, .  . E R and t?,,~,.. . ,a,,,, E RIXm. 
Note that (2.7) involves the first p Markov parameters 
H-1, . . . , Hp-2. Furthermore, note that (2.6) is a specia 
case of (2.7) with p = 1. 

Defining the ARMARKOV regressor vector @(k) E 
R(P+n-l)(I+m)+Crm by 

A @(k) = 

u(k - p - p -  + 2) 
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it follows that and the output error cost function J ( k )  by 

(3.3) 
A 1  

2 

Y ( k )  = W @ ( k ) ,  (2.9) 
J ( k )  i= - ~ ~ ( k ) ~ ( k ) .  where the ARMARKOV/Toeplitz weight matrix W is 

the block-Toeplitz matrix defined by 

where 
A A Lemma 3.1 The gradient of J ( k )  with respect to A, = [ap,14 a f i , n l r l ,  B p  = [ a p , ~  * . . Bp,n 1.  

Note that p determines the window of input-output 
data that appears in (2.8). 

resentation (2.7) that an ARMARKOV transfer func- 
tion representation of G(z)  with p Markov parameters 
is given by 

the estimated weight matrix @(k) is given by 

a J ( k )  = -U 0 [E(k)@T(k)]  , (3.4) It follows from the ARMARKOV time-domain rep- dE(k)  

where U E Rp'x[(pfn-l)('+m)+~m] is a one-zero matrix 
defined in [l]. 

1 X We now consider the estimated weight matrix update 
zP+n--l+ a,,l,p--l + . . . + a p , n  law 

G(z )  = 

h a J ( k )  W(k + 1) = W ( k )  - V(k)-, (H-1 zp+n-l + . . . + H,-~z" + Bp,1zn-' + * . - + Bp,n)(2.11) (3.5) a w ( k )  
\ I  

This representation of G(z)  can be viewed as a blending 
of the Markov parameter representation (2.4) and the 
ARMA transfer function representation (2.5), which 

where q ( k )  2 0 is the adaptive step size. Furthermore, 
define the estimated weight matrix error by 

correspond to p = CO and p = 1, respectively. The 
ARMA transfer function representation and the AR- 
MARKOV transfer function representation are different 
representations of G(z). However, the ARMARKOV 
transfer function representation, which is nonminimal 
when p > 1, allows direct estimation of the Markov 
parameters. Note, however, that the ARMARKOV 
transfer function representation is not equivalent to an 
arbitrary nonminimal ARMA representation since the 
coefficients of zp+n-2, . . . , zn in the denominator are 
constrained to be zero. 

Henceforth, for convenience we omit the subscript 
p and write A, B, ai, and Pi for A,, B,, a,,i, and P,,a, 
respectively. 

E ( k )  4 w - ̂w(k), (3.6) 

J (k ,  V(k)) 42 IIJxik + - llE(k)ll;- (3.7) 

and the estimated weight matrix error cost function 

Then it follows from the estimated weight matrix up- 
date law (3.5) that 

and 
~ ( k )  := E(lc)@(k). (3.9) 

Let the optimal adaptive step size ~ ~ ~ t ( k )  be defined 

(3.10) 

3 Gradient Method bY 

%Pt(k) = A 11*11" 11~(k)111 

The following result shows that yopt( k) minimizes 

In this sectkn we summarize several results given B w ( k )  F 
in [l]. Let W ( k )  denote an estimate of the AR- 
MARKOV/Toeplitz weight matrix W at time k, where 
W ( k )  has the same block-zero structure as W .  Let ?(k) 
denote the estimated output vector defined by 
h J (k  rl (k)) .  

Theorem 3.1 Let iF(0) have the same block-zero 

p ( k )  i?(k)@(k) E RP'. structure as W and conisider the estimated weight ma- 
trix update law (3.5). Assume that % # 0, k 2 0, (3'1) 

,- I - .. 
Furthermore, define the output error ~ ( k )  E RP' by and assume that the adaptive step size ~ ( k )  satisfies 

E(k) e Y(k)  - S ( k ) ,  (3.2) 0 < 17(h) < 2Vopt(h) , k: 2 0. (3.11) 
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Then {llE(k)llF)?=O is decreasing, and thus 
J ( k , q ( k ) )  < 0, k 2 0. Furthermore, for all k 2 0, 
r](h) = qopt(k) minimizes J ( k ,  r ] ( k ) ) ,  and 

J ( k ,  Vopt (IC)) = -I l4k> I1;Vopt (k). (3.12) 

If, in addition, 

and 

then 

Consequently, 

and 

CO 

k = O  

(3.13) 

(3.14) 

(3.15) 

lim ~ ( k )  = 0, (3.16) 
k + c u  

lim ~ a J ( k >  = 0. (3.17) 
k-+- a @ ( k )  

