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Reduced-rank unscented Kalman filtering using Cholesky-based decomposition
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We consider a reduced-rank square-root unscented Kalman filter based on the Cholesky decomposition of
the state-error covariance. The performance of this filter is compared with an analogous filter based
on the singular value decomposition. We evaluate the performance of these filters for illustrative linear and
non-linear systems.
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1. Introduction

Data assimilation for large-scale systems has gained
increasing attention due to non-linear and computa-
tionally intensive applications such as weather fore-
casting (Evensen 2006; Lewis, Lakshmivarahan and
Dhall 2006). These problems require algorithms that
are computationally tractable despite the enormous
dimension of the state. Reduced-order variants of the
classical Kalman filter have been developed for
computationally demanding applications (Ballabrera-
Poy, Busalacchi and Murtugudde 2001; Farrell and
Ioannou 2001; Fieguth, Menemenlis and Fukumori
2003; Scherliess, Schunk, Sojka and Thompson 2004),
where the classical Kalman filter gain and covariance
are modified so as to reduce the computational
requirements. A comparison of several techniques is
given in Kim, Chandrasekar, Palanthandalam-
Madapusi, Ridley and Bernstein (2007).

An alternative technique for reducing the computa-
tional requirements of data assimilation for high-
dimensional systems is the reduced-rank filter
(Verlaan and Heemink 1997; Treebushny and
Madsen 2003; Gillijns, Bernstein and Moor 2006). In
this method, the error-covariance matrix is factored to
obtain a square root, whose rank is then reduced
through truncation. The truncated square root is then
propagated by the data assimilation algorithm. This
technique is closely related to classical decomposition
techniques (Morf and Kailath 1975; Bierman 2006),
which provide numerical stability and computational
efficiency. Factorisation-and-truncation methods have
direct application to the problem of generating a
reduced ensemble for use in particle filter methods
(Anderson 2001; Heemink, Verlaan and Segers 2001).

The primary technique for truncating the

error-covariance matrix is the singular value decom-

position (SVD), wherein the singular values are used to

determine the entries of the error covariance matrix

that are most relevant to the accuracy of the state

estimates (Verlaan and Heemink 1997; Treebushny and

Madsen 2003; Gillijns et al. 2006). Despite the

intuitively appealing nature of this approach, the

optimality of approximation based on the SVD

within the context of recursive state estimation is not

guaranteed. The difficulty is due to the fact that

optimal approximation depends on the dynamics and

measurement maps in addition to the components of

the error covariance.
In related work, Chandrasekar, Kim, Bernstein and

Ridley (2008) observed that the Kalman filter estimate

update depends on the product CkPk, where Ck is the

measurement map and Pk is the error covariance.

Consequently, the approximation technique developed

in Chandrasekar et al. (2008) focuses on CkPk rather

than Pk alone. In particular, it is shown in

Chandrasekar et al. (2008) that approximation of

CkPk leads directly to truncation based on the

Cholesky decomposition. Unlike the SVD, however,

the Cholesky decomposition does not possess a natural

measure of magnitude that is analogous to singular

values. Nevertheless, filter reduction based on the

Cholesky decomposition provides state-estimation

accuracy that is competitive with, and in many cases

superior to, that of the SVD. Specifically, examples

show that, in special cases, the accuracy of the

Cholesky-decomposition-based reduced-rank filter is

typically equal to the accuracy of the full-rank filter,
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whereas the SVD-based reduced-rank filter provides
arbitrarily poor accuracy.

An additional advantage of using the Cholesky
decomposition in place of the SVD for reduced-rank
filtering is the fact that the Cholesky decomposition
is computationally less expensive than the SVD,
specifically, O(n3/6) versus O(2n3) (Stewart 1998), and
thus an asymptotic computational advantage over
SVD by a factor of 12. Furthermore, the entire
matrix need not be factored; instead, by arranging
the states so that those states that contribute directly to
the measurement correspond to the left-most columns
of the lower triangular square root, only the leading
submatrix of the error covariance must be factored,
yielding yet further savings over the SVD. Once the
decomposition is performed, the algorithm effectively
retains only the initial ‘tall’ columns of the full
Cholesky decomposition and truncates the ‘short’
columns.

To assimilate data in non-linear systems, particle
filters are used to propagate a collection of state
estimates from which statistics can be computed. These
techniques include the ensemble Kalman filter (EnKF)
(Whitaker and Hamill 2002; Evenson 2003), which uses
a stochastic construction, as well as the unscented
Kalman filter (UKF) (Julier, Uhlmann and Durrant-
Whyte 2000; Wan and van der Merwe 2001; Ristic,
Arulampalam and Gordon 2004), which deterministi-
cally constructs the collection of state estimates by
perturbing the nominal state estimate. Specifically,
UKF constructs the ensemble members by using the
columns of the square root of the error covariance to
perturb the nominal state estimate. For a model of
order n, the n columns and their negatives (see (5))
result in 2nþ 1 ensemble members and thus 2nþ 1
model updates.

A straightforward approach to reducing the UKF
ensemble size is to use a factorisation-and-truncation
method to truncate n� q columns of the square root of
the error covariance and construct the ensemble
members using the remaining q columns. In
Anderson (2001), Heemink et al. (2001) and Tippett,
Anderson, Bishop, Hamill and Whitaker (2003), SVD-
based decomposition-and-truncation is used to con-
struct reduced-rank approximations of the square root
of the error covariance, which are then used to
construct the ensemble members resulting in an
ensemble of size 2qþ 1.

In this paper, we use the Cholesky-based decom-
position technique developed in Chandrasekar et al.
(2008) to construct the reduced-ensemble members.
Specifically, we use the Cholesky decomposition to
obtain a square root of the error covariance and select
columns of the Cholesky factor to approximate CkPk.
The retained columns of the Cholesky factor are used

to construct the ensemble members. We compare the

performance of the Cholesky-decomposition-based

reduced-rank UKF and the SVD-based reduced-rank

UKF on a linear advection model and a non-linear

system with chaotic dynamics.

2. The unscented Kalman filter

We consider the discrete-time system with non-linear

dynamics

xkþ1 ¼ fðxk, uk, kÞ þ wk ð1Þ

and linearly dependent measurements

yk ¼ Ckxk þ vk, ð2Þ

where xk,wk2R
n, uk2R

m, and yk, vk2R
p. The input uk

and output yk are assumed to be measured, and wk and

vk are uncorrelated zero-mean white noise processes

with covariances Qk and Rk, respectively. We assume

that Rk is positive definite. The objective is to estimate

the state xk using the measurements yk. When the

dynamics (1) are linear, the Kalman filter provides

estimates that minimise the mean-square-error (MSE)

in the state estimates (Anderson and Moore 2005).

