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I. INTRODUCTION

The problem of state estimation for large-scale systems has

gained increasing attention due to computationally intensive

applications such as weather forecasting [1, 2], where state

estimation is commonly referred to as data assimilation.

For these problems, there is a need for algorithms that are

computationally tractable despite the enormous dimension of

the state.

One approach to obtaining more tractable algorithms is

to consider reduced-order Kalman filters. These reduced-

complexity filters provide state estimates that are suboptimal

relative to the classical Kalman filter [3, 4]. Alternative

reduced-order variants of the classical Kalman filter have

been developed for computationally demanding applications

[5, 6], where the classical Kalman filter gain and covariance

are modified so as to reduce the computational requirements.

A comparison of several techniques is given in [7].

A widely studied technique for reducing the computational

requirements of the Kalman filter for large scale systems

is the reduced-rank filter [8, 9]. In this method, the error-

covariance matrix is factored to obtain a square root, whose

rank is then reduced through truncation. This factorization-

and-truncation method has direct application to the problem

of generating a reduced ensemble for use in particle filter

methods [10, 11].

The primary technique for truncating the error-covariance

matrix is the singular value decomposition (SVD) [8–11],

wherein the singular values provide guidance as to which

components of the error covariance are most relevant to the

accuracy of the state estimates. Approximation based on the

SVD is largely motivated by the fact that error-covariance

truncation is optimal with respect to approximation in uni-

tarily invariant norms, such as the Frobenius norm. Despite

this theoretical grounding, there appear to be no criteria to

support the optimality of approximation based on the SVD

within the context of recursive state estimation.

In the present paper we begin by observing that the

Kalman filter update depends on the product CkPk, where

Ck is the measurement map and Pk is the error covariance.

To develop this idea, we show that approximation of CkPk

leads directly to truncation based on the Cholesky decompo-

sition. Filter reduction based on the Cholesky decomposition

provides state-estimation accuracy that is competitive with,

and in many cases superior to, that of the SVD. An additional

advantage of using the Cholesky decomposition in place
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of the SVD for reduced-rank filtering is the fact that the

Cholesky decomposition is computationally less expensive

than the SVD, specifically, O(n3/6) versus O(2n3)[12].

II. THE KALMAN FILTER

Consider the discrete-time system

xk+1 = Akxk + Gkwk, (2.1)

yk = Ckxk + Hkvk, (2.2)

where xk ∈ R
n, wk ∈ R

dw , yk ∈ R
p, vk ∈ R

dv , and Ak, Gk,

Ck, and Hk are known real matrices of appropriate sizes. We

assume that wk and vk are zero-mean white processes with

unit covariances. Define Qk , GkGT
k and Rk , HkHT

k

and assume that Rk is positive definite for all k > 0.

Furthermore, we assume that wk and vk are uncorrelated

for all k > 0. The objective is to obtain an estimate of the

state xk using the measurements yk.

The Kalman filter provides the optimal minimum-variance

estimate of the state xk. The Kalman filter can be expressed

in two steps, namely, the data assimilation step, where the

measurements are used to update the states, and the forecast

step, which uses the model.

Data Assimilation Step

Kk = P f
kCT

k (CkP f
kCT

k + Rk)−1, (2.3)

P da
k = P f

k − P f
kCT

k (CkP f
kCT

k + Rk)−1CkP f
k, (2.4)

xda
k = xf

k + Kk(yk − Ckxf
k). (2.5)

Forecast Step

xf
k+1 = Akxda

k , (2.6)

P f
k+1 = AkP da

k AT
k + Qk. (2.7)

The states xf
k and xda

k are the forecast and data assimila-

tion estimates of the state xk, while the matrices P f
k ∈ R

n×n

and P da
k ∈ R

n×n are the state error covariances, that is,

P f
k = E[ef

k(ef
k)T], P da

k = E[eda
k (eda

k )T], (2.8)

where ef
k , xk − xf

k, eda
k , xk − xda

k .

