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Abstract— Based on an exact kinematics model, this paper
considers two strategies aimed at diagnosing the health of a 3-
axis rate gyro. In the first strategy, noisy attitude measurements
are used to estimate angular velocity; comparing these estimates
to the actual rate-gyro measurements provides the means for as-
sessing the health of the rate gyro. In the second strategy, noisy
attitude and angular velocity measurements are used to estimate
the noise corrupting the rate-gyro measurements; analysis of the
noise estimate provides an alternative means for assessing the
health of the rate gyro. Both strategies are formulated as input
and state estimation problems, where extended retrospective
cost input estimation provides an estimate of the unknown input
and the unscented Kalman filter provides the state estimate.

I. INTRODUCTION

Sensor health is crucial to the operation of every feed-
back control system. Consequently, extensive research has
been devoted to developing techniques for detecting and
diagnosing sensor faults [1]. One approach is to search for
anomalies in the sensor signal [2], while another approach
is to compute sensor residuals based on the assumed model
and measured input signals [3]. Yet another approach is
to empirically identify transmissibilities between pairs of
sensors under healthy conditions and then use these relations
during subsequent operation to compute sensor residuals [4].

The focus of the present paper is on fault diagnosis for
rate gyros. These sensors are crucial for the operation of
flight control systems, but also suffer from a wide range
of potential faults [5]. The most common rate-gyro sensor
fault is an unknown bias. Since rate gyros are typically used
in an inertial measurement unit where angular velocity and
acceleration are integrated to determine position and attitude,
it is of interest to estimate the unknown bias [6].

In the present paper, we formulate the problem of diag-
nosing rate-gyro faults for a flight vehicle as a problem of
input estimation. In particular, we consider an exact model
of the kinematics of the vehicle, which circumvents the need
to measure forces and moments on the vehicle as well as the
need to know the vehicle inertia and stability derivatives.
Instead, the kinematics model views angular velocity as the
input. A related formulation is considered in [6], [7].

In order to detect rate-gyro faults, we view the angular
velocity as an unknown input, and we apply input esti-
mation methods. Input estimation is an extension of state
estimation where the goal is to estimate not only the states
but also the inputs driving the system. The literature on
input estimation is extensive [8]–[18]. In [18], we present an
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adaptive input estimation technique for nonminimum-phase-
discrete-time linear systems based on the Kalman filter and
retrospective-cost optimization. In the present paper we ex-
tend the approach in [18] to nonlinear systems by combining
the unscented Kalman filter [19], [20] and retrospective cost
input estimation [6], [18].

II. PROBLEM FORMULATION

A. Aircraft Kinematics
The Earth frame and aircraft body-fixed frame are denoted

by FE =
[
ı̂E ̂E k̂E

]
and FAC =

[
ı̂AC ̂AC k̂AC

]
,

respectively. We assume that FE is an inertial frame and
the Earth is flat. The origin OE of FE is any convenient
point fixed on the Earth. The axes ı̂E and ̂E are horizontal,
while the axis k̂E points downward. FAC is defined with
ı̂AC pointing out the nose of the aircraft, ̂AC pointing out
the right wing, and k̂AC downward, that is, k̂AC = ı̂AC×̂AC.
FAC and FE are related by

FAC =
→
RAC/E FE, (1)

where
→
RAC/E is a physical rotation matrix represented by

a 3-2-1 Euler rotation sequence involving two intermediate
frames FE′ and FE′′ . In particular,

→
RAC/E =

→
Rı̂E′′ (Φ)

→
R̂E′ (Θ)

→
Rk̂E(Ψ), (2)

where FE′ =
→
RE′/E FE, FE′′ =

→
RE′′/E′ FE′ , and

→
Rn̂ (κ)

4
= (cosκ)

→
U +(1− cosκ)n̂n̂′ + (sinκ)n̂×, (3)

where
→
U is the physical identity matrix, and the operator

“×” creates a skew-symmetric physical matrix. Note that (3)
is the Rodrigues rotation about the eigenaxis n̂ through the
eigenangle κ according to the right-hand rule.

