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Abstract

We study a linearly damped preloaded two-bar linkage that exhibits hysteresis due to the presence of multiple attracting equilibria. The
dynamics at the unstable equilibrium, through which a snap-through buckle occurs, are not linearizable due to a solution-dependent singularity.
We stabilize the unstable equilibrium using two distinct non-linear controllers. The feedback-linearization controller requires knowledge of the
linkage parameters, whereas the robust version of the intrinsic non-linear proportional-derivative controller requires only an upper bound on
the stiffness.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The phenomenon of hysteresis is widespread and extensively
studied [1,2]. Although hysteresis arises in diverse applica-
tions, all hysteretic phenomena have a common origin. Specif-
ically, hysteresis is the low-frequency limit of the dynamic
input–output response of a system when this limit is a non-
degenerate loop [3]. A necessary condition for a system to ex-
hibit hysteresis is the existence of multiple attracting equilibria
for a given constant input [4–6]. This statement is the principle
of multistability.

The principle of multistability implies that any system with
multiple equilibria is possibly hysteretic. In structural mechan-
ics, the phenomenon of buckling is closely associated with mul-
tiple equilibria, which arise when the axial load applied to a
structure counteracts the stiffness of the structure [7]. Conse-
quently, hysteresis can potentially arise when a structure passes
through buckling, and this possibility is the motivation for the
present paper. Although hysteresis is closely associated with
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energy dissipation [8], the hysteresis we consider is not a conse-
quence of a hysteretic energy-dissipation mechanism, but rather
is due to the multiple equilibria arising from buckling. In fact,
the damping model we assume is linear and viscous, which
cannot give rise to hysteresis in linear or non-linear structures
that possess a unique equilibrium.

In many applications, buckling can lead to structural failure,
and thus the usual objective is to avoid conditions under which
buckling might occur [9]. There are, however, useful aspects of
buckling. For example, buckled elements have been considered
for vibration isolation, where the axial and transverse motions
have widely different stiffnesses [10,11]. Another application
is in mechanical actuators, where the structural dynamics near
buckling provide significant mechanical advantage [12,13].

In the present paper we study the preloaded two-bar linkage
shown in Fig. 1, which serves as a lumped analogue of a struc-
ture that can undergo snap-through buckling, see [32], p. 35.
The word preloaded refers to the force provided by the stiffness
k when the bars are in the horizontal equilibrium. The preloaded
two-bar linkage exhibits the essential features of snap-through
buckling, in which a perturbation from the horizontal equi-
librium results in a sudden, fast response toward a stable
equilibrium.

The two-bar linkage is a kinematically redundant mecha-
nism [14–18]. Kinematic redundancy entails additional degrees
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of freedom that have no direct impact on meeting task-space
objectives but provide advantages in terms of constraint and
limit avoidance. In this case, the coefficient of the highest-order
derivative has a non-square Jacobian leading to non-unique mo-
tions for realizing a given task; in fact, joint motion within
the Jacobian’s (non-trivial) null space does not affect the tra-
jectory of the end-effector, and thus the inverse kinematics are
not unique. The non-unique motions can be chosen to satisfy a
subtask or can be specified in terms of the generalized inverse
of the Jacobian [19]. The preloaded two-bar linkage possesses
a kinematic singularity since, for � = 0, zero velocity in task
space (that is, q̇ = 0) does not correspond to a unique velocity
�̇ in joint space.

Under the approximating assumption that the bars are iner-
tialess, the two-bar linkage has the property that the inertia is
singular at the unstable (horizontal) equilibrium, thereby com-
bining instability with singular dynamics. Inertia singularities
arise in linearized vibration theory when certain modes are
viewed as inertialess [20,21]. If a structure is nearly inertialess,
then classical singular perturbation techniques can be used to
approximate the solution in the vicinity of the singularity. More
generally, singularities that depend on a fixed, small parameter
have been widely studied in the control literature [22]. Fur-
thermore, singular coefficients that multiply the highest-order
derivative and that are functions of the independent (time or
spatial) variable have been extensively studied in the classical
dynamical systems literature (see, for example, [23, Chapter
V]). The connection between singularities and hysteresis is ex-
plored in [24]. In contrast, the singularity in the linkage dynam-
ics (4.1) is solution dependent rather than independent-variable
dependent, and thus is not addressed by the classical singular
perturbation literature.

