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Abstract 
In this paper we develop an adaptive disturbance 

rejection algorithm formulated i n  terms of an  AR- 
h1 A R KOC'/Toepli tz mat r i s  system representation. The  
algorithm is applied to the problem of active noise suppres- 
sion i n  an acoustic duct, and experimental results demon- 
strating tonal and broadband disturbance rejection are 
presented. 

1. Introduction 
An important objective of control system design is to 

minimize the effects of external disturbance signals. For 
applications such as active noise and vibration control, it 
is the primary focus. In cases where the system is time 
varying or difficult to identify, aciaptive methods such as 
the feedforward LMS and RLhIS algorithms are useful [l] 
- [4]. However, feedforward-type algorithms neglect the ef- 
fect of the feedback (or secondary) path from control to 
measurement thus leading to poor performance and insta- 
bility [ 5 ] .  To remedy this problem, robust variations of 
the classical LSIS algorithm have been proposed; see, for 
esample [6]. 

This paper proposes a novel adaptive feedback distur- 
bance rejection algorithm in  which the system and the 
cont,roller are represented in ARMARKOV weight matrix 
form [ T I .  A gradient-search algorithnl tha t  minimizes a 
performance cost function is used to update the entries of 
the controller weight matrix. The  ARM ARIiOV represen- 
tation of systems involves the Markov- parameters of the 
system and relates windows of input and output da ta .  In  
[8] it is shown that ARMARKOV models are less sensi- 
tive to noisy measurements than ARhlA models. We also 
note that perturbations to ARMARKOV parameters have 
less impact on model behavior as compared to XRMA rep- 
resentations. In addition, adaptive algorithms that use a 
weight matrix representation have update laws based on 
windows of da ta  rather than instantaneous measurements. 
Thus, the ARhlARKOV weight matrix representation has 
a greater degree of robustness with respect to measurement 
noise and parameter uncertainity than the ARMA repre- 
sentation. Finally, Markov parameter based representa- 
tions of systems provide a framework for direct controller 
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synthesis based on input-output data [9]. 
The algorithm requires a measurement sensor and a 

performance sensor, as well as the Markov parameters and 
moving average coefficients that  relate the performance to 
the control. These parameters are obtained by using the 
time domain identification algorithm of [7]. Since the AR- 
MARKOV system representation is used for identification 
and since the controller is based upon this representation, 
the intermediate step of recovering a state space or fre- 
quency domain model of the system is eliminated. 

2. Standard Problem Representation of 
Disturbance Rejection 

Consider the n-th order linear discrete-time two-input, 
two-output (TITO)  system. The d i s turbance  ~ ( k ) ,  the 
con t ro l  u ( k ) ,  the m e a s u r e m e n t  y(k) and the p e r f o r m a n c e  
z ( k )  are in 72"- , Rrn-, R ' y  and RI= , respectively. T h e  sys- 
tem can be written in  state space form as 

z ( k  + 1) = --IL!(k) + B u ( k )  + DIW(k), (1) 

z ( k )  = E1z(k) + E?U(k) + EGW(k) ,  (2) 
y(k) = C ' x ( k )  + DCL(k) + D?W(k) ,  (3) 

or equivalently in terms of LTI transfer matrices 

G,, w + GLUu, (4)  
y = Gyww+Gyuu.  (5) 

I -  - -  

The controller Gc generates the control signal u ( k )  based 
on the measurement y(k), that  is, 

U = Gcy. ( 6 )  

The objective of the standard problem [lo] is t o  determine 
a controller G, that  produces a control signal u ( k )  based 
on the measurement y ( k )  such that a performance measure 
involving : ( k )  is minimized. In classical fixed-gain H? and 
H, optimal control theory, the performance z ( k )  is not 
required to be measured, but rather is used analytically 
for off-line controller design. Fixed-gain controller design 
methods for disturbance rejection also require knowledge of 
all four transfer matrices, namely, the p r z m a r y  p a t h  C,,, 
the s e c o n d a r y  p a t h  G,,,, the reference p a t h  G,, and the 
feedback p a t h  G,,, and the spectrum of the disturbance 
~ ( k ) .  This terminology is standard in  the noise control 
literature. 
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Unlike fixed-gain controller design nlethods, adaptive 
control techniques require on-line measurement of : ( k )  for 
use in  aclaptatioii. I f  ~ ( k )  is measured and used for control, 
we say that the per-!or-r-ninuce assumplion is satisfied. How- 
ever, i n  contrast to standard fixed-gain methods, adaptive 
methods [ I]-(:i] oftc:n require that only the secondary path 
transfer matrix CY,, ,  be known a priori. Other adaptive 
methocls [GI iclcritify G Z u  on-line but require additional ac- 
tuators and st'nsors. 