The physical angular velocity
⇀
ωAC/E of FAC relative to

FE is related to
→
RAC/E by Poisson’s equation

AC•
→
R AC/E =

→
RAC/E

⇀
ω
×
AC/E, (4)

where AC• denotes the time derivative with respect to FAC.
We resolve

⇀
ωAC/E and

→
RAC/E in FAC using the notation P

Q
R

 4= ⇀
ωAC/E

∣∣∣∣
AC

, OE/AC
4
=
→
RAC/E

∣∣∣∣
AC

, (5)

where OE/AC is the orientation matrix of FE relative to FAC.
Resolving (2) in FAC yields

OAC/E = O1(Φ)O2(Θ)O3(Ψ), (6)
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where

O1(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 ,O2(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 ,
O3(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .
(7)

For the 3-2-1 (yaw-pitch-roll) Euler rotation sequence, we
have

⇀
ωAC/E

∣∣∣∣
AC

= Φ̇ı̂AC + Θ̇̂E′′ + Ψ̇k̂E′ . (8)

Resolving (8) in FAC using (2), (5), and (6) yields P
Q
R

 =

1 0 − sin Θ
0 cos Φ (cos Θ) sin Φ
0 − sin Φ (cos Θ) cos Φ

 Φ̇

Θ̇

Ψ̇

 . (9)

Assuming cos Θ 6= 0, the inverse transformation of (9) is
given by  Φ̇

Θ̇

Ψ̇

 = N(Φ,Θ)

 P
Q
R

 , (10)

where

N(Φ,Θ)
4
=

1 (sin Φ) tan Θ (cos Φ) tan Θ
0 cos Φ − sin Φ
0 (sin Φ) sec Θ (cos Φ) sec Θ

 . (11)

Note that (10) is an exact kinematic equation, and thus is
applicable to all rigid aircraft as well as rigid bodies.

B. Rate-Gyro Noise

Consider additive noise in the angular velocity measure-
ments Pm, Qm, Rm of the form

Pm = P + nP + wP , (12)
Qm = Q+ nQ + wQ, (13)
Rm = R+ nR + wR, (14)

where nP , nQ, nR denote deterministic or non-white stochas-
tic signals, and wP , wQ, wR denote zero-mean white noise
with known covariance D̄1w. Candidate deterministic signals
include bias, drift, and harmonics. Substituting (12)–(14) into
(10) yieldsΦ̇

Θ̇

Ψ̇

= N(Φ,Θ)

Pm

Qm

Rm

−N(Φ,Θ)

nPnQ
nR

−N(Φ,Θ)

wPwQ
wR

 .
(15)

C. Model for Input Estimation

A continuous-time state-space model for input estimation
can be formulated as

ẋ = fc (x, u, d) + D̄1w, (16)
y = h (x) +D2v, (17)

where x(k) ∈ Rlx is the unknown state, u(k) ∈ Rlu
is the known input, d(k) ∈ Rld is the unknown input,
D̄1w(k) ∈ Rlx is the process noise with known covariance
V̄1
4
= D̄1D̄

T
1 ∈ Rlx×lx , y(k) ∈ Rly is the measured output,

and D2v(k) ∈ Rlv is the measurement noise with known
covariance V2

4
= D2D

T
2 ∈ Rly×ly . Note that estimating an-

gular velocity and rate-gyro noise is equivalent to estimating
the unknown input d of the nonlinear systems (10) and (15),
respectively. The unknown input d for both cases is given
below.

1) Estimation of Angular Velocity Using Attitude Mea-
surements: In the case of (10), for estimating angular ve-
locity, x, d, and y in (16)–(17) are given by

x =

 Φ
Θ
Ψ

 , d =

 P
Q
R

 , y =

 Φ
Θ
Ψ

 . (18)

Note that u, w and D̄1 are zero in (10), and D2 is given by

D2 = diag(σΦ, σΘ, σΨ), (19)

where σΦ, σΘ, and σΨ are the standard deviations of the
additive white-noise in the measurements of Φ,Θ, and Ψ,
respectively. Comparing the angular velocity estimates to
the actual rate-gyro measurements provides the means for
assessing the health of the rate gyro.

