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Abstract— This paper presents a method for detecting air-
craft sensor faults using state and input estimation. We formu-
late the kinematics as a nonlinear state space system, which
requires no modeling information, and thus is applicable to
all aircraft. To illustrate the method, we investigate three
fault-detection scenarios, namely, faulty pitot tube, angle-of-
attack sensor, and accelerometers. We use the extended Kalman
filter for pitot-tube and angle-of-attack sensor fault detection,
and retrospective cost input estimation for accelerometer fault
detection. For numerical illustration, we use the NASA Generic
Transport Model to detect stuck, bias, drift, and deadzone
sensor faults.

I. INTRODUCTION

Sensor failure can have catastrophic consequences for
systems that operate under feedback control. The tragic crash
of Air France flight 447 on June 1, 2009 due to a faulty
air-speed sensor is a well-known instance. Techniques for
assessing sensor health are thus of intense interest [1–10].

One approach to detecting sensor faults is to use measure-
ments from a set of sensors to estimate a state or input and
then compare the estimate to measurements from a suspect
sensor that is not used for estimation. In the case where the
suspect sensor corresponds to a state of a dynamic system,
state estimation techniques, such as the Kalman filter and its
nonlinear variants, can be used. In the case where the suspect
sensor corresponds to an input of a dynamic system, state
estimation techniques that include input estimation can be
used. Input estimation techniques are given in [11–17].

The present paper focuses on sensor fault detection for
aircraft flight. In this application, two distinct classes of sen-
sors are available. Inertial sensors measure the motion of the
vehicle relative to an inertial frame. Relevant sensors include
rate gyros, accelerometers, and vertical gyro. Noninertial
sensors include position measurements from GPS as well
as aerodynamic sensors, such as a pitot tube for measuring
forward velocity relative to the air and angle-of-attack (α)
and sideslip (β) sensors for measuring the direction of the
relative wind in the body frame.

In the present paper we use combinations of inertial and
aerodynamic sensors along with state and input estimation
techniques to detect sensor faults. This work is motivated
by [8,10], which uses rate-gyro, accelerometer, GPS, angle-
of-attack, and sideslip measurements to estimate forward
velocity relative to the air in order to assess the health of
the pitot tube.
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The present paper extends the approach of [8,10] in several
ways. First, for pitot-tube fault detection, we apply the
extended Kalman filter with augmented bias states in order to
deal with biased accelerometer measurements. Unlike [8,10],
we do not use GPS to assess the health of the pitot tube.
Next, we consider two scenarios that are not considered in
[8,10], one of which depends on state estimation and the
other on input estimation. In the first scenario, we use the
pitot tube, inertial sensors, and β-sensor to assess the health
of the α-sensor, whereas, in the second scenario, we use the
pitot tube, rate gyros, vertical gyro, α-sensor, and β-sensor to
assess the health of the accelerometers. For input estimation
in the second scenario, we use a variation of retrospective
cost input estimation as described in [18].

II. PROBLEM FORMULATION

A. Aircraft Kinematics
The Earth frame and aircraft body-fixed frame are denoted

by FE and FAC, respectively. We assume that FE is an
inertial frame and the Earth is flat. The origin OE of FE

is any convenient point fixed on the Earth. The axes ı̂E and
̂E are horizontal, while the axis k̂E points downward. FAC

is defined with ı̂AC pointing out the nose of the aircraft,
̂AC pointing out the right wing, and k̂AC downward, that is,
k̂AC = ı̂AC × ̂AC. FAC and FE are related by

FAC =
→
RAC/E FE, (1)

where
→
RAC/E is a physical rotation matrix represented by

a 3-2-1 Euler rotation sequence, involving two intermediate
frames FE′ and FE′′ . In particular,

→
RAC/E =

→
Rı̂E′′ (Φ)

→
R̂E′ (Θ)

→
Rk̂E(Ψ), (2)

where FE′ =
→
RE′/E FE, FE′′ =

→
RE′′/E′ FE′ , and

→
Rn̂(κ)

is the Rodrigues rotation about the eigenaxis n̂ through the
eigenangle κ according to the right-hand rule.

