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I. INTRODUCTION

Data assimilation for large-scale systems has gained in-

creasing attention due to nonlinear and computationally

intensive applications such as weather forecasting [1, 2].

These problems require algorithms that are computation-

ally tractable despite the enormous dimension of the state.

Reduced-order variants of the classical Kalman filter have

been developed [3, 4]. A comparison of several techniques is

given in [5].

An alternative technique for reducing the computational

requirements of data assimilation for high-dimensional sys-

tems is the reduced-rank filter [6, 7]. In this method, the

error-covariance matrix is factored to obtain a square root,

whose rank is then reduced through truncation. The truncated

square root is then propagated by the data assimilation

algorithm.

The primary technique for truncating the error-covariance

matrix is the singular value decomposition (SVD), wherein

the singular values are used to determine which entries

of the error covariance matrix are most relevant to the

accuracy of the state estimates [6, 7]. In related work [8],

it is observed that the Kalman filter estimate update depends

on the product CkPk, where Ck is the measurement map

and Pk is the error covariance. In particular, it is shown in

[8] that approximation of CkPk leads directly to truncation

based on the Cholesky decomposition. Filter reduction based

on the Cholesky decomposition provides state-estimation

accuracy that is competitive with, and in many cases superior

to, that of the SVD. An additional advantage of using the

Cholesky decomposition in place of the SVD for reduced-

rank filtering is the fact that the Cholesky decomposition is

computationally less expensive than the SVD.

To assimilate data in nonlinear systems, particle filters

are used to propagate a collection of state estimates from

which statistics can be computed. These techniques include

the ensemble Kalman filter (EnKF) [10, 11], which uses a

stochastic construction, as well as the unscented Kalman

filter (UKF) [12, 13], which deterministically constructs the

collection of state estimates by perturbing the nominal state

estimate. Specifically, UKF constructs the ensemble mem-

bers by using the columns of the square root of the error

covariance to perturb the nominal state estimate. For a model

of order n, the n columns and their negatives result in 2n+1
ensemble members and thus 2n + 1 model updates.
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A straightforward approach to reducing the UKF ensemble

size is to use a factorization-and-truncation method to trun-

cate n−q columns of the square root of the error covariance

and construct the ensemble members using the remaining q

columns. In [14], SVD-based decomposition-and-truncation

is used to construct reduced-rank approximations of the

square root of the error covariance, which are then used to

construct the ensemble members resulting in an ensemble of

size 2q + 1.

In this paper, we use the Cholesky-based decomposition

technique developed in [8] to construct the reduced-ensemble

members. Specifically, we use the Cholesky decomposition

to obtain a square root of the error covariance and select

columns of the Cholesky factor to approximate CkPk. The

retained columns of the Cholesky factor are used to construct

the ensemble members. We compare the performance of the

Cholesky-decomposition-based reduced-rank UKF and the

SVD-based reduced-rank UKF on a linear advection model

and a nonlinear system with chaotic dynamics.

II. THE UNSCENTED KALMAN FILTER

We consider the discrete-time system with nonlinear

dynamics

xk+1 = f(xk, uk, k) + wk (2.1)

and linearly dependent measurements

yk = Ckxk + vk, (2.2)

where xk, wk ∈ R
n, uk ∈ R

m, and yk, vk ∈ R
p. The input

uk and output yk are assumed to be measured, and wk and

vk are uncorrelated zero-mean white noise processes with

covariances Qk and Rk, respectively. We assume that Rk is

positive definite. The objective is to obtain estimates of the

state xk using measurements yk. When the dynamics (2.1)

are linear, the Kalman filter provides estimates that minimize

the mean-square-error (MSE) in the state estimates [16].

Let x ∈ R
n, and let P ∈ R

n×n be positive semidefinite.

The unscented transformation provides 2n + 1 ensembles

Xi ∈ R
n and corresponding weights γi ∈ R, for 0 =

1, . . . , 2n, such that the weighted mean and weighted vari-

ance of the ensembles are x and P , respectively. Specifically,

let S ∈ R
n×n satisfy SST = P , and, for all i = 1, . . . , n,

let coli(S) denote the ith column of S. For α > 0, the

unscented transformation X = Ψ(x, S, α) ∈ R
n×(2n+1) of

x with covariance P = SST is defined by

X ,
[

X0 · · · X2n

]

, (2.3)
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where

Xi ,











x, i = 0,

x +
√

αcoli(S), i = 1, . . . , n,

x −√
αcoli−n(S), i = n + 1, . . . , 2n.