III. SVD-BASED REDUCED-RANK SQUARE-ROOT

FILTER

To reduce the computational requirements, we consider

a filter that uses reduced-rank approximations of the error

covariances. Instead of updating the error covariances, we

propagate predicted error covariances P̃ da
s,k and P̃ f

s,k using

reduced-rank approximations P̂ da
s,k and P̂ f

s,k. The reduced-

rank approximations are chosen so that rank(P̂ da
s,k) < n and

rank(P̂ f
s,k) < n, and such that ‖P̃ da

s,k − P̂ da
s,k‖F and ‖P̃ f

s,k −

P̂ f
k‖F are minimized.
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Let P ∈ R
n×n be positive semidefinite, let σ1 > · · · >

σn be the singular values of P , and u1, . . . , un ∈ R
n be

the corresponding orthogonal singular vectors. Next, define

Uq ∈ R
n×q and Σq ∈ R

q×q by

Uq ,
[

u1 · · · uq

]

, Σq , diag (σ1, · · · , σq) . (3.1)

With this notation, the singular value decomposition of P
is given by P = UnΣnUT

n , where Un is orthogonal. For

q 6 n, let ΦSVD(P, q) ∈ R
n×q denote the SVD-based rank-q

approximation of a square-root of P given by ΦSVD(P, q) ,

UqΣ
1/2
q . Note that SST, where S , ΦSVD(P, q), is the

best rank-q approximation of P in the Frobenius norm.

Specifically, denoting the Frobenius norm by ‖ · ‖F, we have

the following result in [14].

Lemma 3.1: Let P ∈ R
n×n be positive semidefinite,

and let σ1 > · · · > σn be the singular values of P . If S =
ΦSVD(P, q), then

min
rank(P̂ )=q

‖P − P̂‖F = ‖P − SST‖2
F = σ2

q+1 + · · · + σ2
n. (3.2)

The data assimilation and forecast steps of the SVD-based

rank-q square-root filter are given by the following steps:

Data Assimilation step

Ks,k = P̂ f
s,kCT

k (CkP̂ f
s,kCT

k + Rk)−1, (3.3)

P̃ da
s,k = P̂ f

s,k − P̂ f
s,kCT

k (CkP̂ f
s,kCT

k + Rk)−1CkP̂ f
s,k, (3.4)

xda
s,k = xf

s,k + Ks,k(yk − Ckxf
s,k), (3.5)

Forecast step

xf
s,k+1 = Akxda

s,k, (3.6)

P̃ f
s,k+1 = AkP̂ da

s,kAT
k + Qk, (3.7)

where P̂ f
s,k , S̃f

s,k(S̃f
s,k)T, P̂ da

s,k , S̃da
s,k(S̃da

s,k)T, S̃f
s,k ,

ΦSVD(P̃ f
s,k, q), S̃da

s,k , ΦSVD(P̃ da
s,k, q), and P̃ f

s,0 is positive

semidefinite.

Next, define the forecast and data assimilation error co-

variances P f
s,k and P da

s,k of the SVD-based rank-q square-root

filter by

P f
s,k , E[(xk − xf

s,k)(xk − xf
s,k)T], (3.8)

P da
s,k , E[(xk − xda

s,k)(xk − xda
s,k)T]. (3.9)

Using (2.1), (3.5) and (3.6), it follows that

P da
s,k =(I−Ks,kCk)P f

s,k(I−Ks,kCk)T+Ks,kRkKT
s,k, (3.10)

P f
s,k = AkP da

s,kAT
k + Qk. (3.11)

Note that P̃ f
s,k and P̃ da

s,k are predicted error covariances

and not covariances of the state error. Furthermore, since

Ks,k 6= Kk, the SVD-based rank-q square-root filter is

a suboptimal filter. However, under certain conditions, the

SVD-based rank-q square-root filter is equivalent to the

Kalman filter.

Proposition 3.1: Assume that P̃ f
s,k = P f

k and

rank(P f
k) 6 q. Then, Ks,k = Kk, P̃ da

s,k = P da
k , and

P̃ f
s,k+1 = P f

k+1.

Proof. Since rank(P̃ f
s,k) 6 q, it follows from Lemma 3.1

that

P̂ f
s,k = S̃f

s,k

(

S̃f
s,k

)T

= P̃ f
s,k. (3.12)

Hence, it follows from (3.3) that Ks,k = Kk. Furthermore,

it follows from (2.4), (3.4), and (3.12) that

P̃ da
s,k = P da

k . (3.13)

Since rank(P f
k) 6 q, it follows from (2.4) that rank(P da

k ) 6
q and hence (3.13) implies that rank(P̃ da

s,k) 6 q. Therefore,

Lemma 3.1, (??) and (??) imply that

P̂ da
s,k = S̃da

s,k

(

S̃da
s,k

)T

= P̃ da
s,k. (3.14)

Hence, it follows from (3.13) and (3.14) that P̂ da
s,k = P da

k ,

and therefore (2.7) and (3.7) imply that P̃ f
s,k+1 = P f

k+1. 2

Corollary 3.1: Assume that xf
s,0 = xf

0, P̃ f
s,0 = P f

0 , and

rank(P f
0) 6 q. Furthermore, assume that, for all k > 0,

rank(Ak) + rank(Qk) 6 q. Then, for all k > 0, Ks,k = Kk

and xf
s,k = xf

k.

