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Abstract— In this paper we investigate the origins of
butterfly-shaped hysteresis maps. In particular, we show that
there exist 2-to-1 maps that transform oriented simple closed
curves into multi-loop closed curves with loops of opposite
orientations. As an illustrative application, the hysteretic input-
output map of the preloaded two-bar linkage mechanism
becomes a butterfly when a 2-to-1 map is applied to it. In this
case, the application of the 2-to-1 map to the hysteresis loop is
equivalent to plotting an alternative output variable. We also
investigate the hysteretic maps of ferroelectric materials that
are transformed into a butterfly through a 2-to-1 map.

I. INTRODUCTION

Hysteresis is a characteristic property of a nonlinear sys-

tem whose periodic steady-state response retains a nontrivial

input-output loop (called the hysteresis map) as the frequency

of excitation approaches zero. The underlying mechanism

that gives rise to hysteresis is multistability, which refers to

the existence of multiple attracting equilibria. Under slow

excitation, the state of the system is attracted to different

equilibria depending on the direction of the input [1].

Hysteretic systems arise in a vast range of applications,

such as ferromagnetics, smart materials, biological systems,

and aerodynamics. In some applications, the dynamic re-

sponse is independent of the frequency of excitation, and

thus the dynamic response is identical to the hysteresis

map. Such systems have rate-independent hysteresis. In most

applications, however, the dynamic response depends on the

frequency of excitation, and thus the dynamic response is

distinct from the hysteresis map. Such systems have rate-

dependent hysteresis. For details, see [2]. In the present

paper, we focus only on the hysteresis map, that is, on

the periodic steady-state response and ignore the transient

response of the system.

The present paper focuses on butterfly shaped hysteresis

maps, which arise in optics and smart materials [3–12]. A

hysteresis map is a butterfly when it consists of two loops

of opposite orientation. In many applications, the shape of

the hysteresis map is reminiscent of butterfly wings, which

explains the terminology.

Although butterfly hysteresis is widely observed in the

literature, we are not aware of any explanations of the

significance or origin of the characteristic shape of the map.

In the present paper we show that any simple (that is, single-

loop) hysteresis map can be transformed into a multi-loop

hysteresis map with alternating loop orientation by means of

a 2-to-1 mapping of the output variable. When more than two
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loops appear, we call the hysteresis map a multibutterfly. In

particular, we provide an example in which a 2-to-1 map

transforms a simple loop into a triple-loop butterfly. The

extension of these ideas to n-to-1 maps is immediate.

To illustrate this phenomenon, we revisit the preloaded

two-bar linkage, which is a classical example of elastic

instability [13]. The hysteretic nature of this mechanism

is studied in [14], where the hysteresis map is shown to

be a simple closed curve in terms of the force input and

linkage joint displacement. In the present paper, we consider

an alternative output variable, namely, the displacement of

the spring-loaded mass. In this case the resulting hysteresis

map is a butterfly. This dual-loop hysteresis map with op-

posite orientations arises from the 2-to-1 mapping between

the linkage joint displacement and the displacement of the

spring-loaded mass.

The contents of the paper are as follows. In Section

2 we show that, for each oriented simple closed curve

there exists a 2-to-1 map that transforms the curve into

a butterfly or a multibutterfly. In Section 3 we revisit the

preloaded two-bar linkage mechanism studied in [14] and

demonstrate that an alternative output variable corresponds

to a mapping that transforms the single-loop hysteresis map

into a butterfly. In Section 4 we consider an example of

hysteresis in ferroelectric materials from [3], and we find

the 2-to-1 transformation map that turns the simple hysteresis

loop into the butterfly.

II. TRANSFORMATION FROM A SIMPLE CURVE TO A

MULTI-LOOP

In this section we show that for each oriented simple

closed curve there exists a 2-to-1 mapping that transforms

the curve into a butterfly loop. We illustrate this phenomenon

with several examples.

