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Abstract— We study a preloaded two-bar linkage that ex-
hibits hysteresis due to the presence of multiple attracting
equilibria. The dynamics at the unstable equilibrium, through
which a snap-through buckle occurs, are not linearizable due
to a singularity that is solution-dependent. We stabilize the
unstable equilibrium using two distinct nonlinear controllers.
The feedback linearization controller requires knowledge of
the linkage parameters, whereas the potential shaping PD-type
controller requires only an upper bound on the stiffness.

I. INTRODUCTION

The phenomenon of hysteresis is widespread and exten-

sively studied [1], [2]. Although hysteresis arises in diverse

applications, all hysteretic phenomena have a common ori-

gin. Specifically, hysteresis is the low-frequency limit of the

dynamic input-output response of a system when this limit

is a nondegenerate loop. A necessary condition for a system

to exhibit hysteresis is the existence of multiple attracting

equilibria for a given constant input [3], [4]. This statement

is the principle of multistability.

The principle of multistability implies that any system with

multiple equilibria can potentially be hysteretic. In structural

mechanics, the phenomenon of buckling is closely associated

with multiple equilibria, which arise when the axial load

applied to a structure counteracts the stiffness of the structure

[5]. Consequently, hysteresis can potentially arise when a

structure passes through buckling, and this possibility is

the motivation for the present paper. Although hysteresis is

closely associated with energy dissipation [6], the hysteresis

we consider is not a consequence of energy dissipation,

which occurs in all real structures under deformation, but

rather is due to the multiple equilibria arising from buckling.

In fact, the damping model we assume is linear and viscous,

and thus is not inherently hysteretic.

In many applications, buckling can lead to structural

failure, and thus the usual objective is to avoid conditions

under which buckling might occur [7]. There are, however,

useful aspects of buckling. For example, buckled elements

have been considered for vibration isolation, where the axial

and transverse motions have widely different stiffnesses [8],

[9]. Another application is in mechanical actuators, where

the structural dynamics near buckling provide significant

mechanical advantage [10], [11].

In the present paper we study the preloaded two-bar link-

age shown in Figure 1, which serves as a lumped analogue

*This research was supported in part by the National Science Foundation
under grant ECS–0225799.

of a structure that can undergo snap-through buckling. The

word preloaded refers to the force provided by the stiffness

k when the bars are horizontal in the horizontal equilibrium.

The preloaded two-bar linkage exhibits the essential features

of snap-through buckling, in which a perturbation from the

horizontal equilibrium results in a sudden, fast response

toward a stable equilibrium.

Under the approximating assumption that the bars are

inertialess, the two-bar linkage has the property that the

inertia is singular at the unstable (horizontal) equilibrium,

thereby combining instability with singular dynamics. Mass

singularities arise in linearized vibration theory when certain

modes are viewed as inertialess [12], [13]. If the system is

nearly inertialess, then classical singular perturbation tech-

niques can be used to approximate the solution in the vicinity

of the singularity. More generally, singularities that depend

on a fixed, small parameter have been widely studied in the

control literature [14]. Furthermore, singular coefficients that

multiply the highest-order derivative and that are functions

of the independent (time or spatial) variable have been

extensively studied in classical dynamical systems literature

(see, for example, [15, Chapter V]). The connection between

singularities and hysteresis is explored in [16]. In contrast,

the singularity in the linkage dynamics (16) is solution

dependent rather than independent-variable dependent, and

thus is not addressed by the classical singular perturbation

literature.

A slightly different problem arises in the case of kine-

matically redundant mechanisms [17]–[21]. The kinematic

redundancy entails additional degrees of freedom that have

no direct impact on meeting task-space objectives but provide

advantages in terms of constraint and limit avoidance. In

this case, the coefficient of the highest-order derivative has a

nonsquare Jacobian leading to nonunique motions for realiz-

ing a given task; in fact, joint motion within the Jacobian’s

(nontrivial) null space does not affect the trajectory of the

end-effector, and thus the inverse kinematics are not unique.

The nonunique motions can be chosen to satisfy a subtask

or can be specified in terms of the generalized inverse of

the Jacobian [22]. The preloaded two-bar linkage possesses

a kinematic singularity since, for θ = 0, zero velocity in

task space (that is, q̇ = 0) does not correspond to a unique

velocity θ̇ in joint space.