Proof. Using Proposition 3.1 and induction, it can be shown

that Ks,k = Kk and xf
s,k = xf

k for all k > 0. 2

IV. CHOLESKY-FACTORIZATION-BASED

REDUCED-RANK SQUARE-ROOT FILTER

The Kalman filter gain Kk depends only on the correla-

tion CkP f
k between the error in the measured states and the

unmeasured states. We thus have the following observation.

Lemma 4.1: Assume that P̂k ∈ R
n×n is positive

semidefinite. Partition P̂k and P f
k as

P̂k =

[

P̂q,k (P̂qq,k)T

P̂qq,k P̂q,k

]

, P f
k =

[

P f
q,k (P f

qq,k)T

P f
qq,k P f

q,k

]

, (4.1)

where P̂q,k, P f
q,k ∈ R

q×q and P̂q,k, P f
q,k ∈ R

q×q, assume

that Ck has the form

Ck =
[

Iq 0
]

, (4.2)

and define K̂k by

K̂k , P̂kCT
k (CkP̂kCT

k + Rk)−1. (4.3)

Furthermore, let

[

P̂q,k

(

P̂qq,k

)T
]

=

[

P f
q,k

(

P f
qq,k

)T
]

.

Then, K̂k = Kk.

Proof. The result follows from (2.3), (4.1), (4.2) and (4.3)

that K̂k = Kk. 2

Next, we consider a filter that updates the predicted

error covariances P̃ da
c,k and P̃ f

c,k using reduced-rank approx-

imations P̂ da
c,k and P̂ f

c,k such that rank(P̂ da
c,k) < n and

rank(P̂ f
c,k) < n, and such that ‖Ck(P̃ da

c,k − P̂ da
c,k)‖F and

‖Ck(P̃ f
c,k − P̂ f

c,k)‖F are minimized.

Let P ∈ R
n×n be positive definite. The Cholesky fac-

torization yields a lower triangular Cholesky factor L ∈
R

n×n that satisfies LLT = P . Partition L as L =
[

L1 · · · Ln

]

, so that truncating the last n− q columns

of L yields the rank-q Cholesky factor

ΦCHOL(P, q) ,
[

L1 · · · Lq

]

∈ R
n×q. (4.4)

Lemma 4.2: Let P ∈ R
n×n be positive definite, define

S , ΦCHOL(P, q) and P̂ , SST, and partition P and P̂ as

P =

[

Pq Pqq

(Pqq)
T Pq

]

, P̂ =

[

P̂q P̂qq

(P̂qq)
T P̂q

]

, (4.5)
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where Pq, P̂q ∈ R
q×q and Pq, P̂q ∈ R

q×q . Then,
[

P̂q P̂qq

]

=
[

Pq Pqq

]

.

Proof. Let L be the Cholesky factor of P . Since L is lower

triangular, LiL
T
i ∈ R

n×n has the structure

LiL
T
i =

[

0i−1 0(i−1)×(n−i+1)

0(n−i+1)×(i−1) ♯

]

, (4.6)

where ♯ denotes an inconsequential entry, and therefore
n

∑

i=q+1

LiL
T
i =

[

0q 0q×q

0q×q ♯

]

. (4.7)

Since P =
∑n

i=1 LiL
T
i , it follows from (4.4) that P = P̂ +

∑n
i=q+1 LiL

T
i . Therefore, using (4.7) yields P̂q = Pq and

P̂qq = Pqq . 2

Lemma 4.2 implies that, if S = ΦCHOL(P, q), then the

first q columns and rows of SST and P are equal.

