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1 Imtroduction

Recursive  identification  methods  using
time-domain data have been developed in [1, 2]
utilizing a gradient-based identification technique for
estimating the Markov parameters of a system. This
identification technique utilizes the ARMARKOV
representation of a time-invariant finite-dimensional
system” which relates the current output of a system
to past outputs as well as current and past inputs.
While the ARMARKOYV representation has the same
form as an ARMA representation, the ARMARKOV
representation explicitly contains Markov parameters
of the system.

Appropriate “stacking” of time-delayed AR-
MARKOV representations yields a block-Toeplitz
weight matrix which contains Markov parameters and
which maps a vector of past outputs and inputs to
a vector of current and past outputs. The recursive
update law given in [1] is based upon a gradient that
preserves the block-zero structure of the block-Toeplitz
weight matrix. In the presence of a persistent input
sequence, this gradient method guarantees that the
estimated weight matrix converges to the actual weight
matrix.

In this paper, we introduce a quasi-Newton method
that utilizes a more efficient quasi-Newton update di-
rection to estimate the Markov parameters recursively
from time-domain input-output data. The step size is
given by an explicit expression analogous to the optimal
step size derived for the gradient method.

2 ARMARKOV Representations

Consider the discrete-time ﬁnlte dimensional
linear time-invariant system

e(k+1) = Az(k)+ Bu(k), (2.1)
y(k) = Cu(k)+ Du(k), (2.2)

where A € R*™® B € R™™ C € R™" and D €
R'*m . The Markov parameters H; are defined by
H; D, j=-1, (2.3)

CA'B, j>0,
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G(z) =

u(k) = —ary(k—1)—-

and satisfy

G(x)EC(:I-A)T'B+D= Y Hjz"0¥). (2.4)
j=-1
The ARMA transfer function representation of G(z)
is given by
1
2%+ az 4+ ta,

(Boz™ + B12" "1+ -+ B),

(2.5)
where det(z] — A) = 2" + a;2"" 1+ ...+ a, and B; €
R™m §i=0,...,n. Although (2.5) provides a rational
representation of G(z), it contains only the first Markov
parameter By = H._;.

The ARMA time-domain representation of G(z)
corresponding to (2.5) is given by

~—any(k—n)+Bou(k)+- - -+ Bpu(k—n).
(2.6)
Replacing k by k— 1 in (2.6) and substituting g —1
times yields the ARMARKOYV time-domain represen-
tation of G(z)

n

y(k) = D —auyk—p—j+1)+

Jj=t1
b
S Hjou(k—j+1)+
i=1
n
SoBuulk—p—j+1), (27
j=1

where ay1,...,0un € R and Bu1,...,Bu, € RX™.
Note that (2.7) involves the first 4 Markov parameters
H_,,...,Hy_3. Furthermore, note that (2.6) is a specia
case of (2.7) with p = 1.

Defining the ARMARKOV regressor vector $(k) €
RP+n=1)(1+m)+um by

[ y(k — p) 1
a(ky 2 | Yk ‘“;(z)“““) 28
_U(k—u*'p—n+2)_




it follows that
Y (k) = Wo(k), (2.9)

where the ARMARKOV/Toeplitz weight matriz W is
the block-Toeplitz matrix defined by

and the output error cost function J(k) by

J(k) £ —eT(lc)e(lc) (3.3)

—A/.t 0 0, H_, H;;—2 Bp. lem Otxm
wal o D Oixm ' ’
. . 0, Orxcm
0 0, ""All lem Oixm H- Hp—z Bp
(2.10)
where
A, A (aunly aunli], By A (Byua Bunl. Lemma 3.1 The gradient of J(k) with respect to

Note that p determines the window of input-output
data that appears in (2.8).