The contents of the paper are as follows. In Section 2,
we present the two-bar preloaded linkage and determine its
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Fig. 1. The preloaded two-bar linkage with a vertical force F acting at the
joint Q. The word ‘preloaded’ refers to the presence of the stiffness k, which
is compressed when the two-bar linkage is in the horizontal equilibrium.
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Fig. 2. Static equilibria of the preloaded two-bar linkage when the spring is relaxed and F = 0. In (a) the equilibrium angle �0 is positive, whereas in (b) the
angle �0 is negative.

equilibria through static analysis. We also derive the static equi-
libria using energy methods, which help in determining the sta-
bility of the equilibria and defining the equilibrium set E for
the preloaded two-bar linkage. Next, in Section 3, we derive
the equations of motion with a force input. The resulting equa-
tion, whose multiple equilibria are precisely the equilibria ob-
tained from static analysis, possesses a state-dependent inertia
singularity at the unstable, horizontal equilibrium. In Section 4
we show that the dynamics are not linearizable at the unsta-
ble horizontal equilibrium. Consequently, we derive a small-
angle model and obtain a closed-form expression for the free
response from an initial non-zero perturbation. In Section 5 we
show the existence of non-unique solutions departing from the
unstable equilibrium. In Section 6 we demonstrate hysteresis in
the preloaded two-bar linkage. We also show that the hysteresis
map is a subset of the equilibrium set E.

In Section 7 we present control strategies for stabilizing
the unstable equilibrium. We first apply a feedback linearizing
controller that renders the equilibrium asymptotically stable.
Finally, to reduce dependence on the linkage parameters, in
Section 8 we apply the intrinsic non-linear proportional-
derivative (INPD) controller of [25], which stabilizes the
equilibrium by exploiting the structure of the dynamics. A pre-
liminary version of the results in this paper appeared in [26].

2. Static analysis of a preloaded two-bar linkage

In this section we analyze the statics of the preloaded two-
bar linkage with joints P, Q, and R and preloaded by a stiffness
k as shown in Fig.‘1. A constant vertical force F is applied at Q,
where the two bars are joined by a frictionless pin. Let � denote
the counterclockwise angle that the left bar makes with the
horizontal, and let q denote the distance between the joints P and
R. When F=0, the linkage has three equilibrium configurations.

q

Q RP l l

k

c

Fig. 3. Static equilibrium with F = 0 and �= 0. This equilibrium is unstable.
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Fig. 4. Static equilibria for the two-bar linkage with a constant force F acting at joint Q. In (a) the equilibrium angle �01 is positive and the spring is
compressed, whereas in (b) the equilibrium angle �02 is negative and the spring is extended.

In Fig. 2, the values of q and � are q0 and ±�0, respectively,
and the spring k is relaxed. Note that q0 = 2l cos �0. For the
third equilibrium shown in Fig. 3, both bars are horizontal
with � = 0.

For a constant non-zero applied force F, the preloaded two-
bar linkage has two equilibrium configurations as shown in
Fig. 4. In Fig. 4(a) the equilibrium angle �01 is positive and
the spring is compressed, whereas in 4(b) the equilibrium an-
gle �02 is negative and the spring is extended. To analyze the
equilibrium position shown in Fig. 4, let C1 and C2 be the com-
pressive forces in the bars QR and PQ, respectively. Balancing
the forces at Q yields

C1 cos � = C2 cos �,

F = C1 sin � + C2 sin �,

which implies that

F = 2C1 sin � = 2C2 sin �. (2.1)

Now, balancing the forces at R yields

C1 cos � = k(q − q0). (2.2)

Substituting q = 2l cos � and using (2.1), we obtain

(sin �)

(
1 − cos �0

cos �

)
= F

4kl
. (2.3)

The solutions �01 and �02 of (2.3) are the static equilibrium
values. With F = 0, (2.3) shows that the linkage has three
equilibrium solutions, namely, � = 0, � = �0, and � = −�0.