At each time instant, let a denote the air particle located
at a point that is fixed relative to the aircraft and upstream
of the pitot tube. The location of the aircraft center of mass
c relative to OE at each time instant is given by

⇀
r c/OE

=
⇀
r c/a +

⇀
r a/OE

. (3)

Differentiating (3) with respect to FE yields
⇀

V c =
⇀

V AC +
⇀

V a, (4)

where⇀
V c
4
=

E•
⇀
r c/OE

,
⇀

V AC
4
=

E•
⇀
r c/a,

⇀

V a
4
=

E•
⇀
r a/OE

. (5)

The angular velocity
⇀
ωAC/E of FAC relative to FE is related

to the rotation matrix
→
RAC/E by Poisson’s equation
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AC•
→
R AC/E =

→
RAC/E

⇀
ω
×
AC/E. (6)

We resolve
⇀

V AC and
⇀
ωAC/E in FAC using the notation U

V
W

 4= ⇀

V AC

∣∣∣∣
AC

,

 P
Q
R

 4= ⇀
ωAC/E

∣∣∣∣
AC

. (7)

Resolving the gravity vector
⇀
g in FAC yields

⇀
g

∣∣∣∣
AC

=

 −(sin Θ)g
(sin Φ)(cos Θ)g
(cos Φ)(cos Θ)g

 , (8)

where g = 32.17ft/s2. For the Euler rotation sequence 3-2-1
(yaw-pitch-roll), we have

⇀
ωAC/E

∣∣∣∣
AC

= Φ̇ı̂AC + Θ̇̂E′′ + Ψ̇k̂E′ . (9)

The acceleration of the aircraft center of mass relative to OE

is given by
⇀
a c/OE/E =

E•
⇀
v c/OE/E =

E•
⇀
v c/a/E +

E•
⇀
v a/OE/E . (10)

We assume that the ambient wind is spatially uniform and

constant with respect to FE, i.e.,
E•
⇀
v a/OE/E = 0. Hence

⇀
a c/OE/E =

E•
⇀
v c/a/E =

E•
⇀

V AC . (11)

Using the transport theorem with (11) yields

⇀
a c/OE/E =

AC•
⇀

V AC +
⇀
ωAC/E ×

⇀

V AC. (12)

Note that (12) is a kinematic relation that is applicable to all
aircraft and is independent of all modeling information.

B. Kinematic Equations
The accelerometer measurement

⇀
ameas with gravity offset

is given by ⇀
ameas =

⇀
a c/OE/E −

⇀
g , (13)

where the accelerometers are assumed to be located at the
center of mass of the aircraft. Substituting (13) into (12)
yields AC•

⇀

V AC = −⇀ωAC/E ×
⇀

V AC +
⇀
g +

⇀
ameas. (14)

We resolve
⇀
ameas in FAC using the notation ax

ay
az

 4= ⇀
ameas

∣∣∣∣
AC

. (15)

Resolving (9) in FAC using (7) yields P
Q
R

 =

1 0 − sin Θ
0 cos Φ (cos Θ) sin Φ
0 − sin Φ (cos Θ) cos Φ

 Φ̇

Θ̇

Ψ̇

 . (16)

The inverse transformation of (16) is given by Φ̇

Θ̇

Ψ̇

=

1 (sin Φ) tan Θ (cos Φ) tan Θ
0 cos Φ − sin Φ
0 (sin Φ) sec Θ (cos Φ) sec Θ

 P
Q
R

 . (17)

Resolving (14) in FAC using (7), (8), and (15) yields

U̇ = RV −QW − (sin Θ)g + ax, (18)

V̇ = −RU + PW + (sin Φ)(cos Θ)g + ay, (19)

Ẇ = QU − PV + (cos Φ)(cos Θ)g + az. (20)

Using the components of
⇀

V AC resolved in FAC, the angle
of attack α and sideslip β are given by

α = atan2(W,U), β = atan2(V,
√
U2 +W 2). (21)

Note that (3)–(21) are exact kinematic equations, and thus
are applicable to all rigid aircraft. Note also that (13)–(21)
do not include sensor noise.
C. Fault-Detection Scenarios

Table I lists the available on-board sensors for fault detec-
tion. A continuous-time state-space model can be formulated
using (18)–(21) as

ẋ = fc (x, uk, uu) +D1w, (22)
y = h (x) +D2v, (23)

where x ∈ Rlx is the unknown state, uk ∈ Rluk is the known
input, uu ∈ Rluu is the unknown input, D1w ∈ Rlx is
the process noise with covariance V1

4
= D1D

T
1 ∈ Rlx×lx ,

y ∈ Rly is the output measurement, and D2v ∈ Rly is the
measurement noise with covariance V2

4
= D2D

T
2 ∈ Rly×ly ,

and the functions fc and h are known. The process and
measurement noise in (22)–(23) arise due to the fact that
the measurements are noisy.