However, for non-linear dynamics, we approximate the

state error covariance using ensembles that are

constructed deterministically according to UKF.

The starting point for UKF is a set of sample points,

that is, a collection of state estimates that capture the

probability distribution of the state (Julier et al. 2000;

Wan and van der Merwe 2001; Ristic et al. 2004).
Let x2R

n, and let P2R
n�n be positive semidefi-

nite. The unscented transformation provides 2nþ 1

ensembles Xi2R
n and corresponding weights � i2R,

for 0¼ 1, . . . , 2n, such that the weighted mean and

weighted variance of the ensembles are x and P,

respectively. Specifically, let S2R
n�n satisfy

SST ¼ P, ð3Þ

and, for all i¼ 1, . . . , n, let coli(S) denote the ith

column of S. For �4 0, the unscented transformation

X¼�(x,S,�)2R
n�(2nþ1) of x with covariance P¼SST

is defined by

X, X0 � � � X2n

� �
, ð4Þ

where

Xi,

x, i ¼ 0,

xþ
ffiffiffi
�
p

coliðSÞ, i ¼ 1, . . . , n,

x�
ffiffiffi
�
p

coli�nðSÞ, i ¼ nþ 1, . . . , 2n:

8>><
>>: ð5Þ
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The parameter � determines the spread of the

ensembles around x. Next, define the weights � i2R by

�0 ¼
� �� n

�
, �i,

1

2�
, i ¼ 1, . . . , 2n: ð6Þ

Then,

X2n
i¼0

�iXi ¼ x,
X2n
i¼0

�iðXi � xÞðXi � xÞT ¼ P: ð7Þ

UKF uses the unscented transformation to approx-

imate the error covariance and estimate the state xk.

Letting xf0 denote an initial estimate of x0 with error

covariance Pf
0, the data assimilation and forecast

estimate, xda
k and xfk, respectively, from UKF are

given by the following steps.
UKF data assimilation step:

x da
k ¼ xfk þ Kkðyk � yfkÞ, ð8Þ

yfk ¼ Ckx
f
k, ð9Þ

X da
k ¼ �ðx da

k ,S da
k ,�Þ ¼ X da

0, k � � � X da
2n, k

h i
, ð10Þ

S da
k ¼ S f

kH
f
k, ð11Þ

Kk ¼ Pf
kC

T
k ðCkP

f
kC

T
k þ RkÞ

�1, ð12Þ

where Hf
k 2 R

n�n satisfies

Hf
kðH

f
kÞ

T
¼ In � ðCkS

f
kÞ

T
½CkS

f
kðCkS

f
kÞ

T
þ Rk�

�1CkS
f
k

ð13Þ

and S f
k 2 R

n�n satisfies

S f
kðS

f
kÞ

T
¼ Pf

k: ð14Þ

UKF forecast step:

X f
i,kþ1 ¼ fðXda

i,k , uk, kÞ, i ¼ 0, . . . , 2n, ð15Þ

xfkþ1 ¼
X2n
i¼0

�iX
f
i,kþ1, ð16Þ

Pf
kþ1 ¼

X2n
i¼0

�iðX
f
i,kþ1 � xfkþ1ÞðX

f
i,kþ1 � xfkþ1Þ

T
þQk:

ð17Þ

In traditional notation, the data assimilation estimate

x da
k is denoted by xkjk to indicate that xkjk is the

estimate of xk obtained by using measurements

y0, . . . , yk, while the optimal forecast xfk is denoted by

xkjk�1 to indicate that xkjk�1 is the estimate of xk
obtained by using measurements y0, . . . , yk�1.

The notation xfk and x da
k is motivated by the data

assimilation literature (Scherliess et al. 2004).
When the dynamics in (1) are linear, UKF

is equivalent to the Kalman filter (Julier et al. 2000).

Define P da
k 2 R

n�n by

P da
k ¼

�
Sda
k ðS

da
k Þ

T: ð18Þ

In the linear case, P da
k and Pf

k are the covariances of the

error xk � x da
k and xk � xfk, respectively. However,

in the non-linear case, P da
k and Pf

k are pseudo-error

covariances and not the covariances of the error

xk � xda
k and xk � xfk, respectively. The case in which

the process noise wk in (1) enters non-linearly

is discussed in Wan and van der Merwe (2001), while

the case in which the measurements depend non-

linearly on the state is discussed in Ristic et al. (2004).

Furthermore, although variations of UKF that use

fewer ensembles exist (Julier and Uhlmann 2002), the

spread of the ensemble members of Julier and

Uhlmann (2002) cannot be scaled, and hence some

components of the ensemble state may not satisfy

physical constraints, for example, states modelling

density have to be positive.
Note thatHf

k and S f
k satisfying (13) and (14) are not

unique. For example, either the SVD or Cholesky

decomposition can be used. Moreover, all square Hf
k

and S f
k satisfying (13) and (14) are related by an

orthogonal transformation. Specifically, the following

result is given in Bernstein (2005, p. 188).

Lemma 1: Let S, Ŝ2R
n�n. Then, SST

¼ ŜŜT if and

only if there exists an orthogonal matrix U2R
n�n such

that Ŝ¼SU.

UKF uses a symmetric positive-negative pairing of the

ensemble. Specifically, (5) and (15) imply that, for all

i¼ 1, . . . , n,

X da
i,k � x da

k ¼ �ðX
da
nþ1�i, k � xda

k Þ, ð19Þ

and hence

X2n
i¼0

�iX
da
i,k ¼ xda

k : ð20Þ

Alternatively, if
Pn

i¼1 coliðS
da
k Þ ¼ 0, it can be shown

using (5) and (10) that a variation of UKF can be

constructed using only nþ 1 ensemble members instead

of 2nþ 1 without any performance degradation.

In Tippett et al. (2003), this ensemble reduction

is achieved by choosing Hf
k such thatPn

i¼1 coliðS
f
kH

f
kÞ ¼ 0 whenever

Pn
i¼1 coliðS

f
kÞ ¼ 0, and

since S da
k ¼ S f

kH
f
k,

Pn
i¼1 coliðS

da
k Þ ¼ 0. However, in

UKF,
Pn

i¼1 coliðS
f
kÞ is not necessarily equal to

International Journal of Control 1781
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zero for all k� 0, and therefore UKF uses 2nþ 1
ensemble members. Finally, for linear dynamics, the

performance of UKF is independent of the choice of
Hf

k and S f
k. However, for non-linear dynamics, the

performance of UKF depends on the choice of Hf
k and

S f
k. The performance of ensemble-based filters for

various choices of Hf
k is compared in Tippett et al.