The static equilibria can also be obtained using energy meth-
ods. The potential energy associated with the system, which is
the difference between the potential energy stored in the spring
and the work done by the external force, is given by

P � 2kl2(cos � − cos �0)
2 − F l(sin �0 − sin �). (2.4)

Then the static equilibria of the system are given by

�P

��
= 0,

which yields

(sin �)

(
1 − cos �0

cos �

)
= F

4kl
, (2.5)
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Fig. 5. Dependence of the static equilibrium force F on � given by (2.5).
Chosen parameter values are �0 = �

4 rad, k = 1 N m, and l = 1 m. For the
given parameters, �∗ = −0.4715 rad and Fmax = 0.3747 N.

which is the same as (2.3). Fig. 5 shows F as a function of �.
Let Fmax be the local maximum value of F and let � = �∗ at
F = Fmax. Solving dF

d� = 0, where F is given by (2.5), yields

�∗ = cos−1((cos �0)
1/3). (2.6)

To analyze the stability of the static equilibria, we evalu-
ate the second derivative of the potential energy P, which is
given by

1

4kl2

�2P

��2 = −(cos �)(cos � − cos �0) + sin2 � − F

4kl
sin �.

(2.7)

Substituting (2.5) into (2.7) yields

1

4kl2

�2P

��2 = − (cos �)(cos � − cos �0)

+ sin2 � − (sin2�)

(
1 − cos �0

cos �

)
,

which can be rewritten as

1

4kl2

�2P

��2 = (cos �0 − cos3�)
1

cos �
. (2.8)
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Fig. 6. Equilibrium set E for the preloaded two-bar linkage. The chosen
parameter values are �0 = �/4 rad, k = 1 N m, and l = 1 m.
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Fig. 7. The two-bar linkage model with a torsional spring kt .

Using the potential energy theorem [27, p. 56], the condition
�2P

��2 > 0 implies that the equilibrium � is stable for � < − �∗

and � > �∗, whereas �2P

��2 < 0 implies that the equilibrium � is

unstable for −�∗ < � < �∗.

Definition 2.1. The equilibrium set E for the preloaded two-
bar linkage is the set of points (F, x) that satisfy

x

(
1 − l cos �0√

l2 − x2

)
= F

4k
. (2.9)

Note that x is the vertical distance from the joint Q to the
horizontal equilibrium as shown in Fig. 1, while the relation
(2.9) is obtained from (2.5) using x = l sin �. The equilibrium
set E shown in Fig. 6 is useful for analyzing the hysteresis of
the preloaded two-bar linkage, as shown in Section 6.

Now, consider the preloaded two-bar linkage with a torsional
spring kt > 0 as shown in Fig. 7. To find the static equilibria for
this system, we set the net torque about joint P to zero, which
yields

F l cos � + kt� = C1l sin(2�).

Using (2.2) and substituting q = 2l cos �, we obtain

F l cos � + kt� = 4kl2(cos � − cos �0) sin �. (2.10)

Assuming F = 0, the static equilibria satisfy

kt� = 4kl2(cos � − cos �0) sin �. (2.11)

Eq. (2.11) is satisfied by � = 0 as well as all � satisfying

cos � = kt

4kl2 + cos �0. (2.12)

Note that (2.12) has a non-zero solution � if and only if
0�kt �4kl2(1 − cos �0). Furthermore, if kt �4kl2(1 − cos �0),
then the preloaded two-bar linkage has exactly one equilib-
rium, namely, � = 0.