Throughout this section, let C be an oriented simple closed

curve and let [F0, F1] × [x0, x1] be the smallest rectangle

containing C. We assume that, for each F ∈ [F0, F1], there

exist at most two points (F, xmin(F )), (F, xmax(F )) ∈ C,

such that xmin(F ) < xmax(F ). The following definitions

are needed.

Definition 2.1: A continuous map f : [x0, x1] → R is

2-to-1 if there exists xc ∈ (x0, x1) such that f is increasing

on [x0, xc) and decreasing on (xc, x1], or vice versa.

Definition 2.2: An oriented closed curve with two loops

of opposite orientation is called a butterfly. An oriented

closed curve with three or more loops of alternating ori-

entation is called a multibutterfly.

Fact 2.1: Let f : [x0, x1] → R be a 2-to-1 map

and let [F0, F1] = cl(I1) ∪ cl(I2), where I1 and I2

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrA02.1

978-1-4244-4524-0/09/$25.00 ©2009 AACC 3977



are disjoint open intervals. Assume that, for all F ∈
I1, f(xmin(F )) < f(xmax(F )) and, for all F ∈ I2,

f(xmin(F )) > f(xmax(F )). Then f(C) is a butterfly.

Note that cl(I1) ∩ cl(I2) is a single point.

Example 2.1: Let C be a circle centered at origin

shown in Figure 1(a). For each value of F there are at

most two corresponding values of x(F ). The set of points

corresponding to xmax(F ) is shown as the dashed curve,

while the set of points corresponding to xmin(F ) is shown

as the solid curve. Figure 1(b) shows the 2-to-1 mapping

f(x) = 1 − |x| applied to C. Note that f is continuous and

increasing to the left of xc = 0 and decreasing to the right

of xc = 0. The curve C′ = f(C) is shown in Figure 1(c).

However, C′ is not a butterfly because, for all values of F

in the interval I1 = (−1, 0) and for all values of F in the

interval I2 = (0, 1), f(xmax(F )) = f(xmin(F )). In fact, C′

is not a closed curve but rather collapses into the degenerate

curve shown in Figure 1(c).
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Fig. 1. Transformation that gives a degenerate curve. The original simple
closed curve C in (a) is transformed by the mapping f(x) = 1−|x| shown
in (b). The resulting curve shown in (c) is degenerate.

Example 2.2: Consider C shown in Figure 2(a). The

set of points corresponding to xmax(F ) is shown as the

dashed line, while the set of points corresponding to xmin(F )

is shown as the solid curve. As in Example 2.1, for each

value of F there are at most two corresponding values of

x(F ). Figure 2(b) shows the same 2-to-1 mapping f used

in Example 2.1. The curve C′ = f(C) is shown in Figure

2(c). However, the curve C′ is not a butterfly because, for all

F in cl(I1) ∪ cl(I2), where I1 = (−1, 0) and I2 = (0, 1),
f(xmax(F )) > f(xmin(F )). Note that, although C′ has two

loops, both loops have the same orientation, and thus C′ is

not a butterfly.
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Fig. 2. Transformation that gives a two-loop curve that is not a butterfly.
The original simple closed curve C shown in (a) is transformed by the
mapping f(x) = 1−|x| shown in (b). The resulting curve shown in (c) has
two loops but is not a butterfly since both curves have the same orientation.

Example 2.3: Consider C shown in Figure 3(a). For each

value of F there are at most two corresponding values of

x(F ). The set of points corresponding to xmax(F ) is shown

by the dashed curve, while the set of points corresponding

to xmin(F ) is shown by the solid curve. We use the same

2-to-1 mapping f(x) = 1 − |x| as in the Example 2.2 (see

Figure 3(b)). The curve C′ = f(C) is shown in Figure 3(c).

In this case, for all values of F in the interval I1 = (−1, 0),
f(xmax(F )) > f(xmin(F )), while, for all values of F in the

interval I2 = (0, 1), f(xmax) < f(xmin). Therefore, Fact 2.1

implies that C′ is a butterfly as shown in Figure 3(c).