(2003).

3. Reduced-ensemble unscented Kalman filter

It follows from (15) that UKF involves 2nþ 1 model
updates, and hence the computational burden of UKF
is of the order (2nþ 1)n2� 2n3. To define an unscented
transformation for a reduced ensemble, let x2R

n and
S2R

n�q, where 05 q � n. The rank-q unscented
transformation X¼Cq(x,S,�)2R

n�(2qþ1) of x with
covariance P¼SST is defined by

X, X0 � � � X2q

� �
, ð21Þ

where

Xi,

x, i ¼ 0,

xþ
ffiffiffi
�
p

coliðSÞ, i ¼ 1, . . . , q,

x�
ffiffiffi
�
p

coli�qðSÞ, i ¼ qþ 1, . . . , 2q:

8>><
>>: ð22Þ

Also, defining the weights

�q,0 ¼
� �� q

�
, �q,i ¼

� 1

2�
, i ¼ i, . . . , 2q ð23Þ

it follows that

X2q
i¼0

�q,iXi ¼ x,
X2q
i¼0

�q,iðXi � xÞðXi � xÞT ¼ SST ¼ P:

ð24Þ

Next, we show that if the covariance matrix has
rank q, then the unscented transformation and

rank-q unscented transformation are equivalent.
This result is an immediate consequence of (5)
and (22).

Lemma 2: Let x2R
n, let P2R

n�n be positive
semidefinite with rank(P)� q� n, and define S,
[Ŝ 0n�(n�q)], where Ŝ2R

n�q satisfies ŜŜT
¼P. Then

X¼�(x,S,�)¼ [X0 � � � X2n] satisfies

Xi ¼ x, i ¼ 0, qþ 1, . . . , n, nþ qþ 1, . . . , 2n: ð25Þ

Furthermore, X̂ ¼ �qðx, Ŝ,�Þ ¼ X̂0 � � � X̂2q

� �
satisfies

X̂i ¼
Xi, i ¼ 0, . . . , q,

Xn�qþi, i ¼ qþ 1, . . . , 2q:

(
ð26Þ

Proof: Since

coliðSÞ ¼
coliðŜÞ, if i ¼ 1, . . . , q,

0, if i ¼ qþ 1, . . . , n,

(
ð27Þ

(5) and (22) imply (25) and (26), respectively. œ

Lemma 3: Let Pf
k 2 R

n�n be positive semidefinite and

let P da
k be given by (18). Assume that rankðPf

kÞ � q � n.

Then, rankðP da
k Þ � q.

Proof: See Appendix 1. œ

Hence, if Pf
k is rank deficient, then Pda

k is also rank

deficient. The following result shows that the ensemble

size can be reduced from 2nþ 1 to 2qþ 1 without

performance degradation whenever rankðPf
kÞ ¼ q.

Proposition 1: Assume rankðPf
kÞ � q � n, and define

S da
k ¼

�
½Ŝ da

k 0n�ðn�qÞ�, where Ŝda
k 2 R

n�q satisfies

Ŝ da
k ðŜ

da
k Þ

T
¼ Pda

k . Furthermore, define

X̂ da
k ¼

�
�qðx

da
k , Ŝ da

k ,�Þ ¼ ½X̂ da
0, k � � � X̂da

2q, k�, and let

x̂fkþ1 2 R
n and P̂f

kþ1 2 R
n�n be given by

x̂fkþ1 ¼
X2q
i¼0

�q,iX̂
f
i,kþ1, ð28Þ

P̂f
kþ1 ¼

X2q
i¼0

�q,iðX̂
f
i,kþ1 � x̂fkþ1ÞðX̂

f
i,kþ1 � x̂fkþ1Þ

T
þQk,

ð29Þ

where X̂f
i,kþ1 2 R

n is given by

X̂f
i,kþ1 ¼ fðX̂ da

i,k , uk, kÞ, i ¼ 0, . . . , 2q: ð30Þ

Then, x̂fkþ1 ¼ xfkþ1 and P̂f
kþ1 ¼ Pf

kþ1.

Proof: See Appendix 1. œ

Hence, when rankðPf
kÞ ¼ q < n, the ensemble size can

be reduced from 2nþ 1 to 2qþ 1, and thus, using the

rank-q unscented transformation instead of the

unscented transformation (10), does not degrade

the performance of UKF. However, when Pf
k has full

rank, Pda
k generally has full rank. In the following

sections, we thus construct rank-q approximations of

the pseudo-error covariances and perform estimation

using the rank-q unscented transformation based on a

square root of the low-rank approximation of the

pseudo-error covariance.

4. SVD-based reduced-rank unscented Kalman filter

To reduce the ensemble size, we use a reduced-rank

approximation P̂f
s,k of Pf

s,k. The reduced-rank approx-

imations are chosen such that kP̂f
s,k � Pf

s,kkF is mini-

mised subject to rankðP̂f
s,kÞ ¼ q, where k�kF denotes the

1782 J. Chandrasekar et al.
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Frobenius norm. Let P2R
n�n be positive semidefinite,

let �1� � � � � �n� 0 be the singular values of P, and let
u1, . . . , un2R

n be the corresponding mutually ortho-
gonal singular vectors. Next, define Uq2R

n�q and
�q2R

q�q by

Uq, u1 � � � uq
� �

, �q ¼
�
diagð�1, . . . , �qÞ: ð31Þ

With this notation, the singular value decomposition of
P is given by

P ¼ Un�nU
T
n , ð32Þ

where Un2R
n�n is orthogonal. For q� n, let

�SVD(P, q)2R
n�q denote the SVD-based rank-q

approximation of the square root Un�
1=2
n of P given by

�SVDðP, qÞ ¼
�
Uq�

1=2
q : ð33Þ

As noted in Bernstein (2005), P̂ ¼ SST, where
S,�SVD(P, q), is the best rank-q approximation of P
with respect to the Frobenius norm.

Next, we use the SVD at each time step to obtain a
reduced-rank approximation of the pseudo-error
covariance, and thus a reduced ensemble size. The
SVD-based reduced-rank square-root unscented
Kalman filter (SVDRRUKF) is given by the following
steps.