3. ARMARKOV Representation of 
Systems 

In this section we derive the ARMARKOV repre- 
sentation of a state space model. Consider the nth-order 
discrete-time finite-dimensional linear time-invariant sys- 
tem 

z ( k  + 1) = A z ( k )  + B u ( k ) ,  ( 7 )  

y(k)  = C z ( R ) + D u ( k ) ,  (8) 

xhere U( k )  E 2"'~ and y(k)  E 2 ' ~ .  The Markov parame- 
ters Hk E ' 7 2 ' ~ ~ " ~ ~  of this system are defined as 

and satisfy 

\.\'e note that i f  G(:) is strictly proper, that  is. D = 0,  then 
H-1 = 0. The  transfer function G(:)  can be equivalently 
represented as 

where clet(:I - A) = :" + ulz"-' + . .  .+  a,  and B, E 
, I - 0 , .  . . , n. Equating (11) and (12), and multi- 

plying both sides by :" + u ~ z " - ~  + . . . + a,, yields 

TLIxna ' - 

which provides recursive expressions for Bj in terms of Hi.  

Now consider the ARMA representation of (12) given 
by 

Replacing k wit.h k-1  i n  (14) and substituting the resulting 
relation back into (14) yields 

y(k)  = ( a ;  - az)y(k - 2 )  + . . . + a l u n y ( k  - n - 1) 
+ B o ~ ( l ; ) + ( B l  - u ~ B o ) L L ( ~ -  l ) + - . . - ~ l B , , ~ ( k - n -  1) . (15)  

Noting from (13) that H-1 = Bo, 
defining 

Ho = B1 - C L ~ B ~ ,  and 

A A a?,i = a l ~ j  - ~ j + l ,  i = 1 , .  . . ,  R - 1, CY?,,, - u ~ u , ,  (16) 

B?,i = Bi+l - ~ l B i ,  i = 1 , .  . .,n - 1, B?,, = U I B ~ ,  (17) a A 

(15) can be written as 

y ( k )  = LY?,iy(k - 2 )  + . . ' $  Q's,,Y(k - 72 - 1) 

+ H - l u ( k )  + H o u ( k  - 1) + G ? , ~ z L ( ~  - 2) + . . .  
+62,nu(k - n - 1). (18) 

We note that (18) explicitly involves the first two Markov 
parameters H-1 and Ho, and thus is called an A R -  
iCfARIiO c'representation. An ARMARKOV model whose 
weight matrix contains the first three Markov parameters 
can be obtained by substituting y(k - 2 )  given by (14) 
into (18). Repeating this procedure p - 1 times yields the 
p-ARMARKOV time domain form of (7) and (8) 

n U 

j = 1  j = 1  
n 

j = 1  

where aj E I2 and 6, E ' 7 2 ' y x m u ,  j = 1 , . . . ,  n.  Equation 
(19) is an input-output relation which explicitly involves 
p Markov parameters. In the case p = 1, (19) specializes 
to the usual AR&IA model. The  coefficients a,  and Bj are 
calculated recursively (in a manner similar to the way t.he 
coefficients are calculated in (18) by repeated substitution 
into (14) and by using (13) .  

Now, let p be a positive integer and define the output 
vector Y ( k )  E R ' P  and the ARILIARKOV regressor vector 
aYu(k) E R i y ( F f n - l ) + m " ( ~ + P + n - l )  by 

(20) 

u ( k )  . . .  u(k  - p - p -  n +  2 1 1 ~ .  (21) 

Using (IO), the vectors Y ( k )  and cP,,(lc) are related by the 
ARMARKOV/Toeplitz time domain representation 

T Y ( k )  2 [ y ( k )  . . '  y ( k - p + l ) ]  ] 

(Dyu(k)  A [ y ( k - p )  . . .  y ( k - p - p - n + 2 )  

Y ( k )  = w J u @ y u ( k ) ,  (22)  

where the ARMARKOV weight matrix Wyu is defined by 

01 Y 
-QnIly o l y  . . .  

(23) 
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H -  I H11-2 61 . . .  6" O l y x m .  ' . .  

O l y x m .  ' ,  

O ~ y x m ,  ' . .  0 1 , x ~ .  H - 1  ' . .  H p - ?  61 ' . .  B" 

where I ,  denotes the 1 x 1 identity matrix. We note that 
(22) is a redundant representation of (19) and that we can 
recover a state space realization of the system from (19). 

4. ARMARKOV Representation of 
TITO Systems 

We now derive the ARMARKOV representation of 
the TITO system described in Section 2. First, the AR- 
BlARKO\' form of (1) - ( 3 )  is 

71 U 

z ( k )  = -cr,:(k - p - J + 1) + H r w , 3 - p ( R  - j + 1) 
j = 1  j = 1  
n U 

+ B,,,jLC(k - /A - j + 1) + HZU,j-?v(k  - j + 1) 
j = 1  j =1  

n 

j = 1  
n U 

j=1  
n 

j = 1  
U 

Z ( k )  = L v z w @ z w ( k )  + B Z , U ( k ) .  (32)  

Similarly, (2.5) can be written as 

Y ( k )  = I.V,,@,,(k) + B,,U(k), ( 3 3 )  

where Y ( k )  is defined as in (20) and ay,, CV,, and By, 
are defined analogous to (27), (28) and (31) to yield the 
ARMARKOV weight matrix representation of (1) - ( 3 ) .  
T h e  length of the vector U ( k ) ,  pc = m,(p + n + p - 1). 

