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Abstract— We compare several reduced-order Kalman fil-
ters for discrete-time LTI systems based on reduced-order
error-covariance propagation. These filters use combinations
of balanced model truncation and complementary steady-state
covariance compensation. After describing each method, we
compare their performance through numerical studies using a
compartmental model example. These methods are aimed at
large-scale data-assimilation problems where reducing compu-
tational complexity is critical.

I. INTRODUCTION

The development of reduced-order state estimators has

been of interest for several decades; representative work

includes [1–15]. Most of these techniques involve data in-

jection with an estimator whose order is less than the order

of the plant. The estimator dynamics are typically obtained

from the full-order dynamics by a truncation or projection

process, while the estimator gain is obtained from a steady-

state or updated error-covariance matrix based on the full-

order dynamics.

For large-scale systems, however, reduced-order filters

based on a full-order error covariance may not be feasible. In

particular, the effort needed to compute the steady-state error

covariance or to update the time-dependent error covariance

is significant, namely, O(n3) for a system of order n. Rel-

evant applications include systems modeled by discretized

partial differential equations such as weather forecasting [16–

21], where state estimation is generally referred to as data

assimilation [22].

To overcome the O(n3)-computational burden of full-

order-error-covariance-based estimation, we are interested

in reduced-order filters based on a reduced-order error co-

variance. One such technique is developed in [16], where

balancing is used to obtain a reduced-order model that

provides the basis for the error-covariance update. By using

the reverse transformation to convert the reduced-order error

covariance to a full-order error covariance in the original

basis, data injection is performed on the full-order model

so that estimates of all states are obtained in the original,

physically meaningful basis. Although performance bounds

are not available for this technique, the approach is consistent

with the use of balancing in model reduction [23] while
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reducing the computational burden of the error-covariance

update.

In the present paper we compare the performance of the al-

gorithm developed in [16] with several alternative algorithms.

These alternative algorithms use balancing or truncation

in various combinations to achieve a reduced-order-error-

covariance for data injection with either the full-order model

or a reduced-order model. Some of these algorithms use an

initial balancing transformation, while others use an initial

model truncation along with a steady-state error covariance.

Algorithms that avoid the need for a balancing step are

desirable when the system order is sufficiently high that

balancing and transformation are prohibitive. For example,

in weather applications, a state dimension greater than 106

is commonplace [16–21].

As in [16], our study is primarily numerical, although we

provide analytical performance bounds for the complemen-

tary steady-state error-covariance filters. Our goals in the

present paper are thus to 1) clarify the nature of the reduced-

order-error-covariance estimation problem, 2) present a col-

lection of reduced-order-error-covariance estimators that are

potentially useful in practice, and 3) numerically compare

the performance of these filters on representative examples.

This study is a precursor to the development of estimators

for large-scale systems with nonlinear dynamics; preliminary

results are described in [24].

In the classical Kalman filter, the full-order error covari-

ance is propagated to obtain the estimator gain by which

measurements are injected into the full state to obtain optimal

state estimates under uncertain disturbances and measure-

ment noises. However, for large scale systems, propagation of

the full-order error covariance is computationally infeasible.

Hence, we consider reduced-order error-covariance filters.

In the following subsections, we describe these filters. To

fix notation, we begin with a brief review of the full-order

Kalman filter.

II. FULL-ORDER KALMAN FILTER (FOKF)

Consider the discrete-time LTI system

xk+1 = Axk + Gwk, (2.1)

yk = Cxk + vk, (2.2)

where xk ∈ R
n, wk ∈ R

d, yk, vk ∈ R
p and A,G,C

are known real matrices of appropriate size. The plant

disturbance Gwk has the covariance Qk , E[GwkwT
k GT],

while the sensor noise vk has the covariance Rk , E[vkvT
k ].

