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Abstract— In this paper we provide a system-theoretic picture
of the hysteresis induced by friction. We study the hysteretic
response of a linear system connected with a Duhem hysteretic
model in the feedback. We then use the popular Dahl and
LuGre Duhem friction models to model the mass-spring system
with friction, as a linear system with Duhem feedback. We use
the feedback model to study the hysteretic response between
the external force applied on the mass and the displacement of
the mass.

I. INTRODUCTION

Modeling and control of friction remains a problem of

interest, both for its intellectual challenge and its practical

ramifications [1]–[8]. In recent work [9] we considered

the relationship between friction models and hysteresis in

mechanical systems. In particular, by using the results in

[10] on Duhem models for hysteresis, we classified several

popular friction models in terms of the properties of the

relevant Duhem model; see Table I.

In [11] we developed an experimental testbed for friction

identification. The testbed consists of a dc motor with a

speed reduction gearhead, with encoder measurements of

the shaft and load cell measurements of a cable wound

around the gearhead. By operating this testbed under quasi

static conditions, we compared its hysteretic response to

the simulated response of the system under various friction

models. The LuGre friction model, which exhibits stick-slip

friction, was found to provide the best model of the testbed’s

hysteretic dynamics.

In the present paper we provide a broader, system-theoretic

picture of the hysteresis induced by friction. Using the

classifications in [9], we model SDOF dynamics with friction

force as a linear system with Duhem hysteretic feedback

and study the input-output hysteretic map of the closed-loop

system. In particular, we examine the relationship between

the equilibria map and the hysteretic map of the closed-loop.

While friction is known to be a source of hysteresis [6], [7],

[11], [12], our goal is to systematically examine the link

between the physical phenomenon of friction and the system-

theoretic phenomenon of hysteresis.

In Section 2 we review the basic theory of the Duhem

model from [10]. In Section 3 we review the analysis from

[9] of the Dahl and LuGre friction models concerning their

hysteretic characteristics. In Section 4 we study the hysteretic

response of a linear system under Duhem feedback. Then, we
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model a mass-spring system with friction as a linear system

with a Duhem feedback and characterize the hysteretic map

between the force actuation and the position output. We carry

out this analysis with both the friction models. In Section 5

we give some concluding remarks.

II. GENERALIZED AND SEMILINEAR DUHEM MODELS

In this section, we summarize the main results of [10]

concerning the generalized and semilinear Duhem models.

Consider the single-input single-output generalized Duhem

model

ẋ(t) = f
(

x(t), u(t)
)

g
(

u̇(t)
)

, x(0) = x0, t ≥ 0, (1)

y(t) = h
(

x(t), u(t)
)

, (2)

where x : [0,∞) → R
n is absolutely continuous, u :

[0,∞) → R is continuous and piecewise C1, f : R
n ×R →

R
n×r is continuous, g : R → R

r is continuous and satisfies

g(0) = 0, and y : [0,∞) → R, and h : R
n × R → R

are continuous. The value of ẋ(t) at a point t at which

u̇(t) does not exist can be assigned arbitrarily. We assume

that the solution to (1) exists and is unique on all finite

intervals. Under these assumptions, x and y are continuous

and piecewise C1. The terms closed curve, limiting periodic

input-output map, hysteresis map, and rate independence are

defined as follows.

Definition 2.1: The nonempty set H ⊂ R
2 is a closed

curve if there exists a continuous, piecewise C1, and periodic

map δ : [0,∞) → R
2 such that δ([0,∞)) = H.

Friction Duhem Rate Continuity
Model Type Dependence

Coulomb static rate independent discontinuous

Dahl

γ = 0 generalized rate independent discontinuous
0 < γ < 1 generalized rate independent continuous but

not Lipschitz
γ = 1 semilinear rate independent Lipschitz
γ > 1 generalized rate independent Lipschitz

LuGre generalized rate dependent Lipschitz

TABLE I

CLASSIFICATION AND PROPERTIES OF FRICTION MODELS. EACH

FRICTION MODEL IS A DUHEM MODEL, WITH EITHER

RATE-INDEPENDENT OR RATE-DEPENDENT DYNAMICS.