3. Dynamics of the preloaded two-bar linkage

We now derive the equations of motion for the preloaded
two-bar linkage. The system has one degree of freedom given
by the angle �, which can be viewed as the joint-space variable.
Let mbar be the inertia of each bar. Ignoring gravity, the kinetic
and potential energies of the system are given by

T = 1
2 mq̇2 + Tbars, V = 1

2 k(q − q0)
2,

where Tbars is the kinetic energy of the bars. Substituting
q=2l cos � and Tbars =( 9

8mbarl
2 sin2 �+ 5

24mbarl
2)�̇2 we obtain

T = ((2ml2 + 9
8mbarl

2)sin2 � + 5
24mbarl

2)�̇2, (3.1)

V = 2kl2(cos � − cos �0)
2. (3.2)

The generalized non-conservative force Qnc is given by

Qnc = −F l cos � − 4cl2�̇ sin2 �. (3.3)

Now, Lagrange’s equation d
dt

(
�L

��̇
)− �L

�� =Qnc, where L=T −V ,

yields((
2ml2 + 9

8
mbarl

2
)

sin2 � + 5

24
mbarl

2
)

�̈

+
(

2ml2 + 9

8
mbarl

2
)

(sin �)(cos �)�̇
2

+ 2cl2(sin2 �)�̇ + 2kl2(cos �0 − cos �)(sin �) = − l cos �

2
F .

(3.4)

Note that, if mbar > 0, then (3.4) has non-singular inertia for
all values of �. However, if mbar = 0, then (3.4) has an inertia
singularity for � = 0.

Next, note that the transformation

q = 2l cos � (3.5)

is invertible for all � ∈ (−�
2 , �

2 ). However, the velocity relation

q̇ = −2l(sin �)�̇ (3.6)

is singular for � = 0. Using q = 2l cos � the dynamics (3.4)
can be expressed in terms of the displacement q (that is, the



Author's personal copy

A.K. Padthe et al. / International Journal of Non-Linear Mechanics 43 (2008) 277– 291 281

task-space variable) as

((m + 9
16mbar)(4l2 − q2) + 5

12mbarl
2)(4l2 − q2)q̈

+ 5
12mbarl

2qq̇2 + cq̇(4l2 − q2)2

+ k(q − q0)(4l2 − q2)2 = 1
2q(4l2 − q2)3/2F . (3.7)

Note that (3.7) has an inertia singularity at q = 2l, that is, for
� = 0, whether or not mbar = 0. Note also that if mbar �= 0 and
q =2l, then q̇ =0, that is, the mass m always come to rest when
the links are horizontal.

4. Linearization

Throughout the section we assume that mbar = 0. For this
case, the dynamics (3.4) become

2ml2(sin2 �)�̈ + 2ml2(sin �)(cos �)�̇2 + 2cl2(sin2 �)�̇

+ 2kl2(cos �0 − cos �)(sin �) = − l cos �

2
F . (4.1)
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Fig. 8. Trajectory of the angle � evaluated using (4.9) for the initial condition
�(0) = 0.001 rad and �̇(0) = 0.1 rad/s. Note that the instability is sublinear
and thus non-polynomial and non-exponential, in accordance with the fact
that the dynamics are not linearizable at the unstable equilibrium.
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Fig. 9. Time histories of � and the velocity q̇ of the mass for various values of mbar with initial conditions q(0) = √
2 m and q̇(0) = 1.1 m/s. The velocity q̇

of the mass reaches zero increasingly abruptly as mbar decreases. The parameter values used are k = 1 N/m, m = 1 kg, l = 1 m, and q0 = √
2 m.

Defining x1 = � and x2 = �̇, (4.1) can be written as

[
ẋ1

ẋ2

]
=

[
x2

−cos x1

sin x1
x2

2 − c

m
x2 − k

m

cos �0 − cos x1

sin x1

]

−
[

0
cos x1

4mlsin2 x1

]
F . (4.2)

To linearize (4.2), we evaluate the Jacobian as

J =
⎡
⎣ 0 1

x2
2

sin2 x1
+ k cos �0

(sin x1)(cos x1)
− k

sin2 x1

−2x2
2

tan x1
− c

m

⎤
⎦ .