It follows from the ARMARKOYV time-domain rep-
resentation (2.7) that an ARMARKOQOYV transfer func-
tion representation of G(z) with u Markov parameters
is given by

1
zp-}-n—l + a#’lzn-—l + ...
(Horz#tm 1o Hy92® + By 2™ +

G(z) =

+aun

This representation of G(z) can be viewed as a blending
of the Markov parameter representation (2.4) and the
ARMA transfer function representation (2.5), which
correspond to u = oo and p = 1, respectively. The
ARMA transfer function representation and the AR-
MARKOYV transfer function representation are different
representations of G(z). However, the ARMARKOV
transfer function representation, which is nonminimal
when p > 1, allows direct estimation of the Markov
parameters. Note, however, that the ARMARKOV
transfer function representation is not equivalent to an
arbitrary nonminimal ARMA representation since the
coefficients of z#+?=2 .. 2™ in the denominator are
constrained to be zero.

Henceforth, for convenience we omit the subscript
p and write A, B, a;, and §; for Ay, By, a, g, and §,;,
respectively.

3 Gradient Method

In this section we summarize several results given
in [1]. Let W(k) denote an estimate of the AR-
MARKOV /Toeplitz weight matrix W at time k, where
W (k) has the same block-zero structure as W. Let Y (k)
denote the estimated output vector defined by

OE

W(k)®(k) € R?'. (3.1)

Furthermore, define the output error e(k) € R?' by
e(k) 2

Y(k) -V (k), (3.2)

o+ B, o)(2.11)
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the estimated weight matrix W(k) is given by

BI(k) _

T
s = U o EWET®],

(3.4)

where U € RPI*I(p+n=1)(I+m)+um] ig 5 one.zero matrix
defined in [1].

We now consider the estimated weight matriz update
law
aJ(k)
6W(k)

where n(k) > 0 is the adapiive step size. Furthermore,
define the estimated weight matriz error by

Wk +1) = W(k) = n(k)—< (3.5)

E(k) & W - W(k), (3.6)

and the estimated weight matriz error cost function

Tk, n(k)) 2 | ECk + D)3 — (1ER)I3-

Then it follows from the estimated weight matrix up-
date law (3.5) that

(3.7)

0J (k)
oW (k)

E(k +1) = E(k) + n(k) —= (3.8)

and

E(k) = E(k)@(k). (3.9)
Let the optimal adaptive step size nopt(k) be defined

by
a llell;
aJ
Eza]®

oW (k)
The following result shows that nope(k) minimizes

J (k, n(k))-

Theorem 3.1 Let ﬁ?(O) have the same block-zero
structure as W and consider the estimated weight ma-

trix update law (3.5). Assume that %‘g% #0,k2>0,

and assume that the adaptive step size n(k) satisfies

0 < n(k) < 2neps(k) , (8.11)

nopt(k) (3.10)

k> 0.



Then {||E(k)|lp}r., 1s decreasing, and thus
J(k,n(k)) < 0, & > 0. Furthermore, for all ¥ > 0,
n(k) = nopt(k) minimizes J(k,n(k)), and

T (k, nopt(R)) = —lle(k)ll3opt (k)- (3.12)
If, in addition,
n(k) ‘
up| ——+—--1 <1 3.13
98] TonelF) (319)
and
sup [[0(k)]l; < oo, (3.14)
£>0
then
> lle(E)ll; < oo. (3.15)
. k=0
Consequently,
lim ¢(k) = 0, (3.16)
k—o0
and
im w =0 (3.17)
k—oo AW (k)
87 (k)
VI(k) = [aal(k)

Remark 3.1 Note that (3.13) implies (3.11),
whereas the converse is not true. By choosing the adap-
tive step size (k) to be n(k) = anepi(k), o € (0,2), it
follows that (3.13) is satisfied and thus the conclusions
of Theorem 3.1 hold.

Next, assuming @(k) # 0, define the computation-
ally efficient step size neg(k) by

A 1
ne(k) & ——. (3.18)
OIS
Note that 7.g(k) does not involve either DIKE) o e(k)

oW (k)
both of which are needed to compute 7ope(k). It is
showed in {1] that

Nei (k) < 7ops(k)-

A corollary of Theorem 3.1 with np(k} is replaced
by 7. (k) is given in [1].

As shown in [1], {W(k)}:ozo given by the estimated
weight matrix update law (3.5) is guaranteed to con-
verge to W if {u(k)};, satisfies a persistent excitation
condition. Next we consider a variation of the estimated
weight matrix update law (3.5).