NON-LIPSCHITZIAN DYNAMICS IS A NECESSARY CONDITION FOR

FINITE-TIME CONVERGENCE, WHICH REFLECTS NONUNIQUE BEHAVIOR

IN REVERSE TIME.
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Definition 2.2: Let u : [0,∞] → [umin, umax] be

continuous, piecewise C1, periodic with period α, and have

exactly one local maximum umax in [0, α) and exactly one

local minimum umin in [0, α). For all T > 0, define uT (t) ,

u(αt/T ), assume that there exists xT : [0,∞) → R
n that is

periodic with period T and satisfies (1) with u = uT , and let

yT : [0,∞) → R be given by (2) with x = xT and u = uT .

For all T > 0, the periodic input-output map HT (uT , yT )
is the closed curve HT (uT , yT ) , {

(

uT (t), yT (t)
)

: t ∈
[0,∞)}, and the limiting periodic input-output map H∞(u)
is the closed curve H∞(u) , limT→∞ HT (uT , yT ) if the

limit exists. If there exist (u, y1), (u, y2) ∈ H∞(u) such that

y1 6= y2, then H∞(u) is a hysteresis map, and the generalized

Duhem model is hysteretic.

Definition 2.3: The continuous and piecewise C1 func-

tion τ : [0,∞) → [0,∞) is a positive time scale if τ(0) = 0,

τ is nondecreasing, and limt→∞ τ(t) = ∞. The generalized

Duhem model (1), (2) is rate independent if, for every pair

of continuous and piecewise C1 functions x and u satisfying

(1) and for every positive time scale τ , it follows that

xτ (t) , x(τ(t)) and uτ (t) , u(τ(t)) also satisfy (1).

The following result is proved in [10].

Proposition 2.1: Assume that g is positively homoge-

neous, that is, g(αv) = αg(v) for all α > 0 and v ∈ R. Then

the generalized Duhem model (1), (2) is rate independent.

If g is positively homogeneous, then there exist h+, h− ∈
R

r such that

g(v) =

{

h+v, v ≥ 0,

h−v, v < 0,
(3)

and the rate-independent generalized Duhem model (1), (2)

can be reparameterized in terms of u [10]. Specifically,

consider

dx̂(u)

du
=











f+(x̂(u), u), when u increases,

f−(x̂(u), u), when u decreases,

0, otherwise,

(4)

ŷ(u) = h
(

x̂(u), u
)

, (5)

for u ∈ [umin, umax] and with initial condition x̂(u0) =

x0, where f+(x, u)
△

= f(x, u)h+, f−(x, u)
△

= f(x, u)h−,

and u0 ∈ [umin, umax]. Then x(t)
△

= x̂(u(t)) and y(t)
△

=
ŷ(u(t)) satisfy (1), (2). Note that the reparameterized Duhem

model (4) and (5) can be viewed as a time-varying dynamical

system with nonmonotonic time u.

As a specialization of (1) and (2), we now consider the

rate-independent semilinear Duhem model

ẋ(t) =
[

u̇+(t)In u̇−(t)In

]

×
([

A+

A−

]

x(t) +

[

B+

B−

]

u(t) +

[

E+

E−

])

,
(6)

y(t) = Cx(t) + Du(t), x(0) = x0, t ≥ 0, (7)

where A+ ∈ R
n×n, A− ∈ R

n×n, B+ ∈ R
n, B− ∈ R

n,

E+ ∈ R
n, E− ∈ R

n, C ∈ R
1×n, D ∈ R, and

u̇+(t)
△

= max{0, u̇(t)}, u̇−(t)
△

= min{0, u̇(t)}. (8)
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Fig. 1. Displacement u versus the friction force F for the Dahl model for
several values of γ. The shape of the hysteresis loop between F and u is
determined by the value of γ. The numerical values used are FC = 0.75
N, σ = 1.5 N/m, and u(t) = sin 0.1t m.