Table II defines x, uu, uk, and y for three fault-detection
scenarios, in particular, faulty pitot tube, α-sensor, and ac-
celerometers. In each case, the state equations can be written
using (18)–(20) and (22) with lx = 3 as U̇V̇
Ẇ

=

 RV −QW − (sin Θ)g + ax
−RU + PW + (sin Φ)(cos Θ)g + ay
QU − PV + (cos Φ)(cos Θ)g + az

+D1w. (24)

In the absence of vertical gyro measurements of Φ and
Θ, the first two equations in (17) can be integrated to
obtain estimates of Φ and Θ. The matrices D1 and D2 are
determined using Tables I–II and are given as follows;

Scenario 1) Faulty pitot tube:

D1 =
[
DPQR DΦΘ Daxayaz

]
, D2 = diag (σα, σβ) ,

(25)where
DPQR

4
=

 0 −W V
W 0 −U
−V U 0

 σP 0 0
0 σQ 0
0 0 σR

 ,
DΦΘ

4
=

 0 − cos Φ
−(sin Φ) sin Θ (cos Φ) cos Θ
−(cos Φ) sin Θ −(sin Φ) cos Θ

 [σΦ 0
0 σΘ

]
,

Daxayaz
4
=

σax 0 0
0 σay 0
0 0 σaz

 .
DΦΘ is determined assuming σΦ, σΘ are small and using the
approximations

sinwΦ ≈ wΦ, sinwΘ ≈ wΘ,

coswΦ ≈ 1, coswΘ ≈ 1, wΦwΘ = wΘwΦ ≈ 0,

where wΦ and wΘ are noise on the measurements or esti-
mates of Φ and Θ, respectively, obtained from (17).

Scenario 2) Faulty α-sensor: D1 is given by (25) and

D2 = diag (σU, σβ) . (26)

Scenario 3) Faulty accelerometer:

D1 =
[
DPQR DΦΘ

]
, D2 = diag (σU, σα, σβ) . (27)
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TABLE I: On-board sensors for fault detection. The additive noise for each
sensor is assumed to be white Gaussian.

Sensors Measurements
Standard
Deviation
of Noise

Pitot Tube U σU
Rate Gyro P,Q,R σP , σQ, σR

Vertical Gyro Θ,Φ σΘ,σΦ

Accelerometers ax, ay, az σax , σay , σaz
α-sensor α σα
β-sensor β σβ

TABLE II: Scenarios for sensor fault detection

Faulty
x y uk uuSensor

ax, ay, az
Pitot Tube U, V,W α, β P,Q,R

Θ,Φ
ax, ay, az

α-sensor U, V,W U, β P,Q,R
Θ,Φ

Accelero-
U, V,W α, β, U

P,Q,R
ax, ay, azmeter Θ,Φ

III. STATE AND INPUT ESTIMATION
In Section II-C, sensor fault detection is formulated as a

problem of state and input estimation. We use the extended
Kalman filter (EKF) for state estimation and retrospective
cost input estimation (RCIE) for input estimation.

The state-space model (22)–(23) can be discretized to first
order as

x(k + 1) = f (x(k), uk(k), uu(k)) + D̂1(k)w(k), (28)
y(k) = h (x(k)) +D2v(k), (29)

where k is the time step, D̄1(k)
4
= TsD1,

f (x(k), uk(k), uu(k)) = x(k) + Tsfc (x(k), uk(k), uu(k)) ,

and Ts is the sampling time.
A. Extended Kalman Filter (EKF)

EKF consists of two steps. Assuming that u = uk, that is,
the input is fully known, the forecast step is given by

xf(k) = f (xda(k − 1), uk(k − 1)) , (30)

Pf(k) = A(k − 1)Pda(k − 1)AT(k − 1) + V̄1(k − 1),
(31)

where xf(k) ∈ Rlx is the forecast state, xda(k) ∈ Rlx is the
data assimilation state, Pf(k) ∈ Rlx×lx is the forecast error
covariance, Pda(k) ∈ Rlx×lx is the data assimilation error
covariance, V̄1 = D̄1D̄1

T is the process noise covariance,
and A(k) is the Jacobian of f given by

A(k)
4
=
∂f

∂x

∣∣∣∣
xda(k),uk(k)

. (32)

The data assimilation step is given by

Kda(k) = Pf(k)CT(k)S−1
da (k), (33)