The objective is to obtain an estimate xf
k of the state xk

using measurements yk to minimize trP f
k, where ef

k ∈ R
n is
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defined by

ef
k , xk − xf

k (2.3)

and the state-error covariance P f
k ∈ R

n×n is defined by

P f
k , E[ef

kefT
k ]. (2.4)

The full-order Kalman filter is expressed in two steps,

namely, the forecast step, which uses the model, and the data

assimilation step, where the measurement is used to update

the states. These steps can be summarized as follows:

Forecast Step

xf
k+1 = Axda

k , (2.5)

P f
k+1 = AP da

k AT + Qf
k. (2.6)

Data Assimilation Step

Kk = P f
kCT(CP f

kCT + Rk)−1, (2.7)

P da
k = (I − KkC)P f

k, (2.8)

xda
k = xf

k + Kk(yk − Cxf
k). (2.9)

III. KALMAN FILTER WITH ERROR-PROPAGATION IN

BALANCED-REDUCTION MODEL (KFEBRM)

Applying the similarity transformation xk = T x̂k, the

system (2.1), (2.2) becomes

x̂k+1 = Âx̂k + Ĝwk, (3.1)

yk = Ĉx̂k + vk, (3.2)

where Â , T−1AT, Ĝ , T−1G, and Ĉ , CT .

We choose the transformation T such that the controlla-

bility and observability gramians of the transformed system

(3.1), (3.2) are diagonal and equal, that is, the system (3.1),

(3.2) is a balanced realization of the system (2.1), (2.2). Then,

we reduce the transformed system by retaining the domi-

nant subspace as determined by the Hankel singular values

σ1, . . . , σn, which describe the relative importance of each

transformed state. The Hankel singular values σ1, . . . , σn are

the diagonal entries of the diagonal matrix Σ given by

Σ , Ŵc = Ŵo, (3.3)

where Ŵc,Ŵo ∈ R
n×n are the controllability and observ-

ability gramians of the transformed system, respectively. The

reduced model of order nr is given by

x̂r,k+1 = Ârx̂r,k + Ĝrwk, (3.4)

yr,k = Ĉrx̂r,k + vk, (3.5)

where Âr , (T−1)rATr, Ĝr , (T−1)rG, Ĉr ,

CTr, Tr , T
[

Inr
0nr×(n−nr)

]T
, and (T−1)r ,

[

Inr
0nr×(n−nr)

]

T−1.

The method used in [16] propagates the error covariance

for a model of order nr < n truncated according to the

Hankel singular values. Furthermore, at each time step k,

the full-order error covariance is approximated using the

reduced-order model-error covariance by means of

P̂ f
k = TrP

f
r,kTT

r , (3.6)

where P f
r,k is the nr × nr reduced-order error-covariance

matrix propagated for the reduced-order model (3.4), (3.5),

and P̂ f
k is the n× n approximate full-order error covariance

matrix. The resulting forecast and data assimilation steps are

given as follows:

Forecast Step

xf
k+1 = Axda

k , (3.7)

P f
r,k+1 = ÂrP

da
r,kÂT

r + Q̂f
r,k. (3.8)

Data Assimilation Step

Kr,k , P f
r,kĈT

r (ĈrP
f
r,kĈT

r + Rk)−1, (3.9)

Kk = TrKr,k = P̂ f
kCT(CP̂ f

kCT + Rk)−1, (3.10)

P da
r,k = (I − Kr,kĈr)P

f
r,k, (3.11)

xda
k = xf

k + Kk(yk − Cxf
k). (3.12)

IV. LOCALIZED KALMAN FILTER (LKF)

We now assume that the system (2.1), (2.2) can be

partitioned as
[

x1,k+1

x2,k+1

]

=

[

A11 A12

A21 A22

] [

x1,k

x2,k

]

+

[

G1wk

G2wk

]

, (4.1)

yk =
[

C1 0
]

[

x1,k

x2,k

]

+ vk, (4.2)

where x1,k ∈ R
n1 and x2,k ∈ R

n2 . Note that yk depends

only on x1,k, which means physically that yk is a local

measurement. Truncating (4.1), (4.2) yields

x1,k+1 = A11x1,k + G1wk, (4.3)

yk = C1x1,k + vk, (4.4)

which is used for error-covariance propagation and data

injection as follows:

Forecast Step

xf
k+1 = Axda

k , (4.5)

P f
1,k+1 = A11P

da
1,k + Qf

1,k. (4.6)

Data Assimilation Step

K1,k = P f
1,kCT

1 (C1P
f
1,kCT

1 + Rk)−1, (4.7)

P da
1,k = (I − K1,kC1)P

f
1,k, (4.8)

xda
1,k = xf

1,k + K1,k(yk − C1x
f
1,k), (4.9)

xda
2,k = xf

2,k. (4.10)

In (4.6)-(4.8), P1,k is defined as the state-error covariance of

the truncated system (4.3), (4.4), that is,

P f
1,k , E[ef

1,kefT
1,k], (4.11)

where ef
1,k , x1,k − xf

1,k.