SVDRRUKF data assimilation step:

xda
s,k¼xfs,kþKs,kðyk�y

f
s,kÞ, ð34Þ

yfs,k¼Ckx
f
s,k, ð35Þ

Xda
s,k¼�qðx

da
s,k,S

da
s,k,�Þ ¼ Xda

s,0,k � � � X
da
s,2q,k

h i
, ð36Þ

S da
s,k ¼ S f

s,kH
f
s,k, ð37Þ

Ks,k ¼ S f
s,kðCkS

f
s,kÞ

T
½CkS

f
s,kðCkS

f
s,kÞ

T
þ Rk�

�1, ð38Þ

where Hf
s,k 2 R

q�q satisfies

Hf
s,kðH

f
s,kÞ

T
¼ Iq � ðCkS

f
s,kÞ

T
½CkS

f
s,kðCkS

f
s,kÞ

T

þ Rk�
�1CkS

f
s,k: ð39Þ

SVDRRUKF forecast step:

X f
s,i, kþ1 ¼ fðX da

s,i, k, uk, kÞ, i ¼ 0, . . . , 2q, ð40Þ

xfs,kþ1 ¼
X2q
i¼0

�q,iX
f
s,i, kþ1, ð41Þ

Pf
s,kþ1 ¼

X2q
i¼0

�q,iðX
f
s,i, kþ1 � xfs,kþ1ÞðX

f
s,i, kþ1 � xfs,kþ1Þ

T

þQk, ð42Þ

S f
s,kþ1 ¼ �SVDðP

f
s,kþ1, qÞ: ð43Þ

Next, define P̂f
s,k, P̂

da
s,k 2 R

n�n by

P̂da
s,k ,Sf

s,k � ðS
f
s,kÞ

T, P̂da
s,k,Sda

s,kðS
da
s,kÞ

T: ð44Þ

It then follows from (37) and (39) that

P̂da
s,k ¼ P̂f

s,k � P̂f
s,kC

T
k ðCkP̂

f
s,kC

T
k þ RkÞ

�1CkP̂
f
s,k: ð45Þ

Furthermore, (38) and (15) imply that

Ks,k ¼ P̂f
s,kC

T
k ðCkP̂

f
s,kC

T
k þ RkÞ

�1: ð46Þ

Finally, define P da
s,k 2 R

n�n by

Pda
s,k ¼

�
Pf
s,k � Pf

s,kC
T
k ðCkP

f
s,kC

T
k þ RkÞ

�1CkP
f
s,k: ð47Þ

Since rankðS f
s,kÞ � q, it follows from (45) that

rankðP̂f
s,kÞ � q. Moreover, since rankðHf

s,kÞ � q, (37)

implies that rankðSda
s,kÞ � q, and therefore (45) implies

that rankðP̂da
s,kÞ � q. Hence, it follows from (46) that the

filter gain Ks,k depends on P̂f
s,k, which is a reduced-rank

approximation of Pf
s,k, while the ensemble X da

s,k depends

on P̂ da
s,k, which is a reduced-rank approximation of Pda

s,k.

Also, as shown in x 2, the matrix Hf
s,k satisfying (39) is

not unique.

5. Cholesky-decomposition-based

reduced-rank unscented Kalman filter

The filter gain Kk of UKF depends on a particular

subspace of the forecast error covariance Pf
k.

Specifically, Kk depends only on the correlation CkP
f
k

between the error in the measured states and unmea-

sured states. Since rank(Ck)¼ p, there exists a state

space basis with respect to which Ck has the form

Ck ¼ Ip 0
� �

: ð48Þ

Condition (48) is easily satisfied by spatially

distributed systems discretised by finite volume

methods (see x 6 and 7) when the measurements are

confined to a localised region. The following result is

given in Chandrasekar et al. (2008).

Lemma 4: Partition Pf
k as

Pf
k ¼

Pf
p,k ðPf

�pp,kÞ
T

Pf
�pp,k Pf

�p, k

" #
, ð49Þ

where Pf
p,k 2 R

p�p and Pf
�p, k 2 R

�p� �p, and assume that Ck

has the form (48). Then,

Kk ¼
Pf
p,k

ðPf
�pp,kÞ

T

" #
ðPf

p,k þ RkÞ
�1: ð50Þ
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To reduce the ensemble size, we construct a filter
that uses a reduced-rank approximation P̂f

c,k of Pf
c,k

such that rankðP̂f
c,kÞ < n and kCkðP̂

f
c,k � Pf

c,kÞkF is
minimised. To obtain P̂f

c,k, we perform a Cholesky
decomposition of the pseudo-error covariance Pf

c,k at
each time step. Assuming that P2R

n�n is positive
definite, the Cholesky decomposition of P yields a
unique lower triangular Cholesky factor L2R

n�n

satisfying

LLT ¼ P: ð51Þ

Truncating the last n� q columns of L¼ [L1 . . . Ln]
yields the rank-q Cholesky factor

�CHOLðP, qÞ ¼
�

L1 � � � Lq

� �
2 R

n�q: ð52Þ

The following result is given in Chandrasekar et al.
(2008).

Lemma 5: Let P2R
n�n be positive definite, define

S,�CHOL(P, q), where 0� q� n, and partition P and
P̂ ¼

�
SST as

P ¼
Pq Pq �q

ðPq �qÞ
T P �q

" #
, P̂ ¼

P̂q P̂q �q

ðP̂q �qÞ
T P̂ �q

" #
, ð53Þ

where Pq, P̂q 2 R
q�q and P �q, P̂ �q 2 R

�q� �q. Then,

P̂q P̂q �q

� �
¼ Pq Pq �q

� �
: ð54Þ

Lemma 5 implies that, if S¼FCHOL(P, q), then the first
q columns and rows of SST and P are equal. Thus, the
reduced rank matrix P̂ exactly captures a critical
portion of P. This result motivates the propagation of
a reduced-rank approximation of the pseudo-error
covariance using the Cholesky decomposition at each
time step, thus reducing the ensemble size. The
Cholesky-decomposition-based reduced-rank
unscented Kalman filter (CDRRUKF) is summarised
as follows.