(3.19)

-~

A

dan(k)

L
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k) & [ay(k)

4 Quasi-Newton Method

The gradient method is a descent method since
the estimated weight matrix update law (3.5) utilizes

the update direction —82#%. In this section we in-

troduce a quasi-Newton method that uses an AR-
MARKOV /Toeplitz representation with a more effi-
cient quasi-Newton update direction. For convenience,
we consider SISO systems. Let

()], B(k) 2 [Bi(k) Ba(k)]

and 'ﬁj denote parameter estimates and let P(k) €
R2+E denote the parameter vector defined by

P(k) £ [&1(k) an(k) H_i(k) -

~ ~ —~ T
Huza(k) Bulk) ()] (4.1)

Then the gradient VJ(k) € R(2**+#) of the output error
cost function J(k) with respect to P(k) is given by

3J(k aJ(k

8H_1 (k)

8J(k
oH,—a(k)

3J(k)
8p1(k)

aJ (k)

T
]
(4.2)

To compute VJ(k) it is convenient to define
[
(Opx(i~1) o Opx(n=j) Opx(ptntu-1],

Opx(n-l) 0p><(p+n+p—1)]; i=1,

e 1>

>2

iy »

>

[Opx(p+n+j—2) Ip 0px(n+u-—j)]'7 i=1...,pn,
[OPX(P'HI‘HH‘J"‘Z) IP Opx(n~j)]’j =1...,n-1,

Ip],j:n.

e 1>

[OPX(p+2n+u~2)
Then /W(k) can be written as

Wk) = a;(k)L; ++ ST Hj (KR + > B (k)T
Jj=1 =1 j=1

(4.3)
Hence, it follows that
aJ (k) .
8&1(16') _ET(k)Lj@(k) y J=1,00 na(44)
aJ(k) T . .
g% = —eTkR)TGok), j=1,...,n.(4.6)



Therefore, V.J(k) is given by
[ eT(k)L1 T

6T(I;)L,,
6T(k)R1
Vi) =- &(k). (4.7
eT(k)R,
ET(IC)T1

L 5T(];')Tn i

Now we consider the quasi-Newton update direc-
tion which has the form — F~1(k)VJ(k), where F~1(k)
1s a symimnetric positive-definite approximation to the
inverse of the Hessian of J(k). For convenience let s(k)
denote the difference between the current and past pa-
rameter vectors defined by

s(k) £ P(k) - P(k—1), (4.8)
and let z(k) denote the difference between the current
and past gradients defined by

2(k) 2 VI(k) - VI(k—1). (4.9)

The BFGS inverse Hessian update is given by
s(k)sT(k) F~1(k)z(k)zT(k)F~

(k)

FoHEHD) = P70 2y

The quasi-Newton method uses the BFGS update
(4.10) with the parameter vector update law

P(k+1) = P(k) — nn()F~ Y (k)VJ(K), (4.11)
where the step size 740 (k) is defined by
(k)|
nan(k) = Bl (4.12)
IVJI(®)p

The expression (4.12) is analogous to the optimal adap-
tive step size 7)opt(k) given by (3.10). In the case p =1
it follows that %L(% = VJ(k) and thus ngn(k) =
Nopt (k). Furthermore, if p > 1 it can be shown that

IVIE)e < || Z552]| and thus an(k) < wopt(k).

Since the cost function J(k) changes with each up-
date the quasi-Newton search direction may become
inappropriate after a large number of updates. There-
fore, we reset the Hessian to the identity whenever

lle(k + Dz > lle(®)ll2-

5 Numerical Example

In this section Markov parameters of a
second-order asympfotically stable SISO system are

ZT(k)F~1(k)z(k)
(4.10
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estimated using both the gradient method and the
quasi-Newton method. The gradient method uses an
adaptive step size (k) = nopt(k), and the estimated
Markov parameters are obtained after each update of
the estimated ARMARKOV /Toeplitz weight matrix
/W?(k) by averaging over the corresponding entries of
W(k). Since a second-order system requires a mini-

‘mum of five Markov parameters, we choose u = 6.