(2.4)

The parameter α determines the spread of the ensembles

around x. Next, define the weights γi ∈ R by

γ0 ,
α − n

α
, γi ,

1

2α
, i = 1, . . . , 2n. (2.5)

Then,

2n
∑

i=0

γiXi = x,

2n
∑

i=0

γi(Xi − x)(Xi − x)T = P. (2.6)

UKF uses the unscented transformation to approximate the

error covariance and estimate the state xk. Letting xf
0 denote

an initial estimate of x0 with error covariance P f
0 , UKF is

given by the following steps.

UKF data assimilation step:

xda
k = xf

k + Kk(yk − yf
k), (2.7)

yf
k = Ckxf

k, (2.8)

Xda
k = Ψ(xda

k , Sda
k , α) =

[

Xda
0,k · · · Xda

2n,k

]

, (2.9)

Sda
k = Sf

kH f
k, (2.10)

Kk = P f
kCT

k (CkP f
kCT

k + Rk)−1, (2.11)

where H f
k ∈ R

n×n satisfies

H f
k(H f

k)T=In−(CkSf
k)T(CkSf

k(CkSf
k)T+Rk)−1CkSf

k(2.12)

and Sf
k ∈ R

n×n satisfies

Sf
k(Sf

k)T = P f
k. (2.13)

Finally, define P da
k ∈ R

n×n by

P da
k , Sda

k (Sda
k )T. (2.14)

UKF forecast step:

X f
i,k+1 = f(Xda

i,k, uk, k), i = 0, . . . , 2n, (2.15)

xf
k+1 =

2n
∑

i=0

γiX
f
i,k+1, (2.16)

P f
k+1 =

2n
∑

i=0

γi∆X f
i,k+1(∆X f

i,k+1)
T + Qk, (2.17)

where ∆X f
i,k , X f

i,k − xf
k. When the dynamics in (2.1) are

linear, UKF is equivalent to the Kalman filter [12]. Further-

more, in the linear case, P da
k and P f

k are the covariances of

the error xk − xda
k and xk − xf

k, respectively. However, in

the nonlinear case, P da
k and P f

k are pseudo-error covariances.

The case in which the measurements depend nonlinearly on

the state is discussed in [13].

Note that H f
k and Sf

k satisfying (2.12) and (2.13) are

not unique. Moreover, all square H f
k and Sf

k satisfying

(2.12) and (2.13) are related by an orthogonal transformation.

Specifically, the following result is given in [18, p. 188].

Lemma 2.1: Let S, Ŝ ∈ R
n×n. Then, SST = ŜŜT if

and only if there exists an orthogonal matrix U ∈ R
n×n such

that Ŝ = SU .

III. SVD-BASED REDUCED-RANK UNSCENTED

KALMAN FILTER

To reduce the ensemble size, we use a reduced-rank ap-

proximation P̂ f
s,k of P f

s,k. The reduced-rank approximations

are chosen such that ‖P̂ f
s,k −P f

s,k‖F is minimized subject to

rank(P̂ f
s,k) = q, where ‖·‖F denotes the Frobenius norm. Let

P ∈ R
n×n be positive semidefinite, let σ1 > · · · > σn > 0

be the singular values of P , and let u1, . . . , un ∈ R
n be the

corresponding mutually orthogonal singular vectors. Next,

define Uq ∈ R
n×q and Σq ∈ R

q×q by

Uq ,
[

u1 · · · uq

]

, Σq , diag(σ1, . . . , σq). (3.1)

With this notation, the singular value decomposition of P is

given by P = UnΣnUT
n , where Un ∈ R

n×n is orthogonal.

For q 6 n, let ΦSVD(P, q) ∈ R
n×q denote the SVD-

based rank-q approximation of the square root UnΣ
1/2
n of

P given by ΦSVD(P, q) , UqΣ
1/2
q . As noted in [18],

P̂ = SST, where S , ΦSVD(P, q), is the best rank-q

approximation of P with respect to the Frobenius norm.