(4.3)

However, J does not exist at x1 =0, x2 =0, and thus the system
does not have a linearization at the horizontal equilibrium.

Alternatively, to analyze the behavior near the horizontal
equilibrium, we substitute the small-angle approximations
sin ��� and cos ��1 in (4.1) to obtain

m�2�̈ + m��̇2 + c�2�̇ − k�(1 − cos �0) = −F

4l
. (4.4)

Now assume F = 0. Then, for non-zero �, (4.4) can be
rewritten as

��̈ + �̇2 + c

m
��̇ − � = 0, (4.5)

where � � k
m

(1 − cos �0) is a positive constant. Using ��̈ +
�̇2 = d

dt
(��̇), (4.5) can be written as

d

dt
(��̇) + c

m
��̇ = �. (4.6)

The solution to the first-order differential equation (4.6) is then

��̇ = �e−c/mt + �m

c
, (4.7)
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where � � �(0)�̇(0) − �m
c

. Integrating (4.7) yields

�(t) =
[
�2(0) − 2

�m

c
(e−c/mt − 1) + 2

�m

c
t

]1/2

. (4.8)

Eq. (4.8) can be approximated for small t > 0 as

�(t) ≈
[
�2(0) + 2

(
� + �m

c

)
t
]1/2

. (4.9)

Note that the approximate solution (4.9) does not correspond
to the solution of a linear system, which is consistent with
the fact that the linkage is not linearizable at the horizontal
equilibrium. The trajectory of the angle � evaluated using (4.9)
with the initial condition �(0)= 0.001 rad and �̇(0)= 0.1 rad/s
is shown in Fig. 8.

We now consider the motion of the mass m as � → 0. Fig. 9
shows time histories of � and q̇ for various values of mbar. Note
that as mbar decreases, the velocity q̇ of the mass drops to zero
increasingly abruptly as � → 0. We study this phenomenon in
the next section.

5. Analysis of the unstable equilibrium of the undamped
preloaded two-bar linkage with inertialess bars

Under the approximating assumption that the bars are iner-
tialess (mbar = 0) and the linkage is undamped (c = 0), the free
response of the inertialess preloaded two-bar linkage model is
given by

m(4l2 − q2)2q̈ + k(q − q0)(4l2 − q2)2 = 0. (5.1)

The trajectories of the angle � and the velocity q̇ of the mass
obtained by simulating the dynamics in (5.1) with initial
conditions q(0) = √

2 m and q̇(0) = 1.1 m/s are shown in
Fig. 10.
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Fig. 10. Time histories of � and the velocity q̇ of the mass with initial conditions q(0) = √
2 m and q̇(0) = 1.1 m/s. These plots show that q̇ → 0.94 m/s as

� → 0 rad. However, q̇ discontinuously drops to zero when �=0 rad. The parameter values used are k =1 N/m, m=1 kg, mbar =0 kg, l =1 m, and q0 =√
2 m.

Fig. 9(b) shows that the velocity q̇ of the mass approaches a
non-zero value as � approaches zero and drops discontinuously
to zero when � = 0. The limiting value of q̇ can be evaluated
using energy conservation. The total energy of the system is

E � 1
2mq̇2 + 1

2k(q − q0)
2. (5.2)

Letting q̇∞ denote the limiting value of the velocity of the mass
as � → 0, it follows that

q̇2∞ = q̇2(0) − k

m
[(2l − q0)

2 − (q(0) − q0)
2]. (5.3)

With the initial conditions q(0) = √
2 m and q̇(0) = 1.1 m/s,

we obtain q̇∞ = 0.94 m/s, which matches the value obtained
numerically in Fig. 10(b) with the parameter values k=1 N/m,
m=1 kg, l =1 m, and q0 =√

2 m. When �=0, we have q =2l,
and q̇ abruptly drops to zero. The velocity q̇ = 0 at � = 0 is
consistent with the kinematic relation (3.6). Fig. 9(b) shows
that the discontinuity in q̇ disappears when mbar is positive.