Let ρ(A) denote the spectral radius of A ∈ R
n×n and let

the limiting input-output map F∞(u, y) be the set of points

z ∈ R
2 such that there exists an increasing, divergent se-

quence {ti}
∞

i=1 in [0,∞) satisfying limi→∞ ‖(u(ti), y(ti))−
z‖ = 0. Theorem 4.1 in [10] provides a sufficient condition

for the existence of the limiting periodic input-output map

for a rate-independent semilinear Duhem model under the

assumption

ρ
(

eβA+e−βA−

)

< 1. (9)

III. FRICTION MODELS

A. Dahl model

The Dahl model [4] has the form

Ḟ (t) = σ

∣

∣

∣

∣

1 −
F (t)

FC
sgn u̇(t)

∣

∣

∣

∣

γ

sgn

(

1 −
F (t)

FC
sgn u̇(t)

)

u̇(t),

(10)

where F is the friction force, u is the relative displacement

between the two surfaces in contact, FC > 0 is the Coulomb

friction force, γ ≥ 0 is a parameter that determines the shape

of the force-deflection curve (plot between the friction force

and the relative displacement), and σ > 0 is the rest stiffness,

that is, the slope of the force-deflection curve when F = 0.

The right-hand side of (10) is Lipschitz continuous in F for

γ ≥ 1 but not Lipschitz in F for 0 ≤ γ < 1.

When u is increasing, Ḟ (t) given by (10) is positive for

all F (t) < FC and negative for all F (t) > FC. Similarly,

when u is decreasing, Ḟ (t) given by (10) is positive for all

F (t) < −FC and negative for all F (t) > −FC. Hence the

friction force F (t) approaches FC under monotonic inputs.

The parameter γ determines the shape of the input-output

map. The input-output hysteresis maps of the Dahl model

for several values of γ are shown in Figure 1. In practice, γ
is typically set to 0 or 1. The friction force given by the Dahl

model lags the friction force given by the Coulomb model

when the direction of motion is reversed.
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To represent (10) as a Duhem model, let

F+

(

F
)

△

= σ

∣

∣

∣

∣

1 −
F

FC

∣

∣

∣

∣

γ

sgn

(

1 −
F

FC

)

, (11)

F−

(

F
)

△

= σ

∣

∣

∣

∣

1 +
F

FC

∣

∣

∣

∣

γ

sgn

(

1 +
F

FC

)

. (12)

Then the Dahl model (10) can be rewritten as

Ḟ (t) = σ
[

D+

(

F (t)
)

D−

(

F (t)
)]

[

u̇+(t)
u̇−(t)

]

, (13)

y = F (14)

which for all γ ≥ 0 is a generalized Duhem model of the

form (1), (2). Furthermore, since g(u̇) =
[

u̇+(t) u̇−(t)
]T

is positively homogeneous, Proposition 2.1 implies that (13)

is rate independent for all γ ≥ 0.

Let γ = 1. Then (10) becomes

Ḟ (t) = σ

(

1 −
F (t)

FC
sgn u̇(t)

)

u̇(t)

=
[

− σ
FC

F (t) + σ σ
FC

F (t) + σ
]

[

u̇+(t)
u̇−(t)

]

,

which is a rate-independent semilinear Duhem model. Fur-

thermore, the convergence condition (9) becomes

e
−2 βσ

FC < 1, (15)

which holds if and only if β > 0. As a direct consequence of

Theorem 4.1 in [10], which explicitly characterizes the hys-

teresis map, we have the following result. The corresponding

hysteresis map is shown in Figure 1.

Corollary 3.1: Consider the Dahl model (10) with γ =
1. Let u be continuous, piecewise C1, and periodic with

period α and have exactly one local maximum umax in

[0, α) and exactly one local minimum umin in [0, α). Then

(15) holds, and (13), (14) has a unique periodic solution

F : [0,∞) → R
n, and the limiting periodic input-output

map H∞(u) exists. Furthermore,

H∞(u) =
{

(

u, F̂+(u)
)

∈ R
2 : u ∈ [umin, umax]

}

∪
{

(

u, F̂−(u)
)

∈ R
2 : u ∈ [umin, umax]

}

,
(16)

where

F̂+(u) , e
−

σ
FC

(u−umin)
α̂+ + FC

(

1 − e
−

σ
FC

(u−umin)
)

,

F̂−(u) , e
σ

FC
(u−umax)

α̂− − FC

(

1 − e
−

σ
FC

(u−umax)
)

,

and

α̂+ = −α̂− = FC
e

−βσ

FC − 1

e
−

βσ

FC + 1
.