The SVD-based reduced-rank square-root unscented Kalman

filter (SVDRRUKF) is given by the following steps.

SVDRRUKF data assimilation step:

xda
s,k = xf

s,k + Ks,k(yk − yf
s,k), (3.2)

yf
s,k = Ckxf

s,k, (3.3)

Xda
s,k = Ψq(x

da
s,k, Sda

s,k, α) =
[

Xda
s,0,k · · ·Xda

s,2q,k

]

, (3.4)

Sda
s,k = Sf

s,kH f
s,k, (3.5)

Ks,k = Sf
s,k(CkSf

s,k)T
(

CkSf
s,k(CkSf

s,k)T + Rk

)−1
, (3.6)

where H f
s,k ∈ R

q×q satisfies (2.12) with Sf
k replaced by Sf

s,k.

SVDRRUKF forecast step:

X f
s,i,k+1 = f(Xda

s,i,k, uk, k), i = 0, . . . , 2q, (3.7)

xf
s,k+1 =

2q
∑

i=0

γq,iX
f
s,i,k+1, (3.8)

P f
s,k+1 =

2q
∑

i=0

γq,i∆X f
s,i,k+1(∆X f

s,i,k+1)
T + Qk, (3.9)

Sf
s,k+1 = ΦSVD(P f

s,k+1, q). (3.10)

where ∆X f
s,i,k , X f

s,i,k − xf
s,k.

Next, define P̂ f
s,k, P̂ da

s,k ∈ R
n×n by

P̂ f
s,k , Sf

s,k(Sf
s,k)T, P̂ da

s,k , Sda
s,k(Sda

s,k)T. (3.11)

It then follows from (3.5) that

P̂ da
s,k = P̂ f

s,k − P̂ f
s,kCT

k (CkP̂ f
s,kCT

k + Rk)−1CkP̂ f
s,k. (3.12)

Furthermore, (3.6) and (3.12) imply that

Ks,k = P̂ f
s,kCT

k (CkP̂ f
s,kCT

k + Rk)−1. (3.13)

Since the SVD in (3.10) is computationally intensive [9],

we introduce an alternative method to obtain a reduced-

rank approximation of a square root of the pseudo-error

covariance.
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IV. CHOLESKY-DECOMPOSITION-BASED

REDUCED-RANK UNSCENTED KALMAN FILTER

The filter gain Kk of UKF depends on a particular

subspace of the forecast error covariance P f
k. Specifically,

Kk depends only on the correlation CkP f
k between the

error in the measured states and unmeasured states. Since

rank(Ck) = p, there exists a state space basis with respect

to which Ck has the form

Ck =
[

Ip 0
]

. (4.1)

The following result is given in [8].

Lemma 4.1: Partition P f
k as

P f
k =

[

P f
p,k (P f

pp,k)T

P f
pp,k P f

p,k

]

, (4.2)

where P f
p,k ∈ R

p×p and P f
p,k ∈ R

p×p, and assume that Ck

has the form (4.1). Then,

Kk =

[

P f
p,k

P f
pp,k

]

(P f
p,k + Rk)−1. (4.3)

To reduce the ensemble size, we construct a filter that

uses a reduced-rank approximation P̂ f
c,k of P f

c,k such that

rank(P̂ f
c,k) < n and ‖Ck(P̂ f

c,k − P f
c,k)‖F is minimized. To

obtain P̂ f
c,k, we perform a Cholesky decomposition of the

pseudo-error covariance P f
c,k at each time step. Assuming

that P ∈ R
n×n is positive definite, the Cholesky decompo-

sition of P yields a unique lower triangular Cholesky factor

L ∈ R
n×n satisfying

LLT = P. (4.4)

Truncating the last n−q columns of L =
[

L1 · · · Ln

]

yields the rank-q Cholesky factor

ΦCHOL(P, q) ,
[

L1 · · · Lq

]

∈ R
n×q. (4.5)

The following result is given in [8].