2) Estimation of Rate-Gyro Noise Using Attitude and
Rate-Gyro Measurements: In the case of (15), for estimating
rate-gyro noise, x, u, d, w, y and D̄1 in (16)–(17) are given
by

x =

 Φ
Θ
Ψ

 , u =

 Pm

Qm

Rm

 , d =

 nP
nQ
nR

 , (20)

w =

 wP
wQ
wR

 , y =

 Φ
Θ
Ψ

 , D̄1 = −N(Φ,Θ)D̄1w, (21)

and D2 is given by (19). Analysis of the noise estimate
provides an alternative means for assessing the health of the
rate gyro.

III. INPUT AND STATE ESTIMATION FOR NONLINEAR
SYSTEMS

The state-space model (16)–(17) can be discretized to first
order as

x(k) = f (x(k−1), u(k−1), d(k−1)) +D1(k)w(k−1),
(22)

y(k) = h (x(k)) +D2v(k), (23)
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where k is the time step, D1(k)
4
= TsD̄1,

f (x(k), u(k), d(k)) = x(k) + Tsfc (x(k), u(k), d(k)) ,

and Ts is the sampling time. At each time step k, the goal
is to estimate the unknown input d(k) and the unknown
state x(k). To do so, we first estimate the unknown input
using extended retrospective cost input estimation and then
estimate the unknown state using the unscented Kalman filter.

A. Extended Retrospective Cost Input Estimation (ERCIE)

In order to estimate the unknown input d(k), we consider
the forecast step

xfc(k) = f(xda(k − 1), u(k − 1), d̂(k − 1)), (24)
ŷ(k) = h(xfc(k)), (25)
z(k) = ŷ(k)− y(k), (26)

where xfc(k) ∈ Rlx is the forecast state, d̂(k) ∈ Rld is the
input estimate, xda(k) ∈ Rlx is the data assimilation state,
and z(k) ∈ Rly is the innovations. The goal is to develop an
adaptive input estimator that minimizes z(k) by estimating
d(k).

We obtain the input estimate d̂(k) as the output of the
adaptive input-estimation subsystem of order nc given by

d̂(k) =

nc∑
i=1

Pi(k)d̂(k − i) +

nc∑
i=0

Qi(k)z(k − i), (27)

where Pi(k) ∈ Rld×ld , Qi(k) ∈ Rld×ly . ERCIE minimizes
z(k) by updating Pi(k) and Qi(k). The subsystem in (27)
can be reformulated as

d̂(k) = Φ(k)θ(k), (28)

where the regressor matrix Φ(k) is defined by

Φ(k)
4
=



d̂(k − 1)
...

d̂(k − nc)
z(k)

...
z(k − nc)



T

⊗ Ild ∈ Rld×lθ ,

and

θ(k)
4
= vec

[
P1(k) · · ·Pnc

(k) Q0(k) · · ·Qnc
(k)

]
∈ Rlθ ,

where lθ
4
= l2dnc+ldly(nc+1), “⊗” is the Kronecker product,

and “vec” is the column-stacking operator.
Define the ly × ld filter Gf(q, k)

4
= D−1

f (q, k)Nf(q, k),
where q is the forward shift operator, nf ≥ 1 is the order of
Gf ,

Nf(q, k)
4
= K1(k)qnf−1 +K2(k)qnf−2 + · · ·+Knf

(k),
(29)

Df(q, k)
4
= Ilyqnf +A1(k)qnf−1 +A2(k)qnf−2 + · · ·+Anf

(k),
(30)

and, for all 1 ≤ i ≤ nf and k ≥ 0, Ki(k) ∈ Rly×ld and
Ai(k) ∈ Rly×ly .