As � → 0, the magnitude of the angular velocity of the
bars increases rapidly as shown in Fig. 11(b). Since the bars
are assumed to be inertialess, their behavior at � = 0 cannot
be predicted using energy conservation or Newton’s laws. This
unpredictability indicates that the dynamics (5.1) can possess
non-unique solutions.

To investigate the existence of non-unique solutions, we con-
sider the initial state

q(0) = 2l, q̇(0) = 0, (5.4)

at which the total energy of the system is

E0 � 1
2 k(2l − q0)

2.

By conservation of energy, E = E0 yields

q̇2 = k

m
[(2l − q0)

2 − (q − q0)
2], (5.5)
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Fig. 11. Time histories of � and �̇ with initial conditions q(0) = √
2 m and q̇(0) = 1.1 m/s. The magnitude of the angular velocity of the bars increases rapidly

as � → 0. The parameter values used are as in Fig. 10.

which describes the motion of the undamped system starting at
the unstable equilibrium (5.4).

Next, (5.5) can be rewritten as

q̇ =
√

k

m

√
[(2l − q0)

2 − (q − q0)
2]. (5.6)

The expression for q̇ in (5.6) is non-Lipschitzian at q = 2l,
thus indicating the possible existence of multiple solutions. In-
tegrating (5.6) we obtain

q(t) = q0 + (2l − q0) sin
(�

2
+ √

k/mt
)

. (5.7)

Direct substitution of (5.7) in (5.1) confirms that q(t) given by
(5.7) satisfies (5.1) with the initial conditions (5.4). Note that
q(t) given by (5.7) is C∞, that is, infinitely differentiable.

Next, define the delayed function

qT (t) = 2l, t �T ,

= q(t − T ), t > T . (5.8)

The function qT (t) corresponds to the linkage remaining at
the horizontal equilibrium until time T and then spontaneously
moving away as shown in Fig. 12. It follows by direct substitu-
tion that, for all T �0, the function qT (t) satisfies (5.1) with the
initial conditions (5.4). Hence, (5.1) has an infinite number of
solutions (parameterized by T) that satisfy the initial conditions
(5.4). Note that the function qT (t) is C1 since limt→T + q̇T (t)=
limt→T − q̇T (t) = 0. However, for T > 0, qT (t) is not C2 since
limt→T − q̈T (t) = 0 and limt→T + q̈T (t) = (q0 − 2l) k/m. An
example of dynamics that exhibit analogous non-unique solu-
tions is given in [28]. Due to the singularity in (5.1) at q = 2l,
it is also possible for the links to arrive with zero velocity at
the horizontal equilibrium, which is unstable.
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3

T = 0 T = 1 T = 2

Time t [s]

q
 [

m
]

Fig. 12. Non-unique solutions of the undamped preloaded two-bar linkage dy-
namics with inertialess bars given by (5.8) for various values of T. The param-
eters used are k=1 N/m, m=1 kg, mbar =0 kg, l=1 m, and q0 =2l cos( �

4 ) m.

6. Hysteresis in the preloaded two-bar linkage

The hysteresis map of a system is the response of the system
in the limit of DC operation, that is, the response under peri-
odic inputs with frequency approaching zero [3,5]. Hence, the
hysteresis map of a system is closely related to the equilibrium
set E, which is the set of constant input and output pairs corre-
sponding to static equilibria of the system. It is shown in [29]
that a system that exhibits hysteresis has a multi-valued equilib-
rium map and that the hysteresis map is a subset of the equilib-
rium map. It can be seen from the equilibrium set E in Fig. 6 that
multiple equilibria exist for each constant F∈(−Fmax, Fmax).
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Fig. 13. Input–output maps between the vertical force F and the vertical
displacement x for the two-bar linkage model (3.4) for several values of
frequency � in rad/s. The non-vanishing clockwise displacement-force loop at
asymptotically low frequencies is the hysteresis map. Ediss, which is the area
of each loop, is the energy dissipated by the dashpot in one complete cycle.
The parameters used are k = 1 N/m, m = 1 kg, c = 1 N s/m, mbar = 0.5 kg,
l = 1 m, and F(t) = sin(�t) N.
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Fig. 14. Comparison of the equilibrium set E and the hysteresis map for the
preloaded two-bar linkage. The hysteresis map is a subset of E except for
the vertical segments at the bifurcation points. The parameters used are as
in Fig. 13 with F(t) = sin(0.01t) N.