CDRRUKF data assimilation step:

x da
c,k ¼ xfc,k þ Kc,kðyk � yfc,kÞ, ð55Þ

yfc,k ¼ Ckx
f
c,k, ð56Þ

Xda
c,k ¼ �qðx

da
c,k,S

da
c,k,�Þ, ð57Þ

Sda
c,k ¼ S f

c,kH
f
c,k, ð58Þ

Kc,k ¼ S f
c,kðCkS

f
c,kÞ

T
½CkS

f
c,kðCkS

f
c,kÞ

T
þ Rk�

�1, ð59Þ

where Hf
c,k 2 R

q�q satisfies

Hf
c,kðH

f
c,kÞ

T
¼ Iq � ðCkS

f
c,kÞ

T

� ½CkS
f
c,kðCkS

f
c,kÞ

T
þ Rk�

�1CkS
f
c,k: ð60Þ

CDRRUKF forecast step:

X f
c,i, kþ1 ¼ fðX da

c,i, k, uk, kÞ, i ¼ 0, . . . , 2q ð61Þ

xfkþ1 ¼
X2q
i¼0

�q,iX
f
c,i, kþ1, ð62Þ

Pf
c,kþ1 ¼

X2q
i¼0

�q,iðX
f
c,i, kþ1 � xfc,kþ1ÞðX

f
c,i, kþ1 � xfc,kþ1Þ

T

þQk, ð63Þ

S f
c,kþ1 ¼ �CHOLðP

f
c,kþ1, qÞ: ð64Þ

It follows from (51), (52), and (64) that the n�n

pseudo-error covariance matrix Pf
c,k is constructed at

every time-step. Alternatively, partition Pf
c,k as

Pf
c,k ¼

Pf
c,k,q Pf

c,k,q �q

ðPf
c,k,q �qÞ

T Pf
c,k, �q

" #
, ð65Þ

where Pf
c,k,q 2 R

q�q. Furthermore, partition S f
c,k as

S f
c,k ¼

S f
c,k,q

S f
c,k, �q

" #
, ð66Þ

where S f
c,k,q 2 R

q�q. It follows from Lemma 5 that

S f
c,k,qðS

f
c,k,qÞ

T
¼ Pf

c,k,q, S f
c,k, �q ¼ S f

c,k,q

� ��1
Pf
c,k,q �q

� �T
:

ð67Þ

Hence, S f
c,k,q ¼ �CHOLðP

f
c,k,q, qÞ, and therefore (67)

implies that only the n� q submatrix ½Pf
c,k,q Pf

c,k,q �q�
T

needs to be constructed at every time-step.
Next, define P̂ da

c,k, P̂
f
c,k 2 R

n�n by

P̂ da
c,k ¼

�
P̂f
c,k � P̂f

c,kC
T
k ðCkP̂

f
c,kC

T
k þ RkÞ

�1CkP̂
f
c,k,

P̂f
c,k ¼

�
S f
c,kðS

f
c,kÞ

T:
ð68Þ

It then follows from (58) that S da
c,kðS

da
c,kÞ

T
¼ P̂ da

c,k.

Furthermore, (59) and (68) imply that

Kc,k ¼ P̂f
c,kC

T
k ðCkP̂

f
c,kC

T
k þ RkÞ

�1: ð69Þ

Hence, like the estimator gain Ks,k of SVDRRUKF

given by (46), the estimator gain Kc,k of CDRRUKF

given by (69) depends on a reduced-rank approxima-

tion P̂f
c,k of the pseudo-error covariance Pf

c,k.

As discussed in x 2, the matrix Hf
c,k satisfying (39) is

not unique. Due to the rank-reduction step (64),

CDRRUKF is generally not equivalent to

UKF. However, we now discuss cases in which the

performance of CDRRUKF is close to that of UKF.
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5.1 Basis selection for CDRRUKF

The following result given in Chandrasekar et al.

(2008) shows that the CDRRUKF gain Kc,k is identical

to the UKF gain Kk for a single time step when Ck has

the form (48).

Proposition 2: Assume that p� n, q¼ p, and Ck has the

structure in (48). Let Pf
k 2 R

n�n be positive semidefinite

and let Kk be given by (12). Furthermore, define

S f
c,k,�CHOLðP

f
k, qÞ and let P̂f

c,k be given by (68).

Then, CkP̂
f
c,k ¼ CkP

f
k and hence, Kc,k¼Kk. Finally,

if xfc,k ¼ xfk, then xda
c,k ¼ xda

k .

If the dynamics (1) are linear and time-invariant, that

is, for all k� 0,

xkþ1 ¼ Axk þ Buk þ wk, ð70Þ

yk ¼ Cxk þ vk, ð71Þ

then a basis for the state x can be chosen so that the

CDRRUKF gain Kc,k is identical to the UKF gain Kk

for r4 0 time steps, where r is the largest integer not

exceeding n/p. To construct such a basis, we define the

observability matrix O(A,C )2R
pn�n by

OðA,CÞ ¼
�

C

CA

..

.

CAn�1

2
666664

3
777775: ð72Þ

The following result is given in Chandrasekar

et al. (2008).

Proposition 3: Assume that O(A,C ) has the form

OðA,CÞ ¼
In

0ðp�1Þn�n

" #
: ð73Þ

Let r¼bn/pc, where bmc denotes the smallest integer

not greater than m, and let q¼ pr. Furthermore,

assume that Pf
c,0 ¼ Pf

0. Then, for all k¼ 0, . . . , r,

Kc,k¼Kk. If, in addition, xfc,0 ¼ xf0, then for all

k ¼ 0, . . . , r,xfc,k ¼ xfk.

Note that, if (A,C ) is observable, then there exists

a state space basis with respect to which the

observability matrix has the form (73) (see Bernstein

(2005). If uk¼wk¼ vk¼0, for all k� 0, then (70)–(72)

imply that, for all k� 0,

yk

..

.

ykþn�1

2
6664

3
7775 ¼ OðA,CÞxk: ð74Þ

Let xk have entries

xk ¼ x1, k � � � xn, k
� �T

: ð75Þ

If O(A,C ) has the form (73), then (74) implies that,

for every integer l� 0 such that pl� n,

yk

..

.

ykþl�1

2
664

3
775 ¼

x1, k

..

.

xpl, k

2
664

3
775: ð76Þ

Therefore, the measurements from time step k to

kþ l� 1 depend on only the value of the first

pl components of the state vector xk at time step k.
Next, we consider the non-linear system (1) and

assume that the dynamics (1) can be expressed as

xi,kþ1 ¼ fiðx�Lði, bÞ, . . . , x�Rði, bÞ, uk, kÞ þ wi,k,

i ¼ 1, . . . , n, ð77Þ

where b4 0 and

�Lði, bÞ ¼
�
maxð1, i� bÞ, �Rði, bÞ ¼

�
minðn, iþ bÞ:

ð78Þ

For example, in systems modelled by finite volume

schemes, the next value of a physical variable in a given

cell depends only on the present values of the physical

variables in the neighbouring cells.
Next, let yk denote a measurement of a specific

component of the state, so that

yk ¼ xj, k þ vk, ð79Þ

where j2 {1, . . . , n} and l4 0 is an integer such that,

j� lb� 1 and jþ lb� n. It follows from (77) and (79)

that, if wk¼ vk¼ 0, for all k� 0, then

yk

..

.

ykþl�1

2
664

3
775 ¼

g1ðxj�b, k, . . . , xjþb, k, uk, kÞ

..