4 Quasi-Newton Method 

The gradient method is a descent method since 
the estimated weight matrix update law (3.5) utilizes 
the update direction -3. In this section we in- 

a W ( k )  
troduce a quasi-Newton method that uses an AR- 
MARKOV/Toeplitz representation with a more effi- 
cient quasi-Newton update direction. For convenience, 
we consider §IS0 systems. Let 

and f?j denote parameter estimates and let P ( k )  E 
‘R2n+p denote the parameter vector defined by 

Then the gradient V J ( k )  E R(2n+”) of the output error 
cost function J ( k )  with respect to P ( k )  is given by 

To compute V J ( k )  it is convenient to  define 
Remark 3.1 Note that (3.13) implies (3.11), A 

whereas the converse is not true. By choosing the adap- L j  7 [IP o ~ ~ ( n - l )  o ~ x ( ~ + n + ~ - l ) l  j = 1,  
A 

tive step size q ( k )  to be ~ ( k )  = aqopt(k) ,  a E (0,2), it = [ O P X ( j - l )  Ip Opx(n-j) Opx(p+n+p-1)1, j 2 2, 

of Theorem 3.1 hold. Rj = [0px(p+n+j--2) Ip Opx(n+p-j) I , j = 1 , .  . ., P ,  

follows that (3.13) is satisfied and thus the conclusions 
A 

Next, assuming @ ( k )  # 0, define the computation- A 

A 
Tj = [Opx(p+n+p+j-2) Ip Opx(n-j )I ,  j = 1 , .  . . , n - 1, ally  eficient step size qeff(k) by 

= [Opx(p+Zn+p-Z) I p l  , j = 11. 
(3.18) Then $ ( k )  can be written as A 1  

Veff(k) = - 
Il@P(k)II; . 

Note that veff(Ii) does not involve either aJ() or ~ ( k )  n D n 

showed in 111 that 
both of which are needed to compute aw(k) r],,t(k). It  is W ( k )  = x G j ( k ) L j  ++CGj-Z(k)Rj  + C Z j ( k ) T j .  

j = 1  j = 1  j = 1  

(4.3) 
Hence, it follows that 

veff(k> 5 qopt(k). (3.19) 

A corollary of Theorem 3.1 with qopt(k) is replaced 

As shown in [l], {?(k)}Fz0 given by the estimated 

verge to W if { ~ ( k ) } p = ~  satisfies a persistent excitation 
condition. Next we consider a variation of the estimated 
weight matrix update law (3.5). 

a J ( k >  -&T(k )L j@(k)  , j = 1 , .  . . ,n,(4.4) 
a2j ( k )  

a J ( k )  -&T(k )R j@(k)  , j = 1 , .  . . ,p(4.5)  
ai?j - 2( k) 

- -  d J ( k )  - ~ ~ ( k ) T j @ ( k )  , j = 1 , .  . . ,n . (4 .6 )  
aPj 

= by qeff(h) is given in [l]. 

weight matrix update law (3.5) is guaranteed to con- = 

- 
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Therefore, V J ( k )  is given by 

VJ(k)  = - 

Now we consider the quasi-Newton update direc- 
tion which has the form - F - ' ( k ) V J ( k ) ,  where F- ' (k )  
is a symmetric positive-definite approximation to the 
inverse of the Hessian of J ( k ) .  For convenience let s ( k )  
denote the difference between the current and past pa- 
rameter vectors defined by 

s (k)  2 P ( k )  - P ( k  - l), (4.8) 

and let z ( k )  denote the difference between the current 
and past gradients defined by 

z ( k )  e V J ( k )  - V J ( k  - 1). (4.9) 

The BFGS inverse Hessian update is given by 

estimated using both the gradient method and the 
quasi-Newton method. The gradient method uses an 
adaptive step size q ( k )  = qopt(k), and the estimated 
Markov parameters are obtained after each update of 
the estimated ARMARKOV/Toeplitz weight matrix 
W ( k )  by averaging over the corresponding entries of 
W ( k ) .  Since a second-order system requires a mini- 
mum of five Markov parameters, we choose ,M = 6. 

A 

h 

n 

with wn = 6.28 rad/sec and C = 1%. We use a bal- 
anced realization of the zero-order-hold discretization 
of (5.1) at a sampling frequency of 100 Hz. The input 
~ ( k )  is chosen to  be zero-mean white noise uniformly 
distributed on [-I, 13. The input was applied to  (5.1) 
for 10 seconds (-10 5 rE .  5 990) with zero initial condi- 
tions so that data for @(O) is available. As shown in [1] 
~ ( k )  is persistent with irespect to G(z) for the available 
data. 