Next, for all k ≥ 0, we define the retrospective input

d∗(θ∗, k)
4
= Φ(k)θ∗ (31)

and the corresponding retrospective performance variable

z∗(θ∗, k) = z(k) + Φf(k)θ∗ − d̂f(k), (32)

where

Φf(k)
4
= Gf(q, k)Φ(k), d̂f(k)

4
= Gf(q, k)d̂(k), (33)

and θ∗ ∈ Rlθ is determined by optimization below.
To construct Gf , we define the following matrices

A(k)
4
=
∂f

∂x

∣∣∣∣
xda(k),u(k),d̂(k)

, (34)

G(k)
4
=
∂f

∂d

∣∣∣∣
xda(k),u(k),d̂(k)

, (35)

C(k + 1)
4
=
∂h

∂x

∣∣∣∣
xf (k)

, (36)

Ā(k)
4
= A(k)[I +Kda(k)C(k)], (37)

where Kda is defined by (57) in Section III-B. Gf(q, k) in
(32) is the FIR filter

Gf(q, k) =

nf∑
i=1

Hi(k)
1

qi
, (38)

where, for all i ≥ 1,

Hi(k)
4
=

{
C(k)G(k−1), i = 1,

C(k)
(∏i−1

j=1 Ā(k−j)
)
G(k−i), i ≥ 2.

(39)

For k > 1, we define the cumulative cost function

J(θ∗, k)
4
=

k∑
i=0

(
z∗(θ∗, i)TRzz

∗(θ∗, i) + [Φ(i)θ∗]TRdΦ(i)θ∗
)

+ [θ∗ − θ(0)]TRθ[θ
∗ − θ(0)], (40)

where Rz , Rd, and Rθ are positive definite. Let P (0) = R−1
θ

and θ(0) = θ0. Then, for all k ≥ 1, the cumulative cost
function (40) has the unique global minimizer θ∗ = θ(k)
given by the RLS update

θ(k) = θ(k−1)− P (k−1)Φ̃(k)TΓ(k)[Φ̃(k)θ(k−1) + z̃(k)],

where P (k) satisfies

P (k) = P (k−1)− P (k−1)Φ̃(k)TΓ(k)Φ̃(k)P (k−1),

Φ̃(k)
4
=

[
Φf(k)
Φ(k)

]
∈ R(ly+ld)×lθ ,

R̃(k)
4
=

[
Rz(k) 0

0 Rd(k)

]
∈ R(ly+ld)×(ly+ld),

z̃(k)
4
=

[
z(k)− d̂f(k)

0

]
∈ Rly+ld ,

Γ(k)
4
= [R̃(k)−1 + Φ̃(k)P (k−1)Φ̃(k)T]−1.
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B. Unscented Kalman Filter for State Estimation (UKF)
Let S be a set of sigma points consisting of 2lx+1 vectors

and their associated weights

S = {(xi,Wi) : i = 0, . . . , 2lx}. (41)

To provide an unbiased state estimate, the weights Wi satisfy
2lx∑
i=0

Wi = 1. (42)

Define

λ
4
= α2(lx + µ)− lx, (43)

c
4
= lx + λ, (44)

where α ∈ R and µ ∈ R are tunable. The sigma points and
their associated weights are chosen as

x0(k − 1) = xda(k − 1), (45)

xi(k − 1) = xda(k − 1) + (
√
cPda(k − 1))i,

i = 1, . . . , lx, (46)

xi+lx(k − 1) = xda(k − 1)− (
√
cPda(k − 1))i,

i = 1, . . . , lx, (47)

W0 =
λ

c
, (48)

Wi =
1

2c
, i = 1, . . . , 2lx. (49)

where xda(k) ∈ Rlx is the data assimilation state.
Pda(k) ∈ Rlx×lx is the data assimilation error covariance,
and (