Lemma 4.2: Let P ∈ R
n×n be positive definite, define

S , ΦCHOL(P, q), where 0 < q 6 n, and partition P and

P̂ , SST as

P =

[

Pq Pqq

(Pqq)
T Pq

]

, P̂ =

[

P̂q P̂qq

(P̂qq)
T P̂q

]

, (4.6)

where Pq, P̂q ∈ R
q×q and Pq, P̂q ∈ R

q×q . Then,
[

P̂q P̂qq

]

=
[

Pq Pqq

]

. (4.7)

Lemma 4.2 implies that, if S = ΦCHOL(P, q), then

the first q columns and rows of SST and P are equal.

The Cholesky-decomposition-based reduced-rank unscented

Kalman filter (CDRRUKF) is summarized as follows.

CDRRUKF data assimilation step:

xda
c,k = xf

c,k + Kc,k(yk − yf
c,k), (4.8)

yf
c,k = Ckxf

c,k, (4.9)

Xda
c,k = Ψq(x

da
c,k, Sda

c,k, α), (4.10)

Sda
c,k = Sf

c,kH f
c,k, (4.11)

Kc,k = Sf
c,k(CkSf

c,k)T
(

CkSf
c,k(CkSf

c,k)T+Rk

)−1
, (4.12)

where H f
c,k ∈ R

q×q satisfies (2.12) with Sf
k replaced by Sf

c,k.

CDRRUKF forecast step:

X f
c,i,k+1 = f(Xda

c,i,k, uk, k), i = 0, . . . , 2q (4.13)

xf
k+1 =

2q
∑

i=0

γq,iX
f
c,i,k+1, (4.14)

P f
c,k+1 =

2q
∑

i=0

γq,i∆X f
c,i,k+1(∆X f

c,i,k+1)
T + Qk, (4.15)

Sf
c,k+1 = ΦCHOL(P f

c,k+1, q), (4.16)

where ∆X f
c,i,k = X f

c,i,k − xf
c,k.

Next, define P̂ da
c,k, P̂ f

c,k ∈ R
n×n by P̂ f

c,k , Sf
c,k(Sf

c,k)T

and

P̂ da
c,k , P̂ f

c,k − P̂ f
c,kCT

k (CkP̂ f
c,kCT

k + Rk)−1CkP̂ f
c,k. (4.17)

It then follows from (4.11) that Sda
c,k(Sda

c,k)T = P̂ da
c,k. Further-

more, (4.12) and (4.17) imply that

Kc,k = P̂ f
c,kCT

k (CkP̂ f
c,kCT

k + Rk)−1. (4.18)

Hence, like the estimator gain Ks,k of SVDRRUKF, the

estimator gain Kc,k of CDRRUKF depends on a reduced-

rank approximation P̂ f
c,k of the pseudo-error covariance

P f
c,k. Due to the rank-reduction step (4.16), CDRRUKF is

generally not equivalent to UKF. However, we now discuss

cases in which the performance of CDRRUKF is close to

that of UKF.

A. Basis Selection for CDRRUKF

The following result given in [8] shows that CDRRUKF

is equivalent to UKF for a single time step when Ck has the

form (4.1).

Proposition 4.1: Assume that p 6 n, q = p, and Ck

has the structure in (4.1). Let P f
k ∈ R

n×n be positive

semidefinite and Kk be given by (2.11). Furthermore, define

Sf
c,k , ΦCHOL(P f

k, q) and let P̂ f
c,k be given by (4.17). Then,

CkP̂ f
c,k = CkP f

k and hence, Kc,k = Kk.

If the dynamics (2.1) are linear and time-invariant, that is,

for all k > 0,

xk+1 = Axk + Buk + wk, (4.19)

yk = Cxk + vk, (4.20)

then a basis for the state x can be chosen so that CDRRUKF

is equivalent to UKF for r > 0 time steps. To construct such

a basis, we define the observability matrix O(A,C) ∈ R
pn×n

by

O(A,C)
△
=

[

CT (CA)T · · · (CAn−1)T
]T

. (4.21)

The following result is given in [8].

Proposition 4.2: Assume that O(A,C) has the form

O(A,C) =

[

In

0(p−1)n×n

]

. (4.22)

Let r > 0 be an integer such that pr < n, and let q =
pr. Furthermore, assume that P f

c,0 = P f
0 . Then, for all k =

0, . . . , r, Kc,k = Kk. If, in addition, xf
c,0 = xf

0, then for all

k = 0, . . . , r, xf
c,k = xf

k.