The existence of multiple equilibria suggests that the system
may be hysteretic. We simulate the linkage dynamics given by
(3.4) under the periodic external force F = sin(�t) N using the
parameter values k = 1 N/m, m = 1 kg, c = 1 N s/m, mbar =
0.5 kg, and l = 1 m. As shown in Fig. 13 there exists a non-
trivial clockwise hysteresis map from the vertical force F to
the vertical displacement x (equivalent to a counterclockwise
map from the vertical displacement x to the vertical force F) at

low frequencies. The vertical displacement is x = l sin �. The
presence of a non-trivial loop at asymptotically low frequencies
constitutes hysteresis. For details see [5]. A comparison of the
hysteresis map and the equilibrium set E for the preloaded two-
bar linkage is shown in Fig. 14.

7. Feedback linearization control of the two-bar linkage

The linkage dynamic model (4.1) has an unstable equilib-
rium at � = 0 leading to snap-through behavior. What makes
the model challenging to stabilize is that it does not have a lin-
earization at �=0, which in turn is due to the presence of sin �
in the coefficients of �̈ and �̇.

To stabilize the linkage at � = 0, we use feedback lineariza-
tion to generate a control signal that makes � decay according
to the second-order system

�̈ = −a�̇ − b�, (7.1)

where a > 0 and b > 0. Substituting (7.1) into (4.1) we obtain

m[(sin2 �)(−a�̇ − b�) + (sin �)(cos �)�̇2]
+ c(sin2 �)�̇ + k(sin �)(cos �0 − cos �) = −cos �

4l
F .

Solving for F yields

F = − 4l

cos �
[m(sin �)(cos �)�̇2 − (ma − c)(sin2 �)�̇

− mb(sin2 �)� + k(sin �)(cos �0 − cos �)]. (7.2)

To illustrate (7.2) we choose the parameter values a=1 s−1,
b=1 s−2, m=1 kg, c=1 N s/m, k=1 N/m, l=1 m, and �0=�

4 rad.
For the initial conditions �(0)=�

4 rad and �̇(0)=1 rad/s, the
time histories of �, �̇, and the control input F are shown in
Figs. 15 and 16, respectively. Similarly, for the initial condi-
tions �(0)= − �

3 rad and �̇(0)=1.5 rad/s, the time histories of
�, �̇, and the control input F are shown in Figs. 17 and 18,
respectively.

8. Intrinsic non-linear proportional-derivative control

Since the feedback-linearization controller in Section 7 re-
quires knowledge of all of the linkage parameters, we now
develop an intrinsic non-linear proportional-derivative (INPD)
controller based on the theory given in [25,30]. In [25], a ro-
bust non-linear controller is given for fully actuated mechanical
systems. Since the two-bar linkage is fully actuated, the theory
given in [25,30] is applicable.

The control law given in [25] requires the construction of
an error function as well as design functions � and � [30].
First, note that the configuration space of the preloaded two-bar
linkage has the topology of S1. Let � ∈ [−�, �) parameterize
S1, and let �s ∈ [−�, �) denote the desired setpoint. Then,
one choice [30] of an error function e : S1 → R is given by
e(�) = 1 − cos(�s − �).