The data assimilation and forecast steps of the Cholesky-

based rank-q square-root filter are given by the following

steps:

Data Assimilation step

Kc,k = P̂ f
c,kCT

k (CkP̂ f
c,kCT

k + Rk)−1, (4.8)

P̃ da
c,k = P̂ f

c,k − P̂ f
c,kCT

k (CkP̂ f
c,kCT

k +Rk)−1CkP̂ f
c,k, (4.9)

xda
c,k = xf

c,k + Kc,k(yk − Ckxf
c,k). (4.10)

Forecast step

xf
c,k+1 = Akxda

c,k, (4.11)

P̃ f
c,k+1 = AkP̂ da

c,kAT
k + Qk, (4.12)

where

P̂ f
c,k , S̃f

c,k

(

S̃f
c,k

)T

, P̂ da
c,k , S̃da

c,k

(

S̃da
c,k

)T

, (4.13)

S̃f
c,k , ΦCHOL(P̃ f

c,k, q), S̃da
c,k , ΦCHOL(P̃ da

c,k, q), (4.14)

and P̃ f
c,0 is positive definite.

Next, define the forecast and data assimilation error co-

variances P f
c,k and P da

c,k, respectively, of the Cholesky-based

rank-q square-root filter by

P f
c,k , E[(xk − xf

c,k)(xk − xf
c,k)T], (4.15)

P da
s,k , E[(xk − xda

c,k)(xk − xda
c,k)T], (4.16)

that is, P f
c,k and P da

c,k are the error covariances when the

Cholesky-based rank-q square-root filter is used. Using (2.1),

(4.10) and (4.11), it can be shown that

P da
c,k =(I−Kc,kCk)P f

c,k(I−Kc,kCk)T+Kc,kRkKT
c,k, (4.17)

P f
c,k = AkP da

c,kAT
k + Qk. (4.18)

Again, like the SVD-based rank-q square-root filter, the

Cholesky-based rank-q square-root filter is suboptimal and

generally not equivalent to the Kalman filter. However, the

following result shows that, in certain cases, the Cholesky-

based rank-q square-root filter is equivalent to the Kalman

filter.

Proposition 4.1: Assume that p = q, Ck has the form

Ck =
[

Iq 0
]

, (4.19)

partition P f
k and P̃ f

c,k as

P f
k=

[

P f
q,k (P f

qq,k)T

P f
qq,k P f

q,k

]

, P̃ f
c,k=

[

P̃ f
c,q,k (P̃ f

c,qq,k)T

P̃ f
c,qq,k P̃ f

cq,k

]

,(4.20)

where P f
q,k, P̃ f

c,q,k ∈ R
q×q and P f

q,k, P̃ f
c,q,k ∈ R

q×q , and

assume that [P̃ f
c,q,k P̃ f

c,qq,k] = [P f
q,k P f

qq,k]. Then, Kc,k =
Kk. If, in addition, Ak has the form

Ak =

[

Aq,k 0
Aqq,k Aq,k

]

, (4.21)

where Aq,k ∈ R
q×q and Aq,k ∈ R

q×q , then
[

P̃ f
c,q,k+1 P̃ f

c,qq,k+1

]

=
[

P f
q,k+1 P f

qq,k+1

]

.

Proof. Partition P̂ f
c,k as

P̂ f
c,k =

[

P̂ f
c,q,k (P̂ f

c,qq,k)T

P̂ f
c,qq,k P̂ f

c,q,k

]

, (4.22)

where P̂ f
q,k ∈ R

q×q is positive semidefinite and P̂ f
q,k ∈ R

q×q .

It follows from Lemma 4.2 and (4.14) that

P̂ f
c,q,k = P̃ f

c,q,k, P̂ f
c,qq,k = P̃ f

c,qq,k. (4.23)

Therefore, it follows from Lemma 4.1 and (4.8) that Kc,k =
Kk.

Next, partition P da
k as

P da
k =

[

P da
q,k (P da

qq,k)T

P da
qq,k P da

q,k

]

, (4.24)

where P da
q,k ∈ R

q×q is positive semidefinite and P da
q,k ∈ R

q×q .