Let xk have entries xk =
[

x1,k · · · xn,k

]T
. If

O(A, C) has the form (4.22), and uk = wk = vk = 0,
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for all k > 0, then for all k > 0, and for every integer r > 0
such that pr 6 n,

[

yT
k · · · yT

k+r−1

]T
=

[

xT
1,k · · · xT

pr,k

]T
. (4.23)

Next, we consider the nonlinear system (2.1) and assume

that the dynamics in (2.1) can be expressed as

xi,k+1 = fi(xφL(i,b), . . . , xφR(i,b), uk, k) + wi,k, (4.24)

where i = 1, . . . , n, b > 0 and

φL(i, b) , max(1, i − b), φR(i, b) , min(n, i + b). (4.25)

For example, in systems modeled by finite volume schemes,

the next value of a physical variable in a given cell depends

only on the present values of the physical variables in its

neighboring cells.

Next, let yk denote a measurement of a specific component

of the state, so that yk = xj,k+vk, where j ∈ {1, . . . , n}, j−
rb > 1, and j + rb 6 n. It follows from (4.24) that, if wk =
vk = 0, for all k > 0, then yk, . . . , yk+r−1 depends on only

first 2rb components of the state vector x̃k at time step k.

Hence, a state space basis can be chosen such that the outputs

yk, . . . , yk+r−1 depend on only the first few components of

the state vector.

V. LINEAR ADVECTION MODEL

Consider a linear advection model [2] with n cells, and

let xi,k be the energy in the ith cell at time k. The energy

flow satisfies

xi,k+1 =

{

xi−1,k, if i = 2, . . . , n,

xn,k, if i = 1.
(5.1)

Hence, energy in the ith cell flows to the (i + 1)th cell,

while the periodic boundary condition ensures that the energy

circulates continually. We choose n = 100 and assume that

the disturbance wk enters selected cells, where wk ∈ R
n

is a white noise process with covariance Qk = Q for all

k > 0, and Q ∈ R
n×n is diagonal with nonzero entries

Qi = 1 only for i ∈ {10, 20, . . . , 100}. Next, we assume that

measurements of the energy in cells 50 and 51 are available

so that yk = [x50,k x51,k]T + vk, where vk is white noise

process with covariance Rk = 0.1I2.

First, we use the measurements yk to estimate the energy

in the remaining cells using UKF. In all three cases, the

initial estimates xf
0, xf

s,0, and xf
c,0 are not equal to the initial

state x0. Moreover, we choose P f
0 = P f

s,0 = P f
c,0 = 0.1In.

Finally, we choose α = 0.6 for all three filters.

As shown in Figure 1 and Figure 2, data assimilation is

performed using SVDRRUKF and CDRRUKF for several

values of q between 5 and 100. It can be seen that the

performance of SVDRRUKF with 111 ensemble members

(q = 55) is close to optimal, whereas the performance of

CDRRUKF is close to optimal with 11 ensemble members

(q = 5). The steady-state MSE of state estimates for

various values of q is plotted in Figure 3 and Figure 4.

The performance of SVDRRUKF is poor when q < 55, and

close to optimal when q > 55. Thus the ensemble size can

be reduced from 201 to 111 with negligible change in the

performance. However, the ensemble size can be reduced

from 211 to 11 with negligible performance deterioration.

Next, we repeat the same procedure except with a poor

estimate of the process noise covariance for data assimilation.

Specifically, we replace Qk in (3.9) and (4.15) by Q̂k, where

Q̂k = I for all k > 0. The steady-state MSE of state

estimates for different choices of q is plotted in Figure 3

and Figure 4. SVDRRUKF with a poor estimate of the error

covariance is unstable for all q 6 95 (indicated by the X’s).

However, Figure 4 shows that even with q = 5 and a poor

estimate of the process noise covariance, the performance of

CDRRUKF is close to optimal.

Finally, we replace Qk in (4.16) with Q̂k, where Q̂k = αI

for all k > 0, and perform state estimation using CDRRUKF.