Pda(k) = Pf(k)− Pf(k)CT(k)S−1
da (k)C(k)Pf(k), (34)

xda(k) = xf(k) +Kda(k) [y(k)− h (xf(k))] , (35)

where Kda(k) ∈ Rlx×ly is the state estimator gain, Sda(k)
4
=

C(k)Pf(k)CT(k) + V2(k), and C(k) is the Jacobian of h

C(k)
4
=
∂h

∂x

∣∣∣∣
xf (k)

. (36)

B. Retrospective Cost Input Estimation
In the case where the input is partially or fully unknown,

(30) does not explicitly account for the unknown input uu.
The effect of uu(k) can be included in the process noise w(k)
by a suitable choice of Q̄(k). A more effective approach is
to estimate uu(k) and include it in (30) and (32) with its
estimate ûu(k) as

xf(k) = f (xda(k − 1), uk(k − 1), ûu(k − 1)) , (37)

A(k) =
∂f

∂x

∣∣∣∣
xda(k),uk(k),ûu(k)

. (38)

In order to estimate ûu(k), we construct an adaptive input
estimator that minimizes

z(k)
4
= y(k)− h (xda(k)) , (39)

where z(k) ∈ Rlz is the output error. The estimated input
ûu(k) is the output of the input estimation subsystem of order
nc given by

ûu(k) =

nc∑
i=1

MT
i (k)ûT

u (k − i) +

nc∑
i=1

NT
i (k)zT(k − i),

(40)

where Mi(k) ∈ Rlûu×lûu and Ni(k) ∈ Rly×lûu . The
subsystem in (40) can be reformulated as

ûu(k) = Φ(k)θ(k), (41)

where lθ
4
= lûu

nc(lûu
+ ly), and

θ(k) = vec([MT
1 (k) · · ·MT

nc(k) NT
1 (k) · · ·NT

nc(k)]T)∈Rlθ ,
φ(k) = [ûT

u (k−1) · · · ûT
u (k−nc) yT(k−1) · · · yT(k−nc)]T,

Φ(k) = Ilûu ⊗ φ
T(k) ∈ Rlûu×lθ , (42)

where “⊗” denotes the Kronecker product, Φ(k) is the
regressor, and “vec” is the column-stacking operator.

1) Retrospective Performance: Define Gf(q)
4
=

D−1
f (q)Nf(q), where q is the forward shift operator,

nf ≥ 1 is the order of Gf , and

Nf(q)
4
= K1qnf−1 +K2qnf−2 + · · ·+Knf

, (43)

Df(q)
4
= Ilzq

nf +A1qnf−1 +A2qnf−2 + · · ·+Anf
. (44)

Furthermore, Ki ∈ Rlz×lûu for 1 ≤ i ≤ r, Aj ∈ Rlz×lz for
1 ≤ j ≤ r, and det (Df(q)) is asymptotically stable.

Next, for k ≥ 1, we define the retrospective performance
variable

ẑ(θ̂, k)
4
= z(k) + Φf(k)θ̂ − uf(k), (45)

where
Φf(k)

4
= Gf(q)Φ(k), uf(k)

4
= Gf(q)ûu(k), (46)

and θ̂ ∈ Rlθ is determined by optimization below.
2) Markov Parameters: The filter Gf at time step

k is based on the input-to-performance transfer matrix
Gzuu(q, k) = C(k)(qI − A(k))−1B(k), where A(k) is
defined by (38), C(k) is defined by (36), and B(k) is the
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Jacobian of f with respect to ûu evaluated at ûu(k−1). For
all complex numbers z whose absolute value is greater than
the spectral radius of A(k), it follows that

Gzuu(z, k) =

∞∑
i=0

Hi(k)

zi
, (47)

where, for all, i ≥ 1, the ith Markov parameter of Gzuu(z, k)
is defined by

Hi(k)
4
= C(k)A(k)i−1B(k). (48)

At each time step k, Gf is chosen to be the finite-impulse-
response (FIR) filter

Gf(q, k) =

nf∑
i=0

Hi(k)

qi
, (49)

obtained by truncating (47).
3) Cumulative Cost and RCIE Update Law: For k ≥ 1,

we define the cumulative cost function

J(k, θ̂)
4
=

k∑
i=1

(
ẑ(i)TRz ẑ(i) + [Φ(i)θ̂]TRûuΦ(i)θ̂

)
+ [θ̂ − θ(0)]TRθ[θ̂ − θ(0)], (50)

where Rθ, Rz , and Rûu
are positive definite. Let P (0) =

R−1
θ and θ(0) = θ0. Then, for all k ≥ 1, the cumulative

cost function (50) has the unique global minimizer θ̂ = θ(k)
given by the RLS update