Fact 2.2: Let f : [x0, x1] → R be a 2-to-1 map and

3978



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

F

x

x
max

x
min

(a)

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

q

(b)

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

F

q

f(x
max

)

f(x
min

)

(c)

Fig. 3. Transformation of a simple curve into a butterfly. The original
simple closed curve C shown in (a) is transformed by the mapping f(x) =
1− |x| shown in (b). The resulting curve is the butterfly loop C′ shown in
(c).

let [F0, F1] = cl(I1) ∪ · · · ∪ cl(In) where I1, · · · , In are

disjoint open intervals. Assume that, for each pair of intervals

Ii, Ij such that cl(Ii)∩ cl(Ij) 6= ∅, the following statement

is true: for all F ∈ Ii, f(xmin(F )) < f(xmax(F )), and,

for all F ∈ Ij , f(xmin(F )) > f(xmax(F )). Then f(C) is a

multibutterfly.

Example 2.4: Consider C as in Example 2.3 (see Figure

10(a)). The set of points corresponding to xmax(F ) is shown

by the dashed curve, and the set of points corresponding to

xmin(F ) is shown by the solid curve. Figure 10(b) shows the

2-to-1 mapping f applied to C. The function f is continuous

and increasing to the left of xc = −0.5 and decreasing to the

right of xc = −0.5. The curve C′ = f(C) is shown in Figure

4(c). For all values of F in the intervals I1 = (−1,−0.675)
and I3 = (0, 1), f(xmax(F )) < f(xmin(F )), while, for all

values of F in the interval I2 = (−0.5, 0), f(xmax(F )) >

f(xmax(F )). Since there are two intervals in which the order

of xmax(F ) and xmin(F ) reverses and one in which the order

remains the same, C′ is a three-loop multibutterfly.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

F

x

x
max

x
min

(a)

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

q

(b)

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

F

q

f(x
max

)

f(x
min

)

(c)

Fig. 4. Transformation of a simple closed curve into a triple loop. The
counterclockwise oriented simple closed curve C shown in (a) is transformed
by the 2-to-1 map f shown in (b). The resulting curve is the multibutterfly
shown in (c).

III. HYSTERESIS IN A PRELOADED TWO-BAR LINKAGE

MECHANISM

In this section we analyze the dynamics of the two-bar

linkage with joints P, Q, and R and preloaded by a stiffness

k as shown in Figure 5. The purpose of this discussion is

to show that the two-bar linkage is a multistable system

and thus hysteretic, that is, as the frequency of excitation

approaches zero the input-output loop does not vanish. We

demonstrate that the shape of the hysteresis map depends

on the output variable. We use the Fact 2.1 to find the 2-

to-1 map that transforms the simple loop into a butterfly.

Additional details of derivations are given in [14].

A constant vertical force F is applied at Q, where the

two bars are joined by a frictionless pin. Let θ denote the

counterclockwise angle that the left bar makes with the

horizontal, and let q denote the distance between the joints

P and R. When F = 0, the linkage has three equilibrium

configurations. In Figure 6(a) and (b), the values of q and

θ are q0 and ±θ0, respectively, and the spring k is relaxed.

Note that q0 = 2l cos θ0. For the third equilibrium shown in
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Fig. 5. The preloaded two-bar linkage with a vertical force F acting at the
joint Q. The word ‘preloaded’ refers to the presence of the stiffness k, which
is compressed when the two-bar linkage is in the horizontal equilibrium.

Figure 6(c), both bars are horizontal with θ = 0.
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Fig. 6. Static equilibria of the preloaded two-bar linkage when the spring
is relaxed and F = 0. In (a) the equilibrium angle θ0 is positive, in (b)
the angle is negative, and in (c) θ = 0. Equilibria in (a) and (b) are stable,
while the equilibrium in (c) is unstable.