It follows from (2.4) that

P da
q,k = P f

q,k − P f
q,k(P f

q,k + Rk)−1P f
q,k, (4.25)

P da
qq,k = P f

qq,k − P f
qq,k(P f

q,k + Rk)−1P f
q,k. (4.26)

Now, partition P̃ da
c,k and P̂ da

c,k as

P̃ da
c,k=

[

P̃ da
c,q,k (P̃ da

c,qq,k)T

P̃ da
c,qq,k P̃ da

c,q,k

]

, P̂ da
c,k=

[

P̂ da
c,q,k (P̂ da

c,qq,k)T

P̂ da
c,qq,k P̂ da

c,q,k

]

,(4.27)

where P̃ da
q,k, P̂ da

q,k ∈ R
q×q are positive semidefinite and

P̃ da
q,k, P̂ da

q,k ∈ R
q×q . Therefore, it follows from (4.9), (4.19),

(4.22), and (4.27) that

P̃ da
c,q,k = P̂ f

c,q,k − P̂ f
c,q,k(P̂ f

c,q,k + Rk)−1P̂ f
c,q,k, (4.28)

P̃ da
c,qq,k = P̂ f

c,qq,k − P̂ f
c,qq,k(P̂ f

c,q,k + Rk)−1P̂ f
c,q,k. (4.29)

Hence, comparing (4.25) with (4.28) and (4.26) with (4.29),

and using

[

P̃ f
c,q,k

(

P̃ f
c,qq,k

)T
]

=

[

P f
q,k

(

P f
qq,k

)T
]

and

(4.23) yields

P̃ da
c,q,k = P da

q,k, P̃ da
c,qq,k = P da

qq,k. (4.30)

Moreover, since Sda
c,k = ΦCHOL(P̃ da

c,k, q), it follows from

Lemma 4.2 that P̂ da
c,q,k = P̃ da

c,q,k, P̂ da
c,qq,k = P̃ da

c,qq,k.

Therefore, (4.30) implies that P̂ da
c,q,k = P da

q,k, P̂ da
c,qq,k = P da

qq,k.

Now assume that Ak has the form (4.21). Then (2.7)

implies that

P f
q,k+1 =Aq,kP da

q,kAT
q,k + Qq,k, (4.31)

P f
qq,k+1 =Aq,kP da

qq,kAT
q,k+Aqq,kP da

q,kAT
q,k + Qqq,k, (4.32)
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where Qk has entries

Qk =

[

Qq,k (Qqq,k)T

Qqq,k Qq,k

]

. (4.33)

Furthermore, it follows from (4.12), (4.21) and (4.27) that

P̃ f
c,q,k+1 =Aq,kP̂ da

c,q,kAT
q,k + Qq,k, (4.34)

P̃ f
c,qq,k+1 =Aq,kP̂ da

c,qq,kAT
q,k+Aqq,kP̂ da

c,q,kAT
q,k+Qqq,k.

(4.35)

Therefore, (4.31), (4.32), (4.34), and (4.35) imply that

P̃ f
c,q,k+1 = P f

q,k+1 and P̃ f
c,qq,k+1 = P f

qq,k+1. 2

The previous result showed that the Cholesky-based rank-

q square-root filter is equivalent to the Kalman filter for

only a single time-step. The following result guarantees this

equivalence for all time-steps.

Corollary 4.1: Assume that Ck and Ak are of the form

(4.19) and (4.21). Let P̃ f
c,q,0 = P f

q,0, P̃ f
c,qq,0 = P f

qq,0, and

xf
c,0 = xf

0. Then, for all k > 0, Kc,k = Kk, and hence

xf
c,k = xf

k.

Proof. Using induction and Proposition 4.1 yields Kc,k =
Kk for all k > 0. Hence, it follows from (2.5), (2.6), (4.10),

and (4.11) that xf
c,k = xf

k for all k > 0. 2

In the following section, we present a result for time-

invariant systems that guarantees that the Cholesky-based

rank-q filter is equivalent to the Kalman filter for a few time-

steps even when the measurement and dynamics map are not

constrained according to (4.19) and (4.21)

A. Linear Time-Invariant Systems

Next, we consider linear time-invariant systems and

hence assume that, for all k > 0, Ak = A, Ck = C, Gk = G,

Hk = H , Qk = Q, and Rk = R. Next, we assume that

p < n and (A,C) is observable so that the observability

matrix O ∈ R
pn×n defined by

O ,
[

CT (CA)T · · · (CAn−1)T
]T

(4.36)

has full column rank. Next, without loss of generality we

consider a basis such that

O =

[

In

0(p−1)n×n

]

. (4.37)

Therefore, (4.36) and (4.37) imply that, for every positive

integer i such that ip 6 n,

CAi−1 =
[

0p×p(i−1) Ip 0p×(n−pi)

]

. (4.38)

Next, we present a result that shows that the Cholesky-

based rank-q square-root filter is equivalent to the Kalman

filter for a specific number of time steps. To do this, we first

present the following results.