.

grðxj�lb, k, . . . , xjþlb, k, uk, kÞ

2
664

3
775: ð80Þ

Hence, (80) can be expressed as

yk

..

.

ykþl�1

2
664

3
775 ¼ gðxj�lb, k, . . . , xjþlb, k, uk, kÞ: ð81Þ

Now define ~xk 2 R
n by

~xk ¼ xj, k xj�1, k xjþ1, k xj�2, k xjþ2, k � � �
� �

:

ð82Þ

Then, (81) implies that yk, . . . , ykþl�1 depends on only

the first 2lb components of the state vector ~xk at time

step k. Hence, a state space basis can be chosen such
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that the outputs yk, . . . , ykþ l�1 depend on only the first

few components of the state vector.

6. Linear advection model

Consider a linear advection model (Evensen 2006) with

n cells, and let xi, k be the energy in the ith cell at time k.

The energy flow satisfies

xi,kþ1 ¼
xi�1, k if i ¼ 2, . . . , n,

xn, k if i ¼ 1:

(
ð83Þ

Hence, energy in the ith cell flows to the (iþ 1)th cell,

while the periodic boundary condition ensures that the

energy circulates continually. We choose n¼ 100 and

assume that the disturbance wk enters selected cells,

where wk2R
n is a white noise process with covariance

Qk¼Q for all k� 0, and Q2R
n�n is diagonal with

entries

Qi,i ¼
1 if i 2 f10, 20, . . . , 100g,

0 else:

(
ð84Þ

It follows from (83) that the energy flow can be

expressed as

xkþ1 ¼ Axk þ wk, ð85Þ

where A2R
n�n has entries

Ai,j ¼

1 if j ¼ i� 1 for i ¼ 2, . . . , n,

1 if ði, jÞ ¼ ð1, nÞ,

0 else:

8>><
>>: ð86Þ

Note that the eigenvalues of A are simple and lie on the

unit circle, and hence (85) is Lyapunov stable but

not asymptotically stable. Next, we assume that

measurements of the energy in cells 50 and 51 are

available so that

yk ¼
x50,k

x51,k

� �
þ vk, ð87Þ

where vk is white noise process with covariance

Rk¼ 0.1I2. Note that (87) can be expressed as (2).
First, we use the measurements yk to estimate the

energy in the remaining cells using UKF. In all three

cases, the initial estimates xf0, x
f
s,0, and xfc,0 are not

equal to the initial state x0. Moreover, we choose

Pf
0 ¼ Pf

s,0 ¼ Pf
c,0 ¼ 0:1In. Finally, we choose �¼ 0.6 for

all three filters. Note that, since the dynamics in (83)

are linear, UKF is equivalent to the Kalman filter and

hence UKF provides optimal estimates of the state xk
that minimise the MSE. The MSE of state estimates

from UKF is shown in Figure 1. The MSE based on

data-free simulation, that is, estimates from (1) with

wk¼ 0, that is,

xfkþ1 ¼ fðxfk, uk, kÞ, ð88Þ

is shown for comparison.
Next, as shown in Figures 2 and 3, data assimila-

tion is performed using SVDRRUKF and

CDRRUKF for several values of q between 5 and

100. Note that SVDRRUKF and CDRRUKF use

2qþ 1 ensemble members, whereas UKF uses 2nþ 1

ensemble members. It can be seen that the performance
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Figure 2. MSE of the state estimates obtained from
SVDRRUKF for several values of q. SVDRRUKF with
q¼ 5 is unstable, while the performance of SVDRRUKF
with q¼ 55 is close to the performance of full-order UKF.
Note that SVDRRUKF with q¼ 55 uses 111 ensemble
members, whereas UKF uses 201 ensemble members.
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Figure 1. MSE of the state estimates obtained from UKF.
Since the dynamics are linear, UKF is equivalent to the
Kalman filter. The MSE of state estimates based on data-free
simulation, that is, from (1) with wk¼ 0 for all k� 0, is shown
for comparison.
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of SVDRRUKF with 111 ensemble members (q¼ 55)
is close to optimal, whereas the performance of
CDRRUKF is close to optimal with 11 ensemble
members (q¼ 5). The steady-state MSE of state
estimates for various values of q is plotted in
Figures 4 and 5. The performance of SVDRRUKF is
poor when q5 55, and close to optimal when q� 55.
Thus the ensemble size can be reduced from 201 to 111
with negligible change in the performance. Finally,
note that even with q¼ 5, the performance of
CDRRUKF is close to optimal. Hence, the ensemble
size can be reduced from 211 to 11 with negligible
performance deterioration.

Next, we repeat the same procedure except with a
poor estimate of the process noise covariance for data
assimilation. Specifically, we replace Qk in (42) and
(63) by Q̂k, where Q̂k ¼ I for all k� 0. The steady-state
MSE of state estimates for different choices of q is
plotted in Figure 4 and Figure 5. SVDRRUKF with a
poor estimate of the error covariance is unstable for
all q� 95 (indicated by the X’s). However, Figure 5
shows that even with q¼ 5 and a poor estimate of the
process noise covariance, the steady-state performance
of CDRRUKF is close to optimal.

Finally, we replace Qk in (64) with Q̂k, where
Q̂k ¼ �I for all k� 0, and perform state estimation
using CDRRUKF. The steady-state MSE of the state
estimates is shown in Figure 6 for several values of �.
The performance degradation for small values of � is
less when the ensemble size is large. However, for all
three cases q¼ 5, q¼ 15, and q¼ 15, the performance
of CDRRUKF is close to optimal when �� 1.
This suggests that it is advantageous to overestimate

5 15 25 35 45 55 65 75 85 95 100
0

500

1000

1500

2000

2500

3000

q: Rank of the approximation of the error covariance

S
te

ad
y-

st
at

e 
M

S
E

 o
f t

he
 s

ta
te

 e
st

im
at

es

 

 