V. LOCALIZED KALMAN FILTER WITH BALANCED

REDUCTION (LKFBR)

To apply LKF to the balanced system (3.1), (3.2), we first

partition the transformed system (3.1), (3.2) such that
[

x̂1,k+1

x̂2,k+1

]

=

[

Â11 Â12

Â21 Â22

] [

x̂1,k

x̂2,k

]

+

[

Ĝ1wk

Ĝ2wk

]

, (5.1)

yk =
[

Ĉ1 Ĉ2

]

[

x̂1,k

x̂2,k

]

+ vk, (5.2)
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where the dimension of x̂1,k is determined according to the

Hankel singular values. Truncating (5.1), (5.2) yields

x̂1,k+1 = Â11x1,k + Ĝ1wk, (5.3)

yr,k = Ĉ1x1,k + vk, (5.4)

which is used for error-covariance propagation and data

injection using the LKF procedures (4.5) - (4.10). Finally,

in order to compare the estimates to those of LKF without

balanced model reduction given in (4.5), we transform the

estimates back to the original coordinates using xf
k = T x̂f

k.

VI. LOCALIZED KALMAN FILTER WITH

RESIDUAL-SUBSPACE BALANCED TRUNCATION

(LKFRBT)

We can account for the x2,k subsystem in the LKF algo-

rithm by reducing the x2,k subsystem and then augmenting

the x1,k subsystem with the reduced x2,k subsystem. To do

this, the dynamics of x2,k ∈ R
n2 in (4.1) are expressed as

x2,k+1 = A22x2,k + [A21 G2]

[

x1,k

wk

]

, (6.1)

zk = A12x2,k, (6.2)

to which we apply balanced realization and reduction. The
resulting reduced-order model is

x̂2,r,k+1 = (T̂−1)rA22T̂rx̂2,r,k + (T̂−1)r [A21 G2]

[

x1,k

wk

]

, (6.3)

zr,k = A12T̂rx2,r,k, (6.4)

where T̂ is the balanced transformation for x2,k

subsystem (6.1), (6.2), x̂2,r,k ∈ R
nr , where nr < n2

is the reduced approximation of x̂2,k , T̂−1x2,k,

T̂r , T̂
[

Inr
0nr×(n2−nr)

]T
, and (T̂−1)r ,

[

Inr
0nr×(n2−nr)

]

T̂−1.

By replacing the corresponding terms of (4.1), (4.2) with

terms of (6.3), (6.4), we obtain
[

x1,k+1

x̂2,r,k+1

]

=

[

A11 A12T̂r

(T̂−1)rA21 (T̂−1)rA22T̂r

] [

x1,k

x̂2,r,k

]

+

[

G1

(T̂−1)rG2

]

wk, (6.5)

yk =
[

C1 0
]

[

x1,k

x̂2,r,k

]

+ vk. (6.6)

The error covariance is propagated by the reduced system

(6.5), (6.6) whose dimension is n1+nr. The forecast and data

assimilation steps are the same as those of KFEBRM (3.7)-

(3.12), replacing the reduced-order system (3.4), (3.5) with

the system (6.5), (6.6), where Tr ∈ R
n×(n1+nr) is defined

by

Tr ,

[

In1×n1
0

0 T̂r

]

. (6.7)

VII. COMPLEMENTARY STATIC OPEN-LOOP

STEADY-STATE (OLSS) AND CLOSED-LOOP

STEADY-STATE (CLSS) ERROR-COVARIANCE-BASED

GAIN

KFEBRM, LKFBR, and LKFRBT account for interactions

with the truncated subsystem by means of balanced reduc-

tion. Rather than using balanced reduction, we now com-

pensate the reduced-order error-covariance of LKF with a

complementary open-loop or closed-loop steady-state error-

covariance. We begin by proving that the performance of an

estimator that uses a steady-state open-loop or a closed-loop

error-covariance-based static gain is better than or equal to

the open-loop or the closed-loop performance, respectively.