√
cPda(k − 1))i is the ith column of the positive semi-

definite square root of cPda(k − 1).
Each sigma point is transformed through (24) as

xfc,i(k) = f(xi(k − 1), u(k − 1), d̂(k − 1)). (50)

We use the transformed points obtained from (50) to compute
their mean and covariance as

x̄fc(k) =

2lx∑
i=0

Wixfc,i(k), (51)

Pfc(k) =

2lx∑
i=0

Wix̃fc,i(k)(x̃fc,i(k))T

+ (1+β−α2)x̃fc,0(k)(x̃fc,0(k))T + V1 + Vd̂, (52)

where x̃fc,i(k)
4
= xfc,i(k)− x̄fc(k), Vd̂ represents the process

noise covariance due to d̂, and β ∈ R is tunable. We then
transform sigma points through the observation model

yfc,i(k) = h(xi(k − 1)). (53)

and calculate their mean and covariance as

ȳfc(k) =

2lx∑
i=0

Wiyfc,i(k), (54)

Pyfc(k) =

2lx∑
i=0

Wiỹfc,i(k)(ỹfc,i(k))T

+ (1 + β − α2)ỹfc,0(k)(ỹfc,0(k))T + V2, (55)
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Fig. 1: Estimation of the angular velocity of the quadrotor resolved in
FAC using attitude measurements. ERCIE estimates are compared with the
vehicle’s rate-gyro measurements.

where ỹfc,i(k)
4
= yfc,i(k) − ȳfc(k). The cross covariance

between the two errors x̃fc,i(k) and ỹfc,i(k) is

Px̃fcỹfc(k) =

2lx∑
i=0

Wix̃fc,i(k)(ỹfc,i(k))T

+ (1 + β − α2)x̃fc,0(k)(ỹfc,0(k))T. (56)

The data assimilation step is given by

Kda(k) = Px̃fcỹfc(k)P−1
yfc

(k), (57)

Pda(k) = Pfc(k)−Kda(k)PT
x̃fcỹfc

(k), (58)

xda(k) = xfc(k) +Kda(k) [y(k)− ȳfc(k)] , (59)

where Kda(k) ∈ Rlx×ly is the state estimator gain.

IV. NUMERICAL AND EXPERIMENTAL RESULTS

A. Estimation of Angular Velocity

In the laboratory setup, we estimate the angular velocity of
a quadrotor resolved in FAC using the formulation in Section
II-C.1. The attitude (Φ,Θ,Ψ) of the vehicle is obtained using
a Vicon system and recorded for post-flight data analysis. To
compare the estimated angular velocity with the measured
angular velocity, data from the vehicle’s rate-gyro is recorded
and time-stamped.

We discretize (16) using (22) with Ts = 0.01 s, which
is the sample rate of the recorded data. We choose Vd̂ =
10−4I3×3, V2 = 10−2I3×3, nc = 6, nf = 36, Rθ =
10−2Ilθ , Rd = 10−4Ild , and Rz = Ily .

Fig. 1 shows the accuracy of the ERCIE estimate of
the angular velocity of the quadrotor using the attitude
measurement obtained from the Vicon system.
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Fig. 2: Estimation of bias. The RMSE of the bias estimates after t = 5 sec in
P, Q, and R measurements are 0.11, 0.21 and 0.19 deg/sec, respectively.

B. Estimation of Rate-Gyro Noise

In this section, we use the NASA Generic Transport Model
(GTM) to illustrate ERCIE for estimating rate-gyro noise
using the formulation in Section II-C.2. GTM is a high-
fidelity six-degree-of-freedom nonlinear aircraft model with
aerodynamic lookup tables [21].

We set the sampling time Ts = 0.01 s and consider a
scenario where GTM is initially trimmed in level flight at
an altitude of 8000 ft. An excitation in dynamics is needed
to obtain sufficiently rich sensor signals for input and state
estimation. We excite the aircraft dynamics using the elevator
deflection δe(k) = sat2 [4 sin(60kTs + 45)] deg. Physically,
the displacement of the elevator is a saturated sinusoid with
amplitude 4 deg, maximum deflection of ±2 deg, and a
period of 6 s. Note that, the excitation can also arise naturally
from the atmosphere, e.g., wind gusts.