—~ _ w?‘
Gls) = — TR (5.1)
with wy, = 6.28 rad/sec and { = 1%. We use a bal-
anced realization of the zero-order-hold discretization
of (5.1) at a sampling frequency of 100 Hz. The input
u(k) is chosen to be zero-mean white noise uniformly
distributed on [—1,1]. The input was applied to (5.1)
for 10 seconds (—10 < k < 990) with zero initial condi-
tions so that data for $(0) is available. As shown in 1]
u(k) is persistent with respect to G(z) for the available
data.
First we consider 4 = 6, n = 2, and p = 4. The

values of ||e(k)|],, H%%”F, and n(k) for the gradi-

ent method are shown in Figure 1 and the values of
lle(k)|], for both methods are shown in Figure 2. While
the quasi-Newton method converges faster than the
gradient method, it can be seen in Figure 3 that the
quasi-Newton method uses approximately 5 times the
number of floating point operations (flops) compared to
the gradient method. The fluctuations in the flop count

" of the quasi-Newton method are due to the resetting of

the Hessian to the identity every few time steps. The
six estimated Markov parameters obtained over the first
1 second or 100 time steps are shown in Figure 4. Al-
though not shown, the quasi-Newton method does not
converge if the inverse Hessian update is not reset.

Next we consider 4 = 6, n = 2, and p = 20. The
values of |[e(k)||, for both methods are shown in Figure
5, the number of flops is shown in Figure 6, and the six
estimated Markov parameters are shown in Figure 7.
The quasi-Newton method converges significantly faster
than the gradient method while using approximately
3.5 times the number of flops compared to the gradient
method.

Finally, we consider a third variation of the
quasi-Newton approach. In this case we allow the algo-
rithm to do a complete quasi-Newton optimization pro-
cedure at each time step k. The optimal quasi-Newton
method thus takes full advantage of the data at time
step k. We consider 4 = 6, n = 2, and p = 50. The val-
ues of ||e(k)||, for all three algorithms are shown in Fig-
ure 8, the number of flops is shown in Figure 9, and the-
six estimated Markov parameters are shown in Figure
10. Again it can be seen that the quasi-Newton method
converges faster than the gradient method. The opti-
mal quasi-Newton method has the fastest rate of con-
vergence. After the fifth time step the Markov param-
eters obtained by the optimal quasi-Newton method



have converged to within 1% of their respective true
values. However, this high rate of convergence was
achieved at the expense of using more than an order of
magnitude more flops than the quasi-Newton method.
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Figure 1: Error, gradient, and step size of the gradient
method with p =6, n =2, and p = 4.
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Figure 2: Values of ||¢(k)||, of the gradient method {solid
line) and the quasi-Newton method (dash-dot
line) with p =6, n =2, and p = 4.
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Figure 3: Floating point operations of the gradient method
(solid line) and the quasi-Newton method
(dash-dot line) with p =6, n =2, and p = 4.
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Figure 4: Markov parameter estimates obtained from
the gradient method (solid line) and the
quasi-Newton method (dash-dot line) with p =
6, n =2, and p = 4.
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Figure 5: Values of ||e(k)||, of the the gradient method

(solid line) and the quasi-Newton method
(dash-dot line) with g == 6, n = 2, and p = 20.
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Figure 6: Floating point operations of the gradient method
(solid line) and the quasi-Newton method

(dash-dot line) with g = 6, » = 2, and p = 20.
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Figure 7: Markov parameter estimates obtained from
the gradient method (solid line) and the

quasi-Newton method (dash-dot line) with p =
6, n =2, and p = 20.
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Figure 8: Values of |le(k)||, of the gradient method
(solid line) , the optimal quasi-Newton method
(dashed line), and the quasi-Newton method
(dash-dot line) with g = 6, n = 2, and p = 50.
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Figure 9: Floating point operations of the gradient method
(solid line) , the optimal quasi-Newton method

(dashed line), and the quasi-Newton method
(dash-dot line) with 4 = 6, » = 2, and p = 50.
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Figure 10: Markov parameter estimates obtained from
the gradient method (solid line) , the opti-
mal quasi-Newton method (dashed line), and
the quasi-Newton method (dash-dot line) with
=6 n=2 and p =50,