The proofs provide a justification for the complementary

steady-state error-covariance approach.

We start from the closed-loop case. Then, the open-loop

case is derived as the special case when the estimator gain

is zero. Now consider the closed-loop estimator

x̂CL,k+1 = Ax̂CL,k + K(yk − Cx̂CL,k), (7.1)

where K is an estimator gain chosen so that A − KC is

asymptotically stable. Define the closed-loop state-estimation

error

eCL,k , xk − x̂k, (7.2)

and the closed-loop error covariance

PCL,k , E
[

eCL,keT
CL,k

]

. (7.3)

Subtracting (7.1) from (2.1) yields

eCL,k+1 = (A − KC)eCL,k + Gwk − Kvk (7.4)

so that

PCL,k+1 =(A−KC)PCL,k(A− KC)T + Q + KRKT.(7.5)

Since A − KC is asymptotically stable, the steady-state

closed-loop error covariance defined by

PCL , lim
k→∞

PCL,k (7.6)

exists and satisfies the Lyapunov equation

PCL = (A − KC)PCL(A − KC)T + Q + KRKT. (7.7)

Next, using steady-state closed-loop error covariance we

define the estimator gain

KCL , APCLCTR̂−1
CL, (7.8)

where

R̂CL , CPCLCT + R. (7.9)

Consider an estimator based on the estimator gain in (7.8),

that is,

x̂k+1 = Ax̂k + KCL(yk − Cx̂k). (7.10)

Subtracting (7.10) from (2.1) yields the error dynamics

ek+1 = (A − KCLC)ek + Gwk − KCLvk. (7.11)

Then the error covariance defined in (7.3) is propagated
using

Pk+1 =(A−KCLC)Pk(A−KCLC)T + Q + KCLRK
T
CL. (7.12)

The following result shows that the performance of the

estimator based on the closed-loop error covariance PCL is

better than the performance of the estimator in (7.1).

Proposition VII.1. Assume that Pk 6 PCL. Then, Pk+1 6
PCL.
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Proof. Subtracting (7.12) from (7.7) yields

PCL − Pk+1 = (A − KC)PCL(A − KC)T (7.13)

− (A − KCLC)Pk(A − KCLC)T + KRKT − KCLRKT
CL.

Adding and subtracting (A − KCLC)PCL(A − KCLC)T to
the right hand side of (7.13) yields

PCL− Pk+1 = (A− KCLC)(PCL− Pk)(A− KCLC)T+KRK
T

−KCLRK
T
CL− KCPCLA

T
− APCLC

T
K

T+ KCPCLC
T
K

T

+KCLCPCLA
T+APCLC

T
K

T
CL−KCLCPCLC

T
K

T
CL. (7.14)

Using (7.8) and (7.9) in (7.14) yields

PCL − Pk+1 = (A − KCLC)(PCL − Pk)(A − KCLC)T (7.15)

+ KR̂CLK
T + KCLR̂CLK

T
CL − KR̂CLK

T
CL − KCLR̂CLK

T
.

Hence,

PCL−Pk+1 =(A − KCLC)(PCL − Pk)(A − KCLC)T

+ (KCL − K)R̂CL(KCL − K)T.
(7.16)

Therefore, Pk+1 ≤ PCL.

Hence, if P0 6 PCL, then for all k > 0, Pk 6 PCL. Next,

for the open-loop case, let K = 0 and assume that A is

asymptotically stable. We define POL as the corresponding

open-loop steady-state error covariance. Then the Corollary

VII.1 follows.

Corollary VII.1. Assume that Pk 6 POL. Then Pk+1 6
POL.

Based on Proposition VII.1 and Corollary VII.1, we com-

bine LKF gain with the steady-state error-covariance-based

gain to inject data into all of the states for potentially better

performance than that of LKF alone.