The contents of the paper are as follows. In Section II,

we present the two-bar preloaded linkage and determine its

equilibria through static analysis. We also derive the static
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Fig. 1. The preloaded two-bar linkage. The word ‘preloaded’ refers to the
presence of stiffness k in the system.

equilibria using energy methods, which help in determining

the stability of the equilibria. Next, in Section III, we derive

the equations of motion with a force input. The resulting

equation, whose multiple equilibria coincide with the equilib-

ria obtained from static analysis, possesses a state-dependent

inertia singularity at the unstable, horizontal equilibrium. In

Section IV we show the hysteresis in the preloaded two-bar

linkage.

In Section V we consider control strategies for stabilizing

the unstable equilibrium. We apply a feedback linearizing

controller that renders the equilibrium asymptotically stable.

Finally, to reduce dependence on the linkage parameters, in

Section VI we apply the almost-global potential-shaping con-

troller of [23], which stabilizes the equilibrium by exploiting

the structure of the dynamics. A preliminary version of the

results in this paper appeared in [24].

II. STATIC ANALYSIS OF A PRELOADED TWO-BAR

LINKAGE

In this section we analyze the statics of the preloaded

two-bar linkage with joints P, Q, and R and preloaded by a

stiffness k as shown in Figure 1. A constant vertical force F
is applied at Q, where the two bars are joined by a frictionless

pin. Let θ denote the counterclockwise angle that the left

bar makes with the horizontal, and let q denote the distance

between the joints P and R. When F = 0, the linkage has

three equilibrium configurations given by q = ±q0 and q =
0. For the equilibria q = ±q0, the spring k is relaxed. Let

q0 = 2l cos θ0 where θ0 corresponds to the equilibrium angle

θ. For the third equilibrium, both bars are horizontal with

θ = 0.

For a constant nonzero value of the force F , the two-

bar linkage has two equilibrium configurations. For one of

the equilibria, the equilibrium angle θ01 is positive and the

spring is compressed, whereas for the other equilibria, the

equilibrium angle θ02 is negative and the spring is extended.

The static equilibria can be obtained using energy meth-

ods. The potential energy associated with the system, which

is the difference between the spring energy and the work

done by the external force, is given by

P , 2kl2(cos θ − cos θ0)
2 − Fl(sin θ0 − sin θ). (1)
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Fig. 2. Dependence of the static equilibrium force F on θ given by (2).
Chosen parameter values are θ0 = π

4
rad, k = 1 N-m, and l = 1 m. For

the given parameters, θ∗ = −0.4715 rad and Fmax = 0.3747 N.

Then the static equilibria of the system are given by

∂P

∂θ
= 0,

which yields

(sin θ)

(

1 −
cos θ0

cos θ

)

=
F

4kl
. (2)

Figure 2 shows F as a function of θ. Let Fmax be the local

maximum value of F and let θ = θ∗ at F = Fmax. Solving
dF
dθ = 0 where F is given by (2), yields

θ∗ = cos−1(cos θ0)
1/3. (3)

To analyze the stability of the static equilibria, we evaluate

the second derivative of the potential energy P , which is

given by

1

4kl2
∂2P

∂θ2
= − cos θ(cos θ − cos θ0) + sin2 θ −

F

4kl
sin θ.

(4)

Substituting (2) into (4) yields

1

4kl2
∂2P

∂θ2
= − cos θ(cos θ − cos θ0) + sin2 θ

− (sin2 θ)

(

1 −
cos θ0

cos θ

)

,

which can be rewritten as

1

4kl2
∂2P

∂θ2
= (cos θ0 − cos3 θ)

1

cos θ
. (5)

Using the potential energy theorem [25], p. 56, the condition
∂2P
∂θ2 > 0 implies that the equilibrium θ is stable for θ < −θ∗

and θ > θ∗, whereas ∂2P
∂θ2 < 0 implies that the equilibrium

θ is unstable for −θ∗ < θ < θ∗.

Now, consider the preloaded two-bar linkage with a tor-

sional spring kt > 0 as shown in Figure 3. To find the static

equilibria for this system, we set the net torque about joint

P to zero, which yields

Fl cos θ + ktθ = C1l sin(2θ).
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Fig. 3. The two-bar linkage model with a torsional spring kt.