The static equilibria of the system are given by

(sin θ)

(

1 − cos θ0

cos θ

)

=
F

4kl
. (1)

The equilibrium set E for the preloaded two-bar linkage

is the set of points (F, x) that satisfy

x

(

1 − l cos θ0√
l2 − x2

)

=
F

4k
. (2)

Alternatively, set E can be expressed as the set of points

(F, q) that satisfy

±
√

(4l2 − q2)

(

1 − 2l cos θ0

q

)

=
F

2k
. (3)

Note that x is the vertical distance from the joint Q to the

horizontal equilibrium, and q is the horizontal distance from

joint P to joint R as shown in Figure 5. Relations (2)-(3)

are obtained from (1) using

x = l sin θ, (4)

q = 2l cos θ, (5)

respectively.

The equilibrium sets E defined by (2)-(3) are shown in

the Figure 7. Set E is useful for analyzing the hysteresis

of the preloaded two-bar linkage. It is shown in [15] that

a system that exhibits hysteresis has a multi-valued equi-

librium map and that the hysteresis map is a subset of the

equilibrium map. It can be seen from the equilibrium set E
in Figure 7 that multiple equilibria exist for each constant

F ∈ (−Fmax, Fmax).
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Fig. 7. Equilibrium sets E for the preloaded two-bar linkage. The set E
defined by (2) is shown on the left, while the set E defined by (3) is shown
on the right. The chosen parameter values are θ0 = π/4 rad, k = 1 N-m,
and l = 1 m.

The equations of motion for the preloaded two-bar linkage

are given by
(

(2ml2 +
9

8
mbarl

2) sin2 θ +
5

24
mbarl

2

)

θ̈

+ (2ml2 +
9

8
mbarl

2)(sin θ)(cos θ)θ̇2

+ 2cl2(sin2 θ)θ̇ + 2kl2(cos θ0 − cos θ)(sin θ)

= − l cos θ

2
F,

(6)

where mbar is the inertia of each bar. Using (5) the dynamics

(6) can be expressed in terms of the displacement q as
(

(m+
9

16
mbar)(4l2 − q2) +

5

12
mbarl

2

)

(4l2 − q2)q̈

+
5

12
mbarl

2qq̇2 + cq̇(4l2 − q2)2

+ k(q − q0)(4l
2 − q2)2 =

1

2
q(4l2 − q2)

3

2 F.

(7)

We use (6) and (7) to simulate the linkage dynamics under

the periodic external force F = sin(ωt) N with parameter

values k = 1 N/m, m = 1 kg, c = 1 N-s/m, mbar = 0.5 kg,

and l = 1 m. As shown in Figure 8 there exists a nontrivial

clockwise hysteresis map from the vertical force F to the

vertical displacement x at low frequencies. The presence of a

nontrivial loop at asymptotically low frequencies constitutes

hysteresis. Note that the area of each hysteresis loop is equal

to the energy dissipated in one cycle. Figure 9 shows the

input-output map between the vertical force F and horizontal

displacement q. At asymptotically low frequencies this input-

output map is a symmetrical butterfly with two loops of

opposite orientation. The energy dissipated in one cycle is

equal to the sum of the signed areas of the two loops.

Because the loops have equal area, but opposite orientation,

the total energy dissipated is zero. Energy is not dissipated

since the force F and the displacement q are orthogonal. A

comparison of the hysteresis maps and the equilibrium sets

E for the preloaded two-bar linkage is shown in Figure 10.
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Fig. 8. Input-output maps between the vertical force F and the vertical
displacement x for the two-bar linkage model (6) for several values of
frequency ω in rad/s. The nonvanishing clockwise displacement-force loop
at asymptotically low frequencies is the hysteresis map. Ediss, which is
the area of each loop, is the energy dissipated in one complete cycle. The
parameters used are k = 1 N/m, m = 1 kg, c = 1 N-s/m, mbar = 0.5
kg, l = 1 m, and F (t) = sin(ωt) N.
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Fig. 9. Input-output maps between the vertical force F and the horizontal
displacement q for the two-bar linkage model (7) for several values of
frequency ω in rad/s. The parameters used are k = 1 N/m, m = 1 kg,
c = 1 N-s/m, mbar = 0.5 kg, l = 1 m, and F (t) = sin(ωt) N.