The steady-state MSE of the state estimates is shown in

Figure 5 for several values of α. For all the cases, the perfor-

mance of CDRRUKF is close to optimal when α > 1. This

suggests that it is advantageous to overestimate the process

noise covariance. SVDRRUKF is unstable for all choices of

α = 0.005, . . . , 50. Hence, these simulations suggest that

CDRRUKF is more robust than SVDRRUKF with respect

to uncertainties in the process noise covariance. All of the

results for CDRRUKF in figures 1-6 are obtained using a

state space basis with respect to which the observability

matrix has the form (4.22).

VI. L96 MODEL

The L96 model mimics the propagation of an unspecified

meteorological quantity along a latitude circle [17]. The

dynamics are governed by

d

dt
xi(t) = (xi+1(t) − xi−2(t))xi−1(t) − xi(t) + ui(t), (6.1)

where xi(t) ∈ R denotes the meteorological quantity at the

ith grid point at time t, ui ∈ R denotes an external forcing

term, and wi denotes unknown disturbances affecting the ith

grid point. For all t > 0, the boundary conditions are defined

by x0(t) = xn(t), x−1(t) = xn−1(t), xn+1(t) = x1(t).
We choose ui(t) = 8 for all i = 1, . . . , n and all t > 0. Using

fourth-order Runge-Kutta discretization with a sampling time

of 0.05 s, we obtain a discrete-time model of (6.1) that

can be expressed as (2.1). Furthermore, we assume that

the discretized model is corrupted by an unknown external

disturbance that affects specified cells. We choose n = 40,

and assume that wk is white noise process with covariance

Qk = Q for all k > 0, where Q ∈ R
n×n is diagonal with

nonzero entries Qi,i = 0.1 only for i ∈ {5, 15, 25, 35}. Next,

we assume that measurements from cells with 20 and 21 are

available so that yk = [x20,k x21,k]
T

+vk, where vk is white

noise process with covariance Rk = 0.01I2.

We use the measurements yk to estimate the state in the

cells where measurements are not available. Next, as shown

in Figure 6 and Figure 7, we reduce the ensemble size and

use SVDRRUKF and CDRRUKF with q = 10, 20, 30. It

can be seen that the performance of SVDRRUKF is poor

compared to the performance of CDRRUKF for both q = 20
and q = 30. Moreover, the performance of CDRRUKF with
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Fig. 1. MSE of the state estimates obtained from SVDRRUKF for several
values of q. SVDRRUKF with q = 5 is unstable, while the performance of
SVDRRUKF with q = 55 is close to the performance of full-order UKF.

61 (q = 30) ensemble members is close to the performance

of UKF with 81 ensemble members.

Next, we replace Qk in (3.9) and (4.15) by Q̂k, where

Q̂k = αI for all k > 0. Figure 8 shows the time-averaged

MSE of state estimates obtained using SVDRRUKF and

CDRRUKF with q = 10 and q = 20 for several values

of α between 0.001 and 100. It can be seen that, for all

values of α, the performance of CDRRUKF is superior to

the performance of SVDRRUKF. In fact, CDRRUKF with

21 ensemble members (q = 10) consistently outperforms

SVDRRUKF with 41 ensemble members (q = 20). Finally,

note that (6.1) can be expressed as (4.24) with b = 1. All of

the results for CDRRUKF in figures 8-12 are obtained using

the state space basis discussed in Section IV-A.

VII. CONCLUSIONS

We developed a reduced-rank square-root unscented

Kalman filter based on the Cholesky decomposition of the

pseudo-error covariance. We compare the performance of

the Cholesky-based filter with an analogous filter that uses

the singular value decomposition for a linear advection

model and a nonlinear system that exhibits chaotic behavior.

Although the computational requirement of the Cholesky-

based reduced-rank filter is less than that of the SVD-

based reduced-rank filter, the results presented here suggest

that the estimation accuracy of the Cholesky-based reduced-

rank filter is significantly better than that of SVD-based

reduced-rank filter. Moreover, simulation results suggest that

the Cholesky-based reduced-rank filter is more robust to

uncertainties in the process noise covariance than the SVD-

based reduced-rank filter.
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