Using (??) and substituting q = 2l cos θ, we obtain

Fl cos θ + ktθ = 4kl2(cos θ − cos θ0) sin θ. (6)

Assuming F = 0, the static equilibria satisfy

ktθ = 4kl2(cos θ − cos θ0) sin θ. (7)

Equation (7) is satisfied by θ = 0 as well as all θ satisfying

cos θ =
kt

4kl2
+ cos θ0. (8)

Note that (8) has a non-zero solution θ if and only if

0 ≤ kt ≤ 4kl2(1 − cos θ0). Furthermore, if kt ≥ 4kl2(1 −
cos θ0) then the preloaded two-bar linkage has exactly one

equilibrium, namely, θ = 0.

III. DYNAMICS OF THE PRELOADED TWO-BAR LINKAGE

We now derive the equations of motion for the pre-

loaded two-bar linkage. The system has one degree of

freedom given by the angle θ, which can be viewed as the

joint-space variable. Let mbar be the inertia of each bar.

Ignoring gravity, the kinetic and potential energies of the

system are given by

T =
1

2
mq̇2 + Tbars, V =

1

2
k(q − q0)

2,

where Tbars is the kinetic energy of the bars. Substituting

q = 2l cos θ and Tbars = ( 9
8mbarl

2 sin2 θ + 5
24mbarl

2)θ̇2 we

obtain

T =
(

(2ml2 +
9

8
mbarl

2) sin2 θ +
5

24
mbarl

2
)

θ̇2, (9)

V = 2kl2(cos θ − cos θ0)
2. (10)

The generalized nonconservative force Qnc is given by

Qnc = −Fl cos θ − 4cl2θ̇ sin2 θ. (11)

Now, Lagrange’s equation d
dt

(

∂L
∂θ̇

)

− ∂L
∂θ = Qnc, where L =

T − V , yields

(

(2ml2 +
9

8
mbarl

2) sin2 θ +
5

24
mbarl

2
)

θ̈

+ (2ml2 +
9

8
mbarl

2)(sin θ)(cos θ)θ̇2

+ 2cl2(sin2 θ)θ̇ + 2kl2(cos θ0 − cos θ)(sin θ) = −
l cos θ

2
F.

(12)

Note that, if mbar > 0, then (12) does not have a mass

singularity. However, if mbar = 0, then (12) has a mass

singularity for θ = 0.

Next, note that the transformation

q = 2l cos θ, (13)

is invertible for all θ ∈ (−π
2 , π

2 ). However, the velocity

relation

q̇ = −2l(sin θ)θ̇, (14)

is singular for θ = 0. Using q = 2l cos θ the dynamics (12)

can be expressed in terms of the displacement q as
(

(m+
9

16
mbar)(4l2 − q2) +

5

12
mbarl

2
)

(4l2 − q2)q̈

+
5

12
mbarl

2qq̇2 + cq̇(4l2 − q2)2

+ k(q − q0)(4l
2 − q2)2 =

1

2
q(4l2 − q2)

3

2 F.

(15)

Note that (15) has an inertia singularity at q = 2l, that is, for

θ = 0, whether or not mbar = 0. Note also that if mbar 6= 0
and q = 2l, then q̇ = 0, that is, the links always come to

rest when the links are stretched out.

Now assume that mbar = 0. For this case, the dynamics

(12) become

2ml2(sin2 θ)θ̈ + 2ml2(sin θ)(cos θ)θ̇2 + 2cl2(sin2 θ)θ̇

+2kl2(cos θ0 − cos θ)(sin θ) = −
l cos θ

2
F.

(16)

Defining x1 = θ and x2 = θ̇, (16) can be written as
[

ẋ1

ẋ2

]

=

[

x2

− cos x1

sin x1

x2
2 −

c
mx2 −

k
m

cos θ0−cos x1

sin x1

]

−

[

0
cos x1

4ml sin2 x1

]

F.

(17)

To linearize (17), we evaluate the Jacobian as

J =

[

0 1
x2

2

sin2 x1

+ k cos θ0

(sin x1)(cos x1)
− k

sin2 x1

−2x2

2

tan x1

− c
m

]

.

(18)

However, J does not exist at x1 = 0, x2 = 0, and thus

the system does not have a linearization at the horizontal

equilibrium. Hence, we design nonlinear controllers for the

two-bar linkage system in the later sections. In the next

section we analyze the hysteretic behavior of the system.

IV. HYSTERESIS IN THE TWO-BAR LINKAGE

The hysteresis map of a system is the response of the

system in the limit of DC operation, that is, the response

under periodic inputs with frequency approaching zero [4].