CDRRUKF
CDRRUKF with a poor estimate of Qk

UKF

Figure 5. Steady-state performance of CDRRUKF for
values of q between 5 and 100. We first perform data
assimilation using the true value of the process noise
covariance, and then perform data assimilation with a poor
estimate of the process noise covariance, that is, we replace
Qk in (63) by Q̂k, where Q̂k ¼ I for all k� 0. Note that, for
q¼ 5, the performance of CDRRUKF is close to optimal,
irrespective of the value of the process noise covariance used
for data assimilation.
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Figure 3. MSE of the state estimates obtained from
CDRRUKF with q¼ 5. The performance of CDRRUKF
with q¼ 5 is close to the full-order UKF performance. Note
that CDRRUKF with q¼ 5 uses 11 ensemble members, while
UKF uses 201 ensemble members.
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Figure 4. Steady-state performance of SVDRRUKF for
several values of q between 5 and 100. For each value of q, we
perform data assimilation with the true value of the process
noise covariance and with a poor estimate of the process
noise covariance. Specifically, we replace Qk by Q̂k in (42),
where Q̂k ¼ I for all k� 0. The performance of UKF is
shown for comparison. The X’s indicate cases in which the
filter is unstable. SVDRRUKF is unstable when q¼ 5,
irrespective of the value of the process noise covariance used
for data assimilation. When the true value of the process
noise covariance is used for data assimilation, the perfor-
mance of SVDRRUKF is poor when q5 55 and close to
optimal for q4 55. However, when a poor estimate of the
process noise covariance is used for data assimilation,
SVDRRUKF is unstable for all q¼ 5, . . . , 95. These results
indicate that SVDRRUKF is sensitive to uncertainties in the
estimate of the process noise covariance.
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the process noise covariance. In contrast to these

results, SVDRRUKF with q¼ 5, 15, 25 is unstable for

all choices of �¼ 0.005, . . . , 50. Hence, these simula-

tions suggest that CDRRUKF is more robust than

SVDRRUKF with respect to uncertainties in the

process noise covariance. All of the results for

CDRRUKF in Figures 1–6 are obtained using a

state space basis with respect to which the observability

matrix has the form (73).

7. L96 model

Next, we compare the performance of SVDRRUKF

and CDRRUKF on a non-linear model that exhibits

chaotic dynamics. The L96 model mimics the propaga-

tion of an unspecified meteorological quantity along a

latitude circle (Lorenz 2006). The L96 model is

commonly used to compare the performance of various

ensemble-based data assimilation schemes (see

Anderson (2001) and Whitaker and Hamill (2002)).

The dynamics are governed by

d

dt
xiðtÞ ¼ ðxiþ1ðtÞ � xi�2ðtÞÞxi�1ðtÞ � xiðtÞ þ uiðtÞ,

ð89Þ

where xi(t)2R denotes the meteorological quantity at

the ith grid point at time t, ui2R denotes an external

forcing term, and wi denotes unknown disturbances

affecting the ith grid point. For all t� 0, the boundary

conditions are defined by

x0ðtÞ ¼ xnðtÞ, x�1ðtÞ ¼ xn�1ðtÞ, xnþ1ðtÞ ¼ x1ðtÞ:

ð90Þ

We choose ui(t)¼ 8 for all i¼ 1, . . . , n and all t� 0.

Using fourth-order Runge–Kutta discretisation with

a sampling time of 0.05 s, we obtain a discrete-time

model of (89) that can be expressed as (1).

Furthermore, we assume that the discretised model

is corrupted by an unknown external disturbance

that affects specified cells. We choose n¼ 40, and

assume that wk is a white noise process with covariance

Qk¼Q for all k� 0, where Q2R
n�n is diagonal with

entries

Qi,i ¼
0:1 if i 2 f5, 15, 25, 35g,

0 else:

�
ð91Þ

Next, we assume that measurements from cells 20

and 23 are available so that

yk ¼
x20,k

x23,k

� �
þ vk, ð92Þ

where vk is white noise process with covariance

Rk¼ 0.01I2. Hence, (92) can be expressed as (2) with

Ck¼C2R
2�40.

We use the measurements yk to estimate the state in

the cells where measurements are not available. The

estimates of x20(t) and x23(t) obtained using UKF

are shown in Figure 7. The MSE of state estimates

obtained using UKF is shown in Figure 8. The error in

the state estimates based on data-free simulation with

wk¼ 0 for all k� 0 is shown for comparison. Since

n¼ 40, UKF uses 81 ensembles.
Next, as shown in Figures 9 and 10, we reduce the

ensemble size and use SVDRRUKF and CDRRUKF

with q¼ 10, 20, 30. Although the number of ensembles

in SVDRRUKF and CDRRUKF is the same for

each value of q, it can be seen that the performance of

SVDRRUKF is poor compared to the performance

of CDRRUKF for both q¼ 20 and q¼ 30. Moreover,

the performance of CDRRUKF with 61 (q¼ 30)

ensemble members is close to the performance of

UKF with 81 ensemble members. Figure 11 shows the

difference in the MSE of state estimates between data-

free simulation and the reduced-rank filters with

q¼ 10 from t¼ 25 sec to t¼ 30 sec. Positive values

indicate the cells and time instants at which estimates

from the reduced-rank filters are better than the
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CDRRUKF q=5
CDRRUKF q=15
CDRRUKF q=25

Figure 6. Steady-state performance of CDRRUKF with
q¼ 5, 15, 25. In all three cases, we use a poor estimate of the
process noise covariance for data assimilation, that is, we
replace Qk in (63) by Q̂k, where Q̂k ¼ �I for all k� 0. In spite
of the presence of an error in the process noise covariance,
CDRRUKF is stable and thus robust to uncertainty in the
process noise covariance. For a fixed level of uncertainty in
the process noise covariance, the performance of
CDRRUKF improves when the ensemble size increases.
Moreover, for a specific choice of q, the performance
improves as � increases. These results suggest that it is
advantageous to overestimate the process noise covariance.
The performance of SVDRRUKF is not shown since
SVDRRUKF is unstable for all values of � and q¼ 5, 15, 25.
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estimates obtained when data assimilation is not
performed, while negative values indicate the cells and
time instants at which estimates from the reduced-
rank filters are worse than the estimates obtained
from data-free simulation.