B. LuGre Model

The LuGre model [5], which models the asperities of

two surfaces as elastic bristles, is given by

ẋ(t) = u̇(t) −
|u̇(t)|

r
(

u̇(t)
)x(t), (17)

F (t) = σ0x(t) + σ1ẋ(t) + σ2u̇(t), (18)

where x is the average deflection of the bristles, u is the rela-

tive displacement, F is the friction force, and σ0, σ1, σ2 > 0
are stiffness, damping, and viscous friction coefficients, re-

spectively. The right hand side of (17) is Lipschitz continuous

in x. Various choices for the function r(u̇(t)) are given in

[1, p. 83].

For a given constant velocity u̇, the steady-state friction

force Fss obtained from (17) and (18) is

Fss(u̇) = σ0r(u̇)sgn(u̇) + σ2u̇. (19)

The drop in friction force at low magnitudes of velocity is

due to the Stribeck effect, while the Stribeck velocity is the

velocity at which the steady-state friction force begins to

decrease when the velocity is positive and increasing. The

Lugre model (17), (18) combines the friction lag of the Dahl

model with the Stribeck effect [5].

In [1], [5], r(u̇(t)) is defined by

r(u̇(t)) =
FC

σ0
+

FS − FC

σ0
e−(u̇(t)/vS)2 , (20)

where FC > 0 is the Coulomb friction force, FS is the

stiction (sticking friction) force, and vS is the Stribeck

velocity. Letting FS = FC and σ1 = σ2 = 0 in (20), the

LuGre model (17), (18), (20) is equivalent to the Dahl model

(10) with γ = 1 and σ = 1. With y = F , the state equations

(17) and (18) can be written as

ẋ(t) =
[

1 x(t)
]





u̇(t)

−

∣

∣u̇(t)
∣

∣

r
(

u̇(t)
)



 , (21)

y(t) = σ0x(t) + σ1ẋ(t) + σ2u̇(t), (22)

which is a generalized Duhem model of the form (1). Since

r given in (20) is not a positively homogeneous function of

u̇, the LuGre model is not necessarily rate independent. In

fact, the input-output maps in Figure 2 show that the LuGre

model is rate dependent. In fact, the input-output maps in

Figure 2 show that the LuGre model is rate dependent.

IV. HYSTERESIS INDUCED BY DUHEM FEEDBACK

To study hysteresis induced by Duhem friction models,

we consider the feedback interconnection of a SISO linear

system and a Duhem hysteretic model as shown in Figure 3.

The following definition given in [13] is needed.

Definition 4.1: Consider the system in Figure 3 with

constant u. The system is step convergent if limt→∞ y(t)
exists for all initial conditions and for all u ∈ R.

Suppose the feedback system in Figure 3 is step conver-

gent. Then it follows from Definition 4.1 that limt→∞ y(t)
exists for every constant u. Now, let u(t) ∈ [umin, umax] be
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Fig. 2. The input-output maps for the LuGre model. Rate-dependent
hysteresis exists between the friction force F and the relative displacement
u. The numerical values are FC = 1 N, FS = 1.5 N, vS = 0.001
m/s, σ0 = 105 N/m, σ1 =

√
105 N-s/m, σ2 = 0.4 N-s/m, and

u(t) = 10−4 sin ωt m.

u

−

+ G(s)
y

Duhem

modelz

Fig. 3. SISO linear system with Duhem feedback. This model is used to
study hysteresis induced by a Duhem friction model when connected by
feedback to a linear system.

periodic with period α, and let uT (t) = u(αt/T ) for all t.
Now assume that the periodic input-output map HT (uT , yT )
exists for all T > 0 and that the limiting periodic input-

output map H∞(u) exists. Since the set H∞(u) represents

the response of the feedback system in the limit of dc opera-

tion, each element (u, y) of H∞(u) is the limit of a sequence

of points {(ui, yi)}
∞

i=1, where (ui, yi) ∈ HTi
(uTi

, yTi
) as

Ti → ∞, that is, as the input becomes increasingly slower.

Since a constant input u∞ can be viewed as a periodic input

with infinite time period, the component y∞ of each limiting

point (u∞, y∞) ∈ H∞(u) is given by y∞ = limt→∞ y(t)
under the constant input u∞. This observation suggests that

step convergence of the feedback system is necessary and

sufficient for the existence of H∞(u).