Lemma 4.3: Let i be a positive integer, and for all k >
0, let P̂k ∈ R

n×n satisfy

CAi−1P̂k+1 = CAiP̂kAT + CAi−1Q

− CAiP̂kCT(CP̂kC + R)−1CP̂kAT.
(4.39)

Assume that CAiP̂k = CAiP f
k and CP̂k = CP f

k. Then,

CAi−1P̂k+1 = CAi−1P f
k+1.

Proof. The result follows from (2.4),(2.7), and (4.39). 2

Lemma 4.4: Assume that P̂k ∈ R
n×n satisfies (4.39)

for all k > 0 and i = 1, . . . , r. Let CAi−1P̂0 = CAi−1P f
0

for i = 1, . . . , r. Then, for all k = 0, . . . , r, CP̂k = CP f
k.

Proof. The result follows from repeated application of

Lemma 4.3. 2

Proposition 4.2: Let r > 0 be an integer such that 0 <
q = pr < n. Furthermore, assume that P̃ f

c,0 = P f
0 . Then, for

all k = 0, . . . , r, Kc,k = Kk. If, in addition, xf
c,0 = xf

0, then

for all k = 0, . . . , r, xf
c,k = xf

k.

Proof. It follows from Lemma 4.2 and (4.38) that, for all

k > 0 and i = 1, . . . , r,

CAi−1P̂ f
c,k = CAi−1P̃ f

c,k, CAi−1P̂ da
c,k = CAi−1P̃ da

c,k.(4.40)

Note that P̃ f
c,k+1 = AP̂ da

c,kAT + Q, and therefore

CAi−1P̃ f
c,k+1 = CAiP̂ da

c,kAT + CAi−1Q. (4.41)

Substituting (4.40) into (4.41) yields

CAi−1P̂ f
c,k+1 = CAiP̃ da

c,kAT + CAi−1Q, (4.42)

for i = 1, . . . , r. Using (4.9) in (4.42) yields

CAi−1P̂ f
c,k+1=CAi

[

P̂ f
c,k+CAi−1Q

− P̂ f
c,kCT(CP̂ f

c,kCT+R)−1CP̂ f
c,k

]

AT,
(4.43)

for all k > 0 and i = 1, . . . , r. Since P̃ f
c,0 = P f

0 , it follows

from Lemma 4.2 that, for i = 1, . . . , r, CAi−1P̂ f
c,0 =

CAi−1P f
0 . Hence, it follows from (4.43) and Lemma 4.4

that, for k = 0, . . . , r, CP̂ f
k = CP f

k. Finally, (2.3) and (4.8)

imply that, for k = 0, . . . , r, Kc,k = Kk, and hence, for all

k = 0, . . . , r, xf
c,k = xf

k. 2

Hence, the Cholesky-based rank-q square-root filter is

equivalent to the Kalman filter for a fixed number of time

steps that depend on the rank q of the approximations of the

predicted error covariances, as well as the dimension p of the

output. However, in general P̃ f
c,k and P f

k are not equal for all

k = 0, . . . , r even though Proposition 4.2 implies that Kc,k

and Kk are equal. Moreover, Kc,k and Kk are generally not

equal for k > r.

V. EXAMPLES

We compare the performance of the SVD-based rank-

q square-root filter and the Cholesky-based rank-q square-

root filter with the Kalman filter for two linear time-invariant

systems.

A. Compartmental Model

Consider n compartments or subsystems exchanging en-

ergy through mutual interaction [13]. Applying conservation

of energy yields, for i = 1, . . . , n,

Ei,k+1 = (1 − β)Ei,k − α (xi+1,k − xi,k)

− α (xi,k − xi−1,k) + Pi,k,
(5.1)

where Ei,k is the energy in the i-th compartment, Pi,k is

the external disturbance affecting the i-th compartment, 0 <
β < 1 is the loss coefficient, and 0 < α < 1 is the flow

coefficient. It follows from (5.1) that

xk+1 = Axk + Gwk, (5.2)
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where Pi,k = giwi,k, xk , [E1,k · · · En,k]
T

, wk ,

[w1,k · · · wn,k]
T

,

A ∈ R
n×n, and G ∈ R

n×n is defined by G ,
diag(g1, . . . , gn). Let n = 20, α = 0.35 and β = 0.5.