Next, since the process noise covariance Qk is
often unknown, we assume that the estimate of the
process noise covariance is poor. Specifically,
we replace Qk in (42) and (63) by Q̂k, where
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Data-free simulation
SVDRRUKF q=20
SVDRRUKF q=30
UKF 

Figure 9. MSE of the state estimates obtained using
SVDRRUKF with q¼ 20, 30. The error in state estimates
based on UKF and data-free simulation is shown for
comparison. The performance of SVDRRUKF with q¼ 20
and q¼ 30 is poor. In fact, SVDRRUKF with q¼ 20 and
q¼ 30 sometimes yields estimates that are worse than
estimates based on data-free simulation.
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Figure 7. Estimates of x20(t) and x23(t) when measurements of x20(t) and x23(t) are used by UKF. The results of data-free
simulation with wk¼ 0 for all k� 0 are shown for comparison. In both UKF and data-free simulation, all of the intial states are
set to zero.
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Figure 8. MSE of the state estimates obtained using UKF
when the exact value of the process noise covariance is used.
The MSE of the state estimates obtained from data-free
simulation with wk¼ 0 for all k� 0, is also shown for
comparison.
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Q̂k ¼ �I for all k� 0. Figure 12 shows the time-

averaged MSE of state estimates obtained using

SVDRRUKF and CDRRUKF with q¼ 10 and

q¼ 20 for several values of � between 0.001 and

100. The errors in state estimates are averaged
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Figure 11. Time history of the difference in the MSE of estimates of the state in cells 1, . . . , 40, based-on data-free simulation and
SVDRRUKF in (a) and CDRRUKF in (b). We use measurements from cells 20 and 21 for data assimilation. For both
SVDRRUKF and CDRRUKF, we choose q¼ 10 so that the ensemble size is 21. Regions with positive values indicate the cells
and time instants at which the estimates from the reduced-rank filters are better than the estimates obtained when data
assimilation is not performed. Alternatively, negative values indicate time instants at which the estimates from SVDRRUKF and
CDRRUKF are worse than the estimates obtained from data-free simulation. Note that CDRRUKF with 21 ensembles
improves the estimates in most of the cells. However, the estimates from SVDRRUKF are extremely poor in certain cells, for
example, in cells 10, . . . , 15 between 25.5 s and 26 s.
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Figure 10. Performance of CDRRUKF with n¼ 40 and
q¼ 20, 30. Note that the performance of CDRRUKF
with q¼ 20 is better than the performance of SVDRRUKF
with q¼ 30.
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Figure 12. Time-averaged MSE of state estimates between
35 s and 50 s. The state estimates are obtained using
SVDRRUKF and CDRRUKF with q¼ 10 and q¼ 20, and
a poor estimate of the process noise covariance. Specifically,
we replace Qk in (42) and (63) by Q̂k, where Q̂k ¼ �I for all
k� 0. The MSE of the state estimates based on data-free
simulation with wk¼ 0 for all k� 0 and UKF is shown for
comparison. For all values of �, the performance of
CDRRUKF is better than the performance of
SVDRRUKF. Furthermore, CDRRUF is more robust to
uncertainties in the estimate of the process noise covariance.
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between 35 snd 50 s. It can be seen that, for all values
of �, the performance of CDRRUKF is superior to
the performance of SVDRRUKF. In fact,
CDRRUKF with 21 ensemble members (q¼ 10)
consistently outperforms SVDRRUKF with 41
ensemble members (q¼ 20). The Cholesky decompo-
sition is used to obtain Hf

k and S f
k in UKF, and to

obtain Hf
s,k and Hf

c,k in SVDRRUKF and
CDRRUKF, respectively. Moreover, the performance
is similar when the singular value decomposition is
used to obtain Hf

k, S f
k,H

f
s,k and Hf

c,k. Finally, note
that (89) can be expressed as (77) with b¼ 1.
Moreover, in analogy with Proposition 3, simulation
results indicate that the performance of CDRRUKF
improves significantly when a state space basis is
selected according to x 5.1. Hence, all of the results for
CDRRUKF in Figures 8–12 are obtained using the
state space basis discussed in x 5.1.

8. Conclusions

We developed a reduced-rank square-root unscented
Kalman filter based on the Cholesky decomposition
of the pseudo-error covariance. We compared the
performance of the Cholesky-based filter with an
analogous filter that uses the singular value
decomposition for a linear advection model and a
non-linear system that exhibits chaotic behaviour.
The ensemble size of both the Cholesky-based and
SVD-based reduced-rank unscented Kalman filter is
less than that of the unscented Kalman filter.
Although the computational requirement of the
Cholesky-based reduced-rank filter is less than that
of the SVD-based reduced-rank filter, the results
presented here suggest that the estimation accuracy
of the Cholesky-based reduced-rank filter is
significantly better than that of the SVD-based
reduced-rank filter. Moreover, simulation results
suggest that the Cholesky-based reduced-rank
filter is more robust to uncertainties in the process
noise covariance than the SVD-based reduced-rank
filter.
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Appendix 1: Proofs

Proof of Lemma 3: Since rank ðPf
kÞ � q, it follows that there

exists S f
k 2 R

n�q satisfying

S f
kðS

f
kÞ

T
¼ Pf

k: ðA1Þ

In fact, S f
k ¼ �SVDðP

f
k, qÞ satisfies (A1). Therefore, (11)

implies that P da
k can be expressed as

P da
k ¼ S f

k½I� ðCkS
f
kÞ

T
ðCkS

f
kðCkS

f
kÞ

T
þ RkÞ

�1CkS
f
k�ðS

f
kÞ

T:

ðA2Þ

Hence, (A2) implies that rankðP da
k Þ � q.

Proof of Proposition 1: It follows from Lemma 3 that

rankðP da
k Þ � q. Hence, there exists Ŝ da

k 2 R
n�q such that

Ŝ da
k ðŜ

da
k Þ

T
¼ P da

k . Therefore, Lemma 2 implies that

X da
i,k ¼ x da

k , for all i¼ 0, qþ 1, . . . , n, n¼ q¼ 1, . . . , 2n. Hence,

(15) implies that X f
i,kþ1 ¼ X f

0, kþ1, for all

i¼ qþ 1, . . . , n, nþ qþ 1, . . . , 2n. Therefore,

�� n

�
X f

0, kþ1 þ
1

2�

Xn
i¼qþ1

X f
i,kþ1 þ

X2n
i¼nþqþ1

X f
i,kþ1

" #

¼
�� q

�
X f

0, kþ1, ðA3Þ

and it follows from (6) and (16) that

xfkþ1 ¼
�� q

�
X f

0, kþ1 þ
1

2�

Xq
i¼1

X f
i,kþ1 þ

Xnþq
i¼nþ1

X f
i,kþ1

" #
: ðA4Þ

Hence, (23) and Lemma 2 imply that x̂fkþ1 ¼ xfkþ1. Similarly,
(6) and (17) imply that

Pf
kþ1 ¼

�� q

�
½X f

0, kþ1 � xfkþ1�½X
f
0, kþ1 � xfkþ1�

T

þ
1

2�

Xq
i¼1

½X f
i,kþ1 � xfkþ1�½X

f
i,kþ1 � xfkþ1�

T

þ
1

2�

Xnþq
i¼nþ1

½X f
i,kþ1 � xfkþ1�½X

f
i,kþ1 � xfkþ1�

T: ðA5Þ

Since x̂fkþ1 ¼ xfkþ1, it follows from (23) and Lemma 2 that

P̂f
kþ1 ¼ Pf

kþ1.
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