Thus the hysteresis map is a simple closed curve when the

output variable is the vertical displacement x and a butterfly

when the output variable is the horizontal displacement q.

According to the Fact 2.1 we find the 2-to-1 map

f =
√

4(l2 − x2) (8)

which transforms the simple loop to a butterfly and is shown

in Figure 11.
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Fig. 10. Comparison of the equilibrium sets E and the hysteresis maps
for the preloaded two-bar linkage. The output variable is x in (a) and q in
(b). The hysteresis map is a subset of E except for the vertical segments at
the bifurcation points. The parameters used are as in Figure 8 with F (t) =
sin(0.001t) N.
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Fig. 11. The mapping function f(x) =
√

4(l2 − x2) that transforms the
simple hysteresis loop of the buckling mechanism into a butterfly.

IV. HYSTERESIS IN FERROELECTRIC MATERIALS

In this section we show that Fact 2.1 can be applied to a

simple curve/butterfly pair to obtain the 2-to-1 map which

relates the simple curve to the butterfly. We consider an

example of hysteresis in ferroelectric materials from [3]. The

actual data presented in [3] are not available, so the hysteresis

loops were ”extracted” from the plots given in the paper.

Ferroelectric materials are ceramics that exhibit piezoelec-

tric behavior and can switch polarization. In an electric field

ferroelectric materials change length, while under mechani-

cal loading, ferroelectric materials change polarization. The

hysteresis loop shown in Figure 12(a) represents the input-

output map between the polarization P of the ferroelectric

material and the applied electric field E. The butterfly shown

in Figure 12(b) represents the input-output map between the

length L of the specimen and the electric field E. The plots

3981



in Figure 12 are approximations to data presented in [3].

Note that in Figure 12(a) points Pmax(E) are shown as a

dashed curve, while points Pmin(E) appear as a solid curve.

It can be concluded from Figure 12(b) that, for all E in

I1 = (E0, Ec), f(Pmin(E)) > f(Pmax(E)), while for all E

in I1 = (Ec, E1), f(xmin(F )) < f(xmax(F )), where E0 is

the minimum value of E for which the curve is defined, E1 is

the maximum value of E for which the curve is defined, and

Ec = 1

2
(E0 + E1). Thus, from Fact 2.1 it follows that there

exists a 2-to-1 map f that transforms the simple hysteresis

loop into a butterfly shown in Figure 12(b).
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Fig. 12. Approximate hysteresis and butterfly loops for the ferroelectric
specimen based on [3]. The simple hysteresis curve is the input-output map
between the electric field E and polarization P shown in (a). The butterfly
is the input-output map between the electric field E and the length of the
specimen L shown in (b).

The 2-to-1 map f that transforms the simple loop in Figure

12(a) into the butterfly in Figure 12(b) is shown in Figure

13. The map can be computed by graphing the polarization

P (E) versus the length of the specimen L(E). The dashed

curve represents the transformation between Pmax(E) and L,

while the solid curve represents the transformation between

Pmin(E) and L. The appearance of non identical function

in Figure 13 corresponding to increasing and decreasing E

suggests the presence of residual dynamics due to non-quasi-

static operation or numerical error.

V. CONCLUSION

We studied the relationship between the simple (single-

loop) hysteresis maps and the butterfly hysteresis maps. We

found that the simple loop and butterfly are related by a 2-to-

1 map. We illustrated this point by finding the 2-to-1 map for

the preloaded two-bar linkage and for ferroelectric materials.

Polarization P

L
e
n
g
th

 L

Fig. 13. The mapping f that transforms the simple hysteresis loop
of ferroelectric material into a butterfly. The dashed curve represents the
transformation between Pmax(E) and L, while the solid curve represents
the transformation between Pmin(E) and L. The mismatch in the curves
is due to residual dynamics or numerical error.
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