First we consider p = 6, n = 2, and p = 4. The 
values of I la(k)llZ, 11- 1 )  and ~ ( k )  for the gradi- 
ent method are shown in Figure 1 and the values of 
Ile(k)llz for both metholds are shown in Figure 2. While 
the quasi-Newton method converges faster than the 
gradient method, it can be seen in Figure 3 that the 
quasi-Newton method uses approximately 5 times the 

B J W  
aw(k)  F.' 

number of floating point operations (flops) compared to  
s(k)sT(k) - F-'(k)z(k)zT(k)F-'(k) the gradient method. The fluctuations in the flop count 

* of the quasi-Newton method are due to the resetting of 
the Hessian to  the identity every few time steps. The 
six estimated Markov parameters obtained over the first 
1 second or 100 time steps are shown in Figure 4. Al- 
though not shown, the quasi-Newton method does not 
converge if the inverse ]Hessian update is not reset. 

zT(k)F-'(k)z(k) 
(4.10) 

The quasi-Newton method uses the BFGS update 

'-' ('+l) = '- ( k ) s  ST ( k ) z (  k )  

(4.10) with the parameter vector Bpdate law 

'(' i- ') = '(le) - %n(k)F-l(k)VJ(k), (4*11) 

where the step size yqn(k)  is defined by 

- 
Next we consider p = 6, n = 2, and p = 20. The 

values of l l ~ ( k ) 1 1 ~  for both methods are shown in Figure 
5, the number offlops ir; shown in Figure 6, and the six 

IIdk)ll; (4.12) estimated Markov pammeters are shown in Figure 7. 
The quasi-Newton method converges significantly faster IlvJ(k)II;. Vqn(k) = 

- -  
than the gradient method while using approximately 
3.5 times the number offlops compared to the gradient 
method. 

Finally, we consider a third variation of the 

The expression (4.12) is analogous to the optimal adap- 
tive step size qopt(k) given by (3.10). In the case p = 1 
it follows that # = V J ( k )  and thus qqn(k)  = 

voDt(k). Furthermore, if p > 1 it can be shown that quasi-Newton approach. In this case we allow the algo- . .  . ,  
llVJ(k)ll, 5 l l % l l F  and thus Ilqn(k) 5 VOPt(k). 
Since the cost function J ( k )  changes with each up- 
date the quasi-Newton search direction may become 
inappropriate after a large number of updates. There- 
fore, we reset the Hessian to the identity whenever 
I l4k  + 9112 ' Il&(k)112. 

rithm to do a complete quasi-Newton optimization pro- 
cedure at each time step k .  The optimal quasi-Newton 
method thus takes full advantage of the data at time 
step k .  We consider p = 6, n = 2, and p = 50. The val- 
ues of l l ~ ( k ) 1 1 ~  for all three algorithms are shown in Fig- 
ure 8 ,  the number of flops is shown in Figure 9, and the 
six estimated Markov parameters are shown in Figure 
10. Again it can be seen that the quasi-Newton method 
converges faster than the gradient method. The opti- 
mal quasi-Newton method has the fastest rate of con- 

In this section Markov parameters of a vergence. After the fifth time step the Markov param- 
eters obtained by the optimal quasi-Newton method 

5 Numerical Example 

second-order asymptotically stable SISO system are 
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have converged to within 1% of their respective true 
values. However, this high rate of convergence was 
achieved at the expense of using more than an order of 
magnitude more flops than the quasi-Newton method. 
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Figure 1: Error, gradient, and step size of the gradient 
method with p = 6, n = 2 ,  and p = 4. 
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Figure 2: Values of Ils(k)llz of the gradient method (solid 
line) and the quasi-Newton method (dash-dot 
line) with p = 6, n = 2, and p = 4. 
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Figure 3: Floating point operations of the gradient method 
(solid line) and the quasi-Newton method 
(dash-dot line) with p = 6, n = 2 ,  and p = 4. 
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Figure 4: Markov parameter estimates obtained from 
the gradient method (solid line) and the 
quasi-Newton method (dash-dot line) with p = 
6, n = 2 ,  and p = 4. 
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Figure 5: Values of 11.~(k)11~ of the the gradient method 
(solid line) and the quasi-Newton method 
(dash-dot line) with p = 6, n = 2, and p = 20. 
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Figure 6: Floating point operations of the gradient method 
(solid line) and the quasi-Newton method 
(dash-dot line) with p = 6, n = 2, and p = 20. 

Figure 7: Markov parameter estimates obtained from 
the gradient method (solid line) and the 
quasi-Newton method (dash-dot line) with p = 
6, n = 2, and p = 20. 
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Figure 9: Floating point operations of the gradient method 
(solid line) , l,he optimal quasi-Newton method 
(dashed line), and the quasi-Newton method 
(dash-dot line) with p = 6, n = 2, and p = 50. 

Figure 10: Markov parameter estimates obtained from 
the gradient method (solid line) , the opti- 
mal quasi-Newton method (dashed line), and 
the quasi-Newton method (dash-dot line) with 
p = 6, n = 2, and p = 50. 

Figure 8: Values of 11~(k)11~ of the gradient method 
(solid line) , the optimal quasi-Newton method 
(dashed line), and the quasi-Newton method 
(dash-dot line) with p = 6, n = 2, and p = 50. 
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