5. Adaptive Disturbance Rejection 
Algorithm 

In this section we formulate an  adaptive distur- 
bance rejection feedback algorithm for the TITO system 
represented in ARMARKOV form ( 3 2 )  and (33). 'IVe use 
a strictly proper XRiLIARKOV/Toeplitz form controller 
of order n, with p c  Markov parameters. The  controller 

a T ' .  O m . x l y  
Z ( k )  = [ : ( I ; )  ' ' .  z ( k - p + l ) ]  , (26) O,;xt,  , , :  O m U ; i y  H,:o . . :  H,,,,-? 6,:1 . . .  q r . <  

U ( k )  [ u ( k )  . . .  u ( k - p - ' p - n + 2 ) ] T ,  (27) and its nonzero entries are functions of k .  Define the es f i -  
the XRIIXRKOV regressor vector GZw ( R )  by m a t e d  control vec tor  U ( k )  and the e s t i m a t e d  p e r f o r m a n c e  

n as 
Q Z W ( k )  = [ = ( l C - p )  . . '  z ( k - p - p - n + 2 ) ( 2 8 )  

w ( R )  . . . zu(R - p - p - n + 2)lT (29) O ( k )  = w c ( k ) @ , y ( k ) ,  (34) 

the block-Toeplitz ARMARKOV weight mat r i s  CV,, by Z ( k )  = W z w @ z w ( k )  + B z u O ( k ) ,  (3.5) 

with - a n J 1 =  01. ' 01, 

Note that Z ( k )  = Z ( k )  + B z u ( O ( k )  - U ( k ) ) .  Nest, define 
the cost function 

H I W , - l  ' . .  H:,,,-? 6:,.i ' . .  B:W," O f ; X m w  " '  

01: x m y  

(37)  A I -  J ( k )  = - Z T ( k ) Z ( k ) .  
2 
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using ( :32) ,  (:34) and (:37), the constrained gradient of J ( k )  
with respect to Cl,(kj  is giLen b> [TI 

where the - - I '  siiperscript denotes the ayerage value of the 
parameter 

We observe that of the four transfer matrices in  the 
standard problein, G,,, GZu.  GyU and G,,, the algorithm 
described abobe requires that we identifl- only one transfer 
matrix,  namely, GLtI. The signals that  we require to be 
measured are y(k)  and ~ ( k ) .  

( 3 8 )  

where '.o" denotes the Hadamard product of two matrices 
and the constraint mat r i s  U, is defined by 

B J (  k )  - = i', 0 BT,z(k)q,(k)~ 
811,(k) 

0," 

7. Experimental Results 
Experimental demonstration of the ARJIXRKOV 

adaptive disturbance algorithm is performed on an acoustic 
duct of circular cross-section. The  duct is SO inches long 
ancl has a diameter of 4 inches. The  disturbance speaker is 
located a t  one end of the duct and the measurement sensor 
(microphone) is located 4 inches in  from the same end of 
the duct. The  performance sensor is positioned 6 inches in 
from the other end while the control speaker is placed 16 
inches i n  from that end of the duct. 

T h e  algorithm is tested on four types of disturbances, 

disturbance (135.74 H~ and 160.4 H ~ ) ,  band-limited \"hite 
noise ( u p  to 390 H ~ )  and ~ h l  radio noise. ~h~ algorithm 

12 for mat r ix  B,, and for the 
Identification of G,,, and Rc = 2, p c  10 and = 2 
for the ivc(k. ~h~ controller is implemented on a 
dSPACE ds1102 real time controller running a C30 DSP 
processor a t  a sampling frequency of 800 Hz. The  micto- 
phone signals are passed through a low pass filter that  rolls 
off a t  31.5 Hz .  Figure 1 shows the open-loop and closed-loop 
frequency domain performance with a single-tone distur- 
bance Disturbance attenuation of o\er 40 d B  is achieved. 
Although the disturbance signal is a pure tone, speaker 
nonlinearities produce harmonics which appear on the fre- 
quency response p lo t  along Lvltt, ambient and 
noise The algorithm provides the  same level of attenua- 
tion by adaptation when the  frequency of disturbance 
tone is changed For the case of a dual-tone disturbance, 
attenuation of over :3.5 d B  is observed as shown in Figure 2.  
Figure 3 shows the open-loop and closed-loop magnitude 
plots of the transfer function from disturbance to perfor- 

Ston of u p  to d B  is observed Over a frequency range 
from 3oo H z ,  Finally,  Figlire shows the open-loop 
and closed-loop frequency response with an Ah1 radio dis- 

u ( l ; )  = u c , l ( k ) n ( k  - p c )  + , .  . + N c , n l ( k ) u ( k  - / l c  - 71c - pc  + 2) turbance Significant levels of noise reduction are observed 
pc  + 2 ) ,  over the frequency range 0 - 300 Hz.  Thus,  the algorithm 

is shown to be effective in rejecting both narrow-band and 
broad-band disturbances. 
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