We assume that the disturbance wk affects all of the com-

partments so that gi 6= 0 for i = 1, . . . , n. The external

disturbance wk is modeled as a white-noise process with unit

covariance. Finally, we use measurements of the energy in

the 10th and 11th compartments to estimate the energy in all

of the compartments, that is, yk =
[

x10,k x11,k

]T
+ vk.

To evaluate the performance of the SVD-based and

Cholesky-based reduced-rank square-root filters, we compare

the costs Jk, Js,k and Jc,k, where Jk , tr(P f
k), Js,k =

tr(P f
s,k), Jc,k = tr(P f

c,k). In all cases, we initialize the

three filters with xf
0 = xf

c,0 = xf
s,0 = 0 and P f

0 = P̃ f
c,0 =

P̃ f
s,0 = I20.

We compare the performance of the SVD-based and

Cholesky-based filters for q = 2, 5, 10. The steady-state

performance of the SVD-based rank-q square-root filter and

the Cholesky-based rank-q square-root filter, respectively,

is shown in Figure 2. Figure 3 shows the performance of

the SVD-based reduced-rank square-root filter Js,k and the

Cholesky-based reduced-rank square-root filter Jc,k, when

q = 2 in both cases. Finally, we plot Jc,k/Jk and Js,k/Jk

when q = 10. Note that p = 2, and hence, r = 5 satisfies

q = pr. Therefore, it follows from Proposition 4.2 that the

Cholesky-based rank-q square-root filter is equivalent to the

Kalman filter for k = 0, . . . , 5, as confirmed by Figure 4.

B. N -mass system

Next, we consider the mass-spring-damper model

shown in Figure 1. For i = 1, . . . , 10, mi = 1 kg, while

kj = 1 N/m and cj = 0.2 N-s/m for j = 1, . . . , 11. We

assume that an external force wi,k acts on the mass mi,

where wi,k is a white-noise process with unit covariance so

that

xk+1 = Axk + wk, (5.3)

where x , [q1 q̇1 · · · q10 q̇10]
T

, w , [w1 · · · w10]
T

,

and A ∈ R
20×20 is obtained using a zero-order-hold dis-

cretization of the continuous-time dynamics. We assume

that the displacement of the 5th mass is measured so that,

yk = q5,k + vk, where vk is white-noise process with unit

covariance. Again, we initialize the Kalman filter and the

reduced-rank square-root filters with xf
0 = xf

c,0 = xf
s,0 = 0

and P f
0 = P̃ f

c,0 = P̃ f
s,0 = I20.

We compare the performance of the reduced-rank square-

root filters for q = 4 and q = 8. The mean-squared error

(MSE) in the estimates of the position of the masses is shown

in Figure 5. It can be seen that, for a specific choice of q,

the performance of the Cholesky-based rank-q square-root

filter is better than the performance of the SVD-based rank-q
square-root filter. The MSE in the estimates of the velocities

of the masses is shown in Figure 6.

Fig. 1. Mass-spring-dashpot system.
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Fig. 2. Steady-state performance of the SVD-based and Cholesky-based
reduced-rank filters for q = 2, 5, 10. Note that n = 20 and even when
q = 2, the performance of the Cholesky-based reduced-rank square-root
filter is similar to that of the Kalman filter. The steady-state performance
of the Kalman filter is shown as the dashed line for comparison.

VI. CONCLUSIONS

We developed a reduced-rank square-root Kalman filter

based on the Cholesky factorization. We presented condi-

tions under which the SVD-based reduced-rank square-root

Kalman filter and the Cholesky-based reduced-rank square-

root Kalman filter are equivalent to the Kalman filter. In

general, neither the Cholesky-based nor SVD-based reduced-

rank square-root filter consistently outperforms the other.

However, in this paper, we showed two examples where the

Cholesky-based reduced-rank square-root filter performs bet-

ter than the SVD-based reduced-rank square-root filter. Since

the Cholesky factorization is a computationally efficient

algorithm compared to the singular value decomposition,

the Cholesky-based reduced-rank square-root filter provides

a computationally efficient alternative method for reduced-

rank square-root filtering.
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