θ(k) = θ(k−1)− P (k−1)Φ̃(k)TΓ(k)−1[Φ̃(k)θ(k−1) + z̃(k)],

where P (k) satisfies

P (k) = P (k−1)− P (k−1)Φ̃(k)TΓ(k)−1Φ̃(k)P (k−1),

Φ̃(k)
4
=

[
Φf(k)
Φ(k)

]
∈ R(lz+lûu )×lθ ,

R̃(k)
4
=

[
Rz(k) 0

0 Rûu(k)

]
∈ R(lz+lûu )×(lz+lûu ),

z̃(k)
4
=

[
z(k)− uf(k)

0

]
∈ Rlz+lûu ,

Γ(k)
4
= R̃(k)−1 + Φ̃(k)P (k−1)Φ̃(k)T.

IV. SENSOR FAULT DETECTION
The formulation in sections II–III is applicable to all rigid

aircraft. In this paper, we use the NASA Generic Transport
Model (GTM) to illustrate sensor fault detection. GTM is a
high-fidelity six-degree-of-freedom nonlinear aircraft model
with aerodynamic lookup tables [19].
A. Types of sensor faults

We consider the following types of sensor faults:
• Bias. The sensor measurement has a constant offset

from the true measurement.
• Drift. The sensor measurement has a constant-slope

deviation from the true measurement.
• Deadzone. The sensor reads zero within a specific range.
• Stuck. The sensor reading is fixed.

B. Procedure for sensor fault detection
For sensor fault detection using state and input estimation,

rich sensor signals are needed. This can be achieved either
by exciting the dynamics of the aircraft using its control
surfaces or it can arise naturally from the atmosphere, e.g.,

wind gusts. For this paper, the dynamics of the aircraft are
excited using a saturated harmonic elevator input.

For sensor fault detection, we assume the remaining sen-
sors are functional, and we define the residual

e(k)
4
=

√√√√k+kw∑
i=k

[y(i)− yest(i)]
2
, (51)

where yest is the estimate of y, and kw is the data-window
size. We call e as true residual for true value of y, and
sensor residual for measured value of y. For each numerical
example, kw = 1000 data points, and xda(0) = 0.5x(0).

V. GTM EXAMPLES
We set the sampling time Ts = 0.01 s and consider a

scenario where GTM is initially trimmed for level flight at an
altitude of 8000 ft. We excite the aircraft dynamics using the
elevator deflection δe(k) = sat2 [4 sin(60kTs + 45)] deg,
which is a saturated sinusoid with amplitude 4 deg, maxi-
mum deflection of ±2 deg, and a period of 6 s. Unless stated
otherwise, the ambient wind is constant with magnitude of
16.88 ft/s.

To emulate sensor noise, we add zero-mean white noise
to all of the sensor measurements with standard deviations
σax = σay = σaz = 0.01g, σP = σQ = σR = 0.01 rad/s,
σΦ = σΘ = 0.01 rad, σα = σβ = 0.01 rad, and σU =
1.0 ft/s.

To show the fault and noise level, we plot the true measure-
ment and sensor measurement together. We also present the
true residual to show the accuracy of the estimates. Note that
in practical application, the true measurement and thus the
true residual are not available. However, the sensor residual
can be used in practice for fault detection.

A. Fault Detection for Pitot-Tube Failure
In the following cases, the pitot tube fails by becoming

stuck at the constant value of 160 ft/s, beginning at 100 s.
First we estimate U with noisy input and output measure-

ments. Fig. 1 shows that the true residual decreases to 2
ft/s, indicating that EKF is operating correctly. However, the
sensor residual jumps after the sensor fails.