Let ȳ1 and z̄1 represent limiting values of the outputs of

the linear system G(s) and the Duhem model, respectively,

for a constant input u. If G(s) does not have any poles in

the closed right half plane and the system in Figure 3 is step

Fig. 4. Force-actuated mass-spring system. The friction force is denoted
by F while the external force is Fe. The system exhibits hysteresis from the
external force Fe to the displacement q when the Dahl and LuGre models
are used to model the friction force F .

convergent, then

ȳ1 = G(0)(u − z̄1). (23)

Now suppose, for some constant u, the hysteretic Duhem

model has distinct equilibria z̄1 and z̄2. Then the output

of the feedback system also has distinct equilibria

ȳ1 = G(0)(u − z̄1) and ȳ2 = G(0)(u − z̄2). Hence, the

limiting periodic map H∞(u) exists, that is, there exists

hysteresis between u(t) and y(t). Furthermore, for a given

u, the horizontal width of the hysteresis map is given by

ȳ1 − ȳ2 = G(0)(z̄2 − z̄1). In the following section we

illustrate these observations with an example.

V. HYSTERESIS INDUCED BY FRICTION IN A

MASS-SPRING SYSTEM

We now consider the force-actuated mass-spring system

shown in Figure 4, whose system dynamics are given by

q̈(t) +
ks

m
q(t) =

1

m
Fe(t) −

1

m
F, (24)

where q(t) is the displacement of the mass, ks is the spring

constant, m is the mass, Fe(t) is the external force exerted

on the mass, and F is the friction force acting on the mass.

Let v = q̇ denote the velocity of the mass. This system can

be represented as the feedback interconnection of a linear

system with a Duhem hysteretic model in Figure 3, where

u = Fe, y = q, z = F , and the transfer function G(s) is

given by

G(s) =
1

ms2 + ks
. (25)

A. Dahl Model

Using the Dahl model (10) for the friction force with

mass displacement u = q, we have

Ḟ (t) = σ

∣

∣

∣

∣

1 −
F (t)

FC
sgn q̇(t)

∣

∣

∣

∣

γ

sgn

(

1 −
F (t)

FC
sgn q̇(t)

)

q̇(t).

(26)

As shown above, the friction force given by the Dahl model

converges to a constant value FC or −FC depending on the

sign of the relative velocity and acts in a direction opposing

the motion. Consequently, the Dahl friction acting on the
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Fig. 5. Hysteresis map from the external force Fe(t) to the displacement
q(t) of the mass for the force-actuated mass-spring system (24) in Figure
4, with the Dahl model. The numerical values are FC = 0.75 N, γ = 1,
σ = 7.5 N/m, ks = 1.5 N/m, m = 1 kg, and Fe(t) = 5 sin(0.001t) N.
The vertical width of the hysteresis map is 1 m.

mass in the mass-spring system plays the role of a damper.

Hence, the force-actuated mass-spring system with Dahl

friction is step convergent, and the states in the feedback

representation (25), (26) converge to constant values for

every constant Fe ∈ R. Letting q̄, v̄, and F̄ denote steady-

state values, (23), (25), and (26) yield

v̄ = 0, (27)

q̄ = G(0)(u − z̄) =
Fe − F̄

ks
, (28)

(1 −
F̄

FC
sgn v̄) = 0. (29)

For a constant external force input, the steady-state values

of displacement, velocity, and friction force are given by

(27), (28), and (29). Thus, for a low-frequency external force

input, v(t) → 0, and the displacement of the mass q(t) → q̄,

where q̄ is given by (28). Now, if (29) holds, then F̄ = FC

or F̄ = −FC depending on the sign of v(t). Consequently,

from (28), the steady-state displacement q̄ can assume two

different values, namely,

q̄1 = G(0)(Fe + FC) =
Fe + FC

ks
,

q̄2 = G(0)(Fe − FC) =
Fe − FC

ks
.

Hence, the above discussion suggests that the periodic map

HT (FeT , qT ) exists as T → ∞, that is, there exists hysteresis

between Fe(t) and q(t). The width of the map is given

by q̄1 − q̄2 = 2Fc/ks. For ks = 1.5 N/m, Fc = 0.75 N,

and Fe(t) = 5 sin(0.001t) N, the hysteresis map from the

mass displacement q(t) to the external force Fe(t) is shown

in Figure 5. It can be seen that the vertical width of the

hysteresis map is 1 m.