VIII. LKF WITH COMPLEMENTARY OPEN-LOOP

STEADY-STATE ERROR COVARIANCE (LKFCOLC)

At each time step, the local-system error-covariance P f
1,k

is propagated by (4.6), (4.7), and (4.8), whereas the open-

loop steady-state error covariance is given by

POL =

[

POL,11 POL,12

POL,12 POL,22

]

, (8.1)

where POL is the steady-state error covariance that satisfies

APOLAT − POL + Q = 0. (8.2)

Note that POL is partitioned in 8.1 according to (4.1), (4.2).

Next, we inject data into the forecast state xf
2,k of LKF

using the open-loop steady-state covariance. That is, (4.10)

is modified as

xda
2,k = xf

2,k + K2(yk − C1x
f
1,k), (8.3)

where

K2 , POL,12C
T
1 (C1POL,11C

T
1 + Rk)−1. (8.4)

Finally, the estimator gain Kk for full-state data injection
composed of (4.9), (8.3) is given by

Kk ,

[

K1,k

K2

]

=

[

P f
1,kCT

1 (C1P
f
1,kCT

1 + Rk)−1

POL,12C
T
1 (C1POL,11C

T
1 + Rk)−1

]

. (8.5)

IX. LKF WITH COMPLEMENTARY CLOSED-LOOP

STEADY-STATE ERROR COVARIANCE (LKFCCLC)

The LKFCOLC technique may not have good perfor-

mance when the complementary open-loop steady-state error

covariance and optimal error covariance are significantly

different. In this case, we use the complementary closed-

loop steady-state covariance when LKF is applied. Hence,

let KLKF = [KT
1 0]T, where K1 is the steady-state Kalman

gain of LKF given by (4.7), and let PCL satisfy

(A − KLKFC)PCL(A − KLKFC)T − PCL

+ KLKFRKT
LKF + Q = 0.

(9.1)

Now partition PCL as

PCL =

[

PCL,11 PCL,12

PCL,12 PCL,22

]

, (9.2)

We obtain the estimator gain Kk by means of (8.5) replacing

POL,11, POL,12 with PCL,11, PCL,12, respectively.

X. SIMULATION EXAMPLE

We apply the methods introduced in sections II-IX to

a compartmental model [25], which involves states whose

values are nonnegative quantities. This compartmental model

is based on the physics of the processes by which material or

energy is exchanged among coupled subsystems. In addition,

conservation laws account for the flow of such quantities

among subsystems.

A schematic diagram of the compartmental model is

shown at Fig 1. The total number of cells n is 25 for

simulations with one state per cell. We assume that the states

of the first five cells are measured. Hence, the size of the

localized system n1 is set to 5. All σii ’s are set to 0.1 and

all σij (i 6= j) are set to 0.44.

Fig. 1. Compartmental model involving interconnected subsystems.

We simulate two cases. Case 1 involves a single-input

disturbance in which the input matrix G is the n × 1 ones

matrix. Hence, Figure 2(a) shows one dominant Hankel sin-

gular value. In Case 2, n mutually independent disturbances

are spread out over all of the cells, and thus the disturbance

input matrix G of (2.1) is the n × n identity matrix. In

Case 2, as can be seen in Figure 2(b), the Hankel singular

values decrease gradually and thus there is no definite model-

truncation threshold.

Simulation results for KFEBRM, LKF, LKFBR, LKFRBT,

LKFCOLC, and LKFCCLC are shown in figure 3. LKFC-

CLC shows the best performance in Case 2. In Case 1,

KFEBRM and LKFBR show the best performance.
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Fig. 2. Case 1 Hankel singular values (left) and Case 2 Hankel singular
values (right)

Balanced-model-based methods perform well for Case 1

because of the rapidly decreasing Hankel singular values.

However, the performance of LKFCOLC and LKFCCLC are

comparable to that of the balanced-model-based methods.

Moreover, LKFCCLC is more close to the optimal Kalman

filter with higher model order than LKFCOLC. We summa-

rize the properties and performance ranks of each method in

Table I.