We choose Vd̂ = 10−6I3×3, nc = 6, nf = 36, Rθ =
10−2Ilθ , Rd = 0, and Rz = Ily . For all of the examples,
we choose the standard deviation of wP , wQ, wR in (12)–
(14) to be 1 deg/sec, and hence D̄1w = I3×3 deg/sec.
We first consider cases where the Euler-angle measurements
(Φ,Θ,Ψ) have no noise, and choose V2 = 10−4I3×3.

Fig. 2 shows the case where the rate-gyro measurements
have bias. The magnitudes of the bias are 2,−4 and 4
deg/sec in P, Q, and R measurements, respectively. The
Root-Mean-Squared-Error (RMSE) of the bias estimates
after t = 5 sec in P, Q, and R measurements are 0.11, 0.21
and 0.19 deg/sec, respectively.

Fig. 3 shows the case where the rate-gyro measurements
have both bias and drift. The bias magnitudes are the same
as in Fig. 2. The drift begins at t = 20 sec with a slope of 0.1
and −0.1 deg/sec2 in Q and R measurements, respectively.
The RMSE of the rate-gyro noise estimates after t = 5 sec in
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Fig. 3: Estimation of bias and drift. The drift begins at t = 20 sec with a
slope of 0.1 and −0.1 deg/sec2 in Q and R measurements, respectively.
The RMSE of the rate-gyro noise estimates after t = 5 sec in P, Q, and
R measurements are 0.61, 0.26 and 0.26 deg/sec, respectively.

P, Q, and R measurements are 0.61, 0.26 and 0.26 deg/sec,
respectively.

Fig. 4 shows the case where the noise in rate-gyro
measurements is a random walk. At each time step k, the
random walk is modeled as an increase or decrease in the
noise magnitude by 0.1 deg/sec with equal probabilities. The
RMSE of the random walk noise estimates after t = 5 sec
in P, Q, and R measurements are 1.0, 1.2 and 0.8 deg/sec,
respectively.

We now consider the case where the Euler angle-
measurements (Φ,Θ,Ψ) are corrupted by white noise with
standard deviation 0.5 deg/sec and hence V2 = 0.0045I3×3.
Fig. 5 shows the case where the rate-gyro measurements
have bias. The magnitudes of the bias are the same as in
Fig. 2. The RMSE of the bias estimates after t = 5 sec in
P, Q, and R measurements are 0.24, 0.40 and 0.40 deg/sec,
respectively.

V. CONCLUSION

This paper presented two strategies, namely, i) estimating
angular velocity, and ii) estimating rate-gyro noise, for di-
agnosing the health of a 3-axis rate gyro based on an exact
kinematics model. Both strategies were formulated as input
and state estimation problems, where the unknown inputs
were estimated using the extended retrospective cost input
estimation (ERCIE), and the unknown states were estimated
using the unscented Kalman filter.

For estimating angular velocity, we demonstrated the
method on laboratory data, where camera measurements
were used to estimate the angular velocity of a quadrotor
with validation based on onboard rate-gyros. For estimating
rate-gyro noise, we used the NASA generic transport model
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Fig. 4: Estimation of random walk in rate-gyro measurements. The RMSE
of the noise estimates after t = 5 sec in P, Q, and R measurements are
1.0, 1.2 and 0.81 deg/sec, respectively.
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Fig. 5: Estimation of bias in rate-gyro measurements using noisy Euler-angle
measurements. The magnitudes of the bias are the same as in Fig. 2. The
RMSE of the bias estimates after t = 5 sec in P, Q, and R measurements
are 0.24, 0.40 and 0.40 deg/sec, respectively.

and showed that ERCIE was able to estimate the bias, drift,
and random-walk noise in rate-gyro measurements.
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