B. LuGre Model

Using the LuGre model (17), (18) with u(t) = q(t), we

have

ẋ(t) = q̇(t) −
|q̇(t)|

r
(

q̇(t)
)x(t), (30)

F (t) = σ0x(t) + σ1ẋ(t) + σ2q̇(t), (31)

where

r(q̇(t)) =
FC

σ0
+

FS − FC

σ0
e−(q̇(t)/vS)2 . (32)

Due to the Stribeck effect, relating the equilibria map to

the hysteresis map in the case of the LuGre model is more

complicated compared to the Dahl model. The friction force

acts in a direction opposing the motion and, consequently,

plays the role of a damper in the force-actuated mass-

spring system. Hence, the force-actuated mass-spring system

with LuGre friction is step convergent, and the states in

the feedback representation given by (25), (30), and (31)

converge to constant values for every constant Fe ∈ R.

The hysteresis map from the input Fe to the output q for a

low-frequency input Fe = 10 sin(0.001t) is shown in Figure

6. The time histories of the friction force F and the position

of the mass q are shown in Figure 7. The mass-spring system

exhibits stick-slip motion [5] in which the mass sticks until

the friction force exceeds the breakaway force FS. Once

the mass starts moving, the friction force drops because of

the Stribeck effect. Consequently, the mass accelerates, and

thus the spring contracts and the spring force increases. The

mass accelerates until the external force is balanced by the

friction force and the spring force. When the spring force

becomes sufficiently large, the mass decelerates and sticks

again. This process repeats. Stick-slip is reflected by the

regions of zero velocity shown in Figure 7(b). The staircase

pattern in the hysteresis map shown in Figure 6 is caused

by the stick-slip motion. The low-slope horizontal segments

of the map correspond to sticking, while the high-slope

vertical segments correspond to slip. It should be noted that

the hysteresis map is continuous despite the steep vertical

segments.

The amplitude of the oscillations in the friction force

shown in Figure 7(a) is equal to FS − FC = 0.5 N. The

length ∆Fe of the horizontal segments of the hysteresis map

is twice the amplitude of the oscillations in the friction force,

that is, ∆Fe = 1 N. The horizontal segments correspond to

the sticking phase of the motion, in which the mass is at rest

and thus the external force is balanced by the spring force

and the friction force. As the external force increases, the

friction force also increases until reaching FS, after which

the mass slips, the friction force drops, and the spring force

increases. The larger spring force causes the mass to stick

again, leading to new balanced forces.

The vertical segments of the hysteresis map correspond

to the slipping phase and their size can be determined by

balancing forces. For instance, consider the first vertical step

starting from the origin in the hysteresis map. Letting ∆q
be the length of the vertical segment. The external force is
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Fig. 6. Hysteresis map from the external force Fe(t) to the displacement
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Stribeck effect in the LuGre model. The numerical values are FC = 1
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Fig. 7. (a) Friction force F (t) and (b) displacement q(t) of the mass
for the force-actuated mass-spring system (24) in Figure 4, with the LuGre
model (30),(31). The friction force oscillates with amplitude FS − FC and
the mass exhibits stick-slip motion. The numerical values are FC = 1 N,

FS = 1.5 N, vS = 0.001 m/s, σ0 = 105 N/m, σ1 =
√

105 N-s/m,
σ2 = 0.4 N-s/m, and Fe(t) = 10 sin(0.001t) N.

Fe = 1.5 N and it can be seen in Figure 7(a) that the friction

force drops to F = 0.6 N, then by balancing the forces, we

have the spring force

ks∆q = Fe − F = 1.5 − 0.6 = 0.9 N,

which implies that

∆q =
0.9

ks
=

0.9

2
= 0.45 m.

Thus the hysteresis map can be completely determined in

terms of the parameters FS, FC, m, and ks.

VI. CONCLUSION

In this paper we have studied the hysteresis induced by a

Duhem feedback in a SISO linear system. Then, we modeled

the mass-spring system with friction as a linear system with

a Duhem feedback. We used the feedback model to study

the hysteresis between the external force excitation and the

position of the mass. We showed that the hysteresis map

can be completely characterized in terms of the parameters

used in the friction model and the mass-spring system. With

the LuGre model the hysteresis map has a unique staircase

pattern. The staircase pattern occurs because of the stick-slip

motion which in turn is caused by the Stribeck effect in the

LuGre model.
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