It is shown in [27] that a system that exhibits hysteresis has

a multi-valued equilibrium map and that the hysteresis map

is a subset of the equilibrium map. The existence of multiple

equilibria for a two-bar linkage suggests that the system may

be hysteretic. We simulate the linkage dynamics given by

(12) under the periodic external force F = sin(ωt) N using
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Fig. 4. Input-output maps between the vertical force F and the vertical
displacement x for the two-bar linkage model (12) for various values of
frequency ω in rad/s. The nonvanishing clockwise displacement-force loop
at asymptotically low frequencies is the hysteresis map. Ediss is the energy
dissipated by the dashpot in one complete cycle. The parameters used are
k = 1 N/m, m = 1 kg, c = 1 N-s/m, mbar = 0.5 kg, l = 1 m, and
F (t) = sin(ωt) N.

the parameter values k = 1 N/m, m = 1 kg, c = 1 N-

s/m, mbar = 0.5 kg, and l = 1 m. As shown in Figure 4

there exists a nontrivial clockwise hysteresis map from the

vertical force F to the vertical displacement x (equivalent to

a counterclockwise map from the the vertical displacement

x to the vertical force F ) at low frequencies. The vertical

displacement is x = l sin θ. The presence of a nontrivial loop

at asymptotically low frequencies constitutes hysteresis. For

details see [4].

V. FEEDBACK LINEARIZATION CONTROL OF THE

TWO-BAR LINKAGE

The linkage dynamic model (16) has an unstable equi-

librium at θ = 0 leading to snap-through behavior. What

makes the model challenging to stabilize is that it does not

have a linearization at θ = 0, which in turn is due to the

presence of sin θ in the coefficients of θ̈ and θ̇.

To stabilize the linkage at θ = 0, we use feedback

linearization to generate a control signal that makes θ decay

according to the second-order system

θ̈ = −aθ̇ − bθ, (19)

where a > 0 and b > 0. Substituting (19) into (16) we obtain

m
[

( sin2 θ)(−aθ̇ − bθ) + (sin θ)(cos θ)θ̇2
]

+ c(sin2 θ)θ̇ + k(sin θ)(cos θ0 − cos θ) = −
cos θ

4l
F.

Solving for F yields

F = −
4l

cos θ

[

m(sin θ)(cos θ)θ̇2 − (ma − c)(sin2 θ)θ̇

− mb(sin2 θ)θ + k sin θ(cos θ0 − cos θ)
]

.
(20)

To illustrate (20) we choose the parameter values a = 1
s−1, b = 1 s−2, m = 1 kg, c = 1 N-s/m, k = 1 N/m, l = 1
m, and θ0 = π

4 rad. For the initial conditions θ(0) = π
4 rad

and θ̇(0) = 1 rad/s, the time histories of θ, θ̇, and control

input F are shown in figures 5 and 6, respectively.
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Fig. 5. Time histories of θ and θ̇ under the action of the feedback
linearization controller (20) with initial conditions θ(0) = π

4
rad and

θ̇(0) = 1 rad/s. The controller stabilizes the horizontal equilibrium position.
The parameter values used are a = 1 s−1, b = 1 s−2, m = 1 kg, c = 1
N-s/m, k = 1 N/m, l = 1 m, and θ0 = π

4
rad.

VI. INTRINSIC NONLINEAR PD (INPD) AND

ROBUST-INPD CONTROLLER

Since the feedback-linearization controller in Section

V requires knowledge of all of the linkage parameters, we

now develop an intrinsic nonlinear PD controller based on

the theory given in [23], [28]. In [23], a robust nonlinear

controller is given for fully actuated mechanical systems.

Since the two-bar linkage is fully actuated, the theory given

in [23], [28] is applicable.

The control law given in [23] requires the construction of

an error function as well as functions Φ and Ψ. First, note

that the configuration space of the preloaded two-bar linkage

has the topology of S1. Let θ ∈ [−π, π) parameterize S1,

and let θs ∈ [−π, π) denote the desired setpoint. Then, one

choice [28] of an error function e : S1 → R is given by

e(θ) = 1 − cos(θs − θ).
To stabilize θs = 0, the error function is given by e(θ) =

1 − cos θ. We next choose the functions Φ(θ) = k1lθ and
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Fig. 6. Control input F given by (20) with initial conditions θ(0) = π
4

rad and θ̇(0) = 1 rad/s. The parameter values used are a = 1 s−1, b = 1
s−2, m = 1 kg, c = 1 N-s/m, k = 1 N/m, l = 1 m, and θ0 = π

4
rad.