Estimators with an OLSS covariance-based static gain

and CLSS covariance-based static gain consistently perform

better than without the static gain as shown in figures 4.

Moreover, figures 5 shows that LKF compensated by either

OLSS or CLSS covariance show improved performance than

LKF alone even when an erroneous Q is used to obtain the

OLSS and CLSS covariances.

XI. CONCLUSIONS

We presented several Kalman filters for reduced-order

error-covariance propagation and compared them through

numerical studies. We conducted numerical studies for two

extreme cases of Hankel singular values. In both cases,

LKFCOLC and LKFCCLC show good performance. When

there are a few dominant Hankel singular values, LKFCCLC

can be applied efficiently without the need for a similarity

transformation that may be prohibitive in large-scale systems.
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TABLE I: Comparisons of reduced-order error-covariance Kalman filters.

Properties of number of model order requires requires performance performance

Methods states for for covariance balancing local rank for rank for

Method data injection propagation transform? measurements? Case 1 Case 2

KFEBRM 25 5 yes no 1 3

LKF 5 5 no yes 5 5

LKFBR 5 5 yes yes 1 3

LKFRBT 25 5 yes yes 5 5

LKFCOLC 25 5 no yes 3 2

LKFCCLC 25 5 no yes 4 1

FrC04.4

5704



5 10 15 20 25
1

1.2

1.4

1.6

1.8

2

2.2

2.4

Case 1,  n
1
 = 5

cell number (or state number)

R
M

S
 e

rr
o

r

Open Loop

FOKF

KFEBRM

LKF

LKFBR

LKFRBT

LKFCOLC

LKFCCLC

5 10 15 20 25
1

1.2

1.4

1.6

1.8

2

2.2

2.4

Case 1,  n
1
 = 10

cell number (or state number)

R
M

S
 e

rr
o

r

Open Loop

FOKF

KFEBRM

LKF

LKFBR

LKFRBT

LKFCOLC

LKFCCLC

(a) (b)

5 10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

1.6

Case 2,  n
1
 = 5

cell number (or state number)

R
M

S
 e

rr
o

r

Open Loop

FOKF

KFEBRM

LKF

LKFBR

LKFRBT

LKFCOLC

LKFCCLC

5 10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

1.6

Case 2,  n
1
 = 10

cell number (or state number)

R
M

S
 e

rr
o

r

Open Loop

FOKF

KFEBRM

LKF

LKFBR

LKFRBT

LKFCOLC

LKFCCLC

(c) (d)
Fig. 3. RMS error of each cell (spatial distribution of errors) with respect to each method when the order of the reduced model is n1 = 5, 10. (a) and (b)
are for Case 1 while (c) and (d) are for Case 2. Note that LKF and LKFRBT are identical when n1 = 5. When n1 is fixed at 5, it can be seen from (a), (c)
that KFEBRM and LKFBR show the best performance in Case 1 whereas LKFCCLC shows the best performance in Case 2. Balanced-model-based methods
perform well for Case 1 because of the rapidly decreasing Hankel singular values. However, note that the performance of LKFCOLC and LKFCCLC are
comparable to that of the balanced-model-based methods. Moreover, LKFCCLC is more close to the optimal Kalman filter with higher model order than
LKFCOLC.
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Fig. 4. Total RMS errors of estimators with open-loop steady-state (OLSS) covariance-based gain, closed-loop steady-state (CLSS) covariance-based gain,
LKFCOLC and LKFCCLC when the order of the reduced model for error-covariance propagation is increased. LKF compensated by OLSS and CLSS
covariance show significantly improved performance over LKF alone.
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Fig. 5. Total RMS errors of estimators with open-loop steady-state (OLSS) covariance-based gain, closed-loop steady-state (CLSS) covariance-based
gain, LKFCOLC and LKFCCLC when the order of the reduced model for error-covariance propagation is increased and 0.01Q is taken as an erroneous
disturbance covariance to obtain OLSS and CLSS covariances. LKF compensated by OLSS and CLSS covariance show improved performance over LKF
alone although the erroneous disturbance covariance is used in obtaining the OLSS and CLSS covariances.
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