Next, to see the effect of accelerometer bias, we consider
the case with accelerometer bias bax = bay = baz = 0.01g.
Fig. 2 shows that the estimated pitot-tube measurement drifts
due to the biased accelerometers. In order to deal with these
biases, the dynamics in (22) are augmented as

ẋ = fc (x, uk, uu) + b̂+D1w,
˙̂
b = 0, (52)

where b̂ ∈ R3 is the estimated bias in the accelerometers. Fig.
3 shows that, with the augmented states, the true residual is
less than 2 ft/s, thus indicating no drift in the estimate of U .
Consequently, b̂ converges to the accelerometer bias.
B. Fault Detection for α-sensor Failure

We now present cases where the α-sensor has either a bias
or deadzone beginning at t = 100 s. We estimate α using

α̂ = atan2(Ŵ , Û), (53)

where Ŵ and Û are the state estimates of (24).
First, we consider the case where the α-sensor has a bias
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Fig. 1: Stuck pitot tube. (a) At 100 s, the sensor measurement is stuck at
160 ft/s. (b) The sensor residual jumps to a mean value of 8.5 ft/s indicating
pitot-tube failure.
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Fig. 2: Estimation of U with biased accelerometers. (a) The estimate
of U drifts from the true measurement. Beginning at 100 s, the sensor
measurement is stuck at 160 ft/s. (b) The true and sensor residuals are both
increasing, and therefore it is not possible to detect the sensor fault. This
shortcoming is overcome in Fig. 3.
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Fig. 3: Estimation of U with augmented bias states. (a) The estimate of U
indicates no drift. Beginning at 100 s, the sensor measurement is stuck at
160 ft/s. (b) The true residual is less than 2 ft/s, whereas the sensor residual
has an offset due to the stuck fault.

of 4 deg. Fig. 4 shows that the true residual is less than 0.8
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Fig. 4: α-sensor with a bias. (a) Beginning at 100 s, the α-sensor has a
bias of 4 deg. (b) The sensor residual indicates an offset due to the bias.
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Fig. 5: α-sensor with a deadzone. (a) Beginning at 100 s, the α-sensor reads
zero within ±2 deg. (b) The sensor residual indicates an offset due to the
deadzone.

deg, and the sensor residual jumps to 4.5 deg due to the bias.
Next, we consider the deadzone case where the α-sensor

reads zero within ±2 deg. Fig. 5 shows that the sensor
residual has an offset due to the deadzone.

C. Fault Detection for Accelerometer Failure

For accelerometer fault detection, we use RCIE to estimate
acceleration. To do so, we filter U and augment the states in
(24) with an additional filtered state Uf as

U̇f = −ωc(Uf − U), (54)

where ωc > 0 is the cutoff frequency. We use Uf as the output
measurement. We choose ωc = 2π rad/s, nc = 6, nf =
6, Rθ = 10−6Ilθ , and Ru = 10−3. Furthermore, we choose
Rz = 1 and Rz = 100 to estimate ax and az , respectively.

We consider cases where the accelerometer has either a
bias or drift beginning at 100 s. Fig. 6 shows that RCIE is
able to estimate ax and az . Figs. 7a and 8a show cases where
ax and az have biases of 0.05g and 0.1g, respectively. Note
that the sensor residuals have offsets due to these biases.
Figs. 7b and 8b show cases where the measurements of ax
and az drift with a slope of 0.001 g/s. Note that the sensor
residuals also drift from the respective true residuals.
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Fig. 6: Acceleration estimation using RCIE. Note that, RCIE is able to
estimate ax and az . (a) Estimation of ax. (b) Estimation of az .
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Fig. 7: ax-sensor. (a) The measurement of ax is subject to a bias. Note
that the sensor residual jumps at 100 s when the bias begins. (b) The
measurement of ax is subject to a drift. Note that the sensor residual begins
to increase at 100 s when the drift begins.
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Fig. 8: az-sensor. (a) The measurement of az is subject to a bias. Note
that the sensor residual jumps at 100 s when the bias begins. (b) The
measurement of az is subject to a drift. Note that the sensor residual begins
to increase at 100 s when the drift begins.

VI. CONCLUSIONS

In this paper, we presented a method for detecting aircraft
sensor faults using state and input estimation. We used the

extended Kalman filter (EKF) and retrospective cost input
estimation (RCIE) to estimate states and inputs, respectively.
For the estimation framework, we used the kinematics to
formulate a nonlinear state space system.

Three fault-detection scenarios, in particular, faulty pitot
tube, angle-of-attack sensor, and accelerometers were investi-
gated. We used EKF for pitot tube and angle-of-attack sensor
fault detection, and RCIE for accelerometer fault detection.
In order to illustrate sensor fault detection, we used the
NASA Generic Transport Model and presented cases for
detecting stuck, bias, drift, and deadzone sensor faults. For
all cases, we showed that the sensor residual can be used to
detect sensor faults.
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