Ψ(θ, θ̇) = k2lθ̇, where k1, k2 > 0. Then, the control law in

[23] for the preloaded two-bar linkage is given by

F = −
1

cos θ
u, (21)

where

u = −
Φ′(e(θ))

l

∂e

∂θ
(θ) +

1

l

∂V

∂θ
(θ) −

Ψ(θ, θ̇)

l
+

uf

l
, (22)

V , 2kl2(cos θ − cos θ0)
2 is the potential energy and uf ,

4cl2 sin2(θ)θ̇ is the energy dissipated by the damping force.

Using (22), we obtain the INPD controller

u = −
[

k1 + 4kl(cos θ − cos θ0)
]

sin θ −
(

k2 − 4cl sin2 θ
)

.
(23)

The controller (23) almost globally asymptotically stabi-

lizes the desired equilibrium with local exponential conver-

gence. Since we do not require knowledge of the mass m or

the linkage mass mbar of the system, (23) is unconditionally

robust with respect to the inertia parameters of the system.

Although the INPD controller presented in (23) is uncon-

ditionally robust with respect to inertia parameters, it requires

complete knowledge of the potential function V (θ) given in

(10). We now remove this limitation by presenting a more

robust version of the INPD controller (R-INPD) that requires

less modeling information than the controller (23).

Theorem 6.1: Consider the two-bar linkage model (12),

and choose F as in (21) and

u = −kp sin θ − kdθ̇, (24)

where kp > 4kl and kd ≥ 0. Then there exists a positive-

definite function V : S1 × R → R such that the equilibrium

(θ, θ̇) = (0, 0) is asymptotically stable with a domain of

attraction that contains a sublevel set of V . Furthermore, the

set {(θ, θ̇) ∈ (−π/2, π/2) × R : θ̇ = 0} is contained in the

domain of attraction. Finally, if kd > 0, then the closed-loop

solutions converge to the equilibrium (θ, θ̇) = (0, 0) locally

exponentially fast. 2

The R-INPD controller (24) requires no knowledge of the

system parameters other than an upper bound on kl. The

gains kp and kd in the controller (24) are analogous to

linear PD gains, and hence the closed-loop response can be

modified by adjusting the values of these gains appropriately.

Next, consider the closed-loop dynamics obtained by

substituting (24) into (16) yielding

m
[

(sin2 θ)θ̈ + (sin θ)(cos θ)θ̇2
]

+ c(sin2 θ)θ̇

+ k(sin θ)(cos θ0 − cos θ) = −
cos θ

4l

kp sin θ + kdθ̇

cos θ
.

To determine the static equilibria, we set all derivatives to

zero, yielding

k(sin θ)
(

cos θ0 +
kp

4kl
− cos θ

)

= 0. (25)

Note that (25) holds for θ = 0 as well as for θ that satisfies

cos θ =
lkp

4kl2
+ cos θ0, (26)

which is identical to (8), where lkp plays the role of the

torsional stiffness kt. There exists θ ∈ (−π
2 , π

2 ) satisfying

(26) if and only if lkp < 4kl2(1 − cos θ0), that is, kp <
4kl(1 − cos θ0). Since kp > 4kl in the controller (24), it

follows that (26) has no solution and thus the linkage has

exactly one asymptotically stable equilibrium at θ = 0 under

the action of the controller.

To illustrate the R-INPD controller (24) we use the same

parameters and initial conditions as in Section V. Let m =
1, c = 1 N-s/m, k = 1 N/m, l = 1 m, kp = 10 N-m, kd = 2
N-m-s, and θ0 = π

4 . For the initial conditions θ(0) = π
4 rad

and θ̇(0) = 1 rad/s, the time histories of θ, θ̇, and control

input F are shown in figures 7 and 8, respectively. The

closed-loop system for the R-INPD controller converges to

the equilibrium (0, 0) in 5 seconds.. These may be compared

with results for the feedback linearization based controller

presented in figures 5 and 6 for the same initial conditions.

VII. CONCLUSION

We studied a preloaded two-bar linkage, which serves

as a lumped analogue of a structure that can undergo snap-

through buckling. We showed that the linkage exhibits hys-

teresis between the force actuation and the vertical displace-

ment. We also showed that the two-bar linkage with massless

bars has an inertia singularity and thus is not linearizable at

the horizontal (unstable) equilibrium. Finally, we presented

an INPD and a R-INPD controller that stabilizes the unstable

equilibrium with less parametric knowledge of the system.
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