To stabilize �s = 0, the error function is given by e(�) = 1 −
cos �, and we choose �(�) = k1l� and �(�, �̇) = k2l�̇, where
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Fig. 15. Time histories of � and �̇ under the action of the feedback linearization controller (7.2) with initial conditions �(0) = �
4 rad and �̇(0) = 1 rad/s. The

controller stabilizes the horizontal equilibrium.
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Fig. 16. Control input F given by (7.2) with initial conditions �(0) = �
4 rad

and �̇(0) = 1 rad/s.

k1, k2 > 0. Then, the control law in [25] for the preloaded two-
bar linkage is given by

F = − 1

cos �
u, (8.1)

where

u = −�′(e(�))

l

�e

��
(�) + 1

l

�V

��
(�) − �(�, �̇)

l
+ uf

l
, (8.2)

V � 2kl2(cos � − cos �0)
2 is the potential energy, and

uf � 4cl2sin2 (�)�̇ is the energy dissipated by the damping
force. Using (8.2), we obtain the INPD controller

u = −[k1 + 4kl(cos � − cos �0)] sin � − (k2 − 4cl sin2 �).

(8.3)

The controller (8.3) asymptotically stabilizes the desired
equilibrium with local exponential convergence such that its

domain of attraction contains a compact sublevel set of a Lya-
punov function [25,30]. Since (8.3) does not require knowledge
of the mass m or the linkage mass mbar, this control law is
unconditionally robust with respect to the inertia parameters
of the system.

Although the INPD controller (8.3) is unconditionally robust
with respect to inertia parameters, it requires complete knowl-
edge of the potential function V (�) given in (3.2). We now re-
move this limitation by presenting a robust version of the INPD
controller, which requires less modeling information than the
INPD controller (8.3).

Theorem 8.1. Consider the two-bar linkage model (3.4), and
choose F as in (8.1) and

u = −kp sin � − kd �̇, (8.4)

where kp > 4kl and kd �0. Then the function V : S1 ×R → R

given by

V(�, �̇) �
((

2ml2 + 9

8
mbarl

2
)

sin2 � + 5

24
mbarl

2
)

�̇2

+ kl2
[(

kp

kl
− 2

)
+ 2(2 cos �0 − cos �)

]
× (1 − cos �) (8.5)

is a Lyapunov function for (4.1), (8.1), (8.4) such that the equi-
librium (�, �̇) = (0, 0) is asymptotically stable with a domain
of attraction that contains a sublevel set of V. Furthermore,
the set {(�, �̇) ∈ (−�/2, �/2) × R : �̇ = 0} is contained
in the domain of attraction, and (�, �̇) = (0, 0) is the only
asymptotically stable equilibrium of (4.1), (8.1), (8.4). Finally,
if kd > 0, then the closed-loop solutions converge to the equi-
librium (�, �̇) = (0, 0) locally exponentially fast.

Proof. Consider the closed-loop system formed by the two-bar
linkage model (3.4), where F satisfies (8.1) and u is given by
(8.4).
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Fig. 17. Time histories of � and �̇ under the action of the non-linear controller (7.2) with initial conditions �(0) = − �
3 rad and �̇(0) = 1.5 rad/s. The controller

stabilizes the horizontal equilibrium. The parameter values used are a = 1 s−1, b = 1 s−2, m = 1 kg, c = 1 N s/m, k = 1 N/m, l = 1 m, and �0 = �
4 rad.
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Fig. 18. Control input F given by (7.2) with initial conditions �(0)=− �
3 rad

and �̇(0) = 1.5 rad/s. The parameter values used are same as in Fig. 17.

To show that V is positive definite on S1 × R, note that the
first term in (8.5) is non-negative. Consider the second term in
(8.5). A plot of this term for various values of �0 is shown in
Fig. 19. Since kp > 4kl and �0 ∈ [0, �/2] it follows that

kl2
[(

kp

kl
− 2

)
+ 2(2 cos �0 − cos �)

]
(1 − cos �)

�kl2
[
kp

kl
− 2 − 2 cos �

]
(1 − cos �)

�kl2
[
kp

kl
− 4

]
(1 − cos �)

�kl2(1 − cos �)

�0.

Thus, V(�, �̇) in (8.5) is non-negative.

Next, equate the RHS of (8.5) to zero. Since both terms in
(8.5) are non-negative, both must be equal to zero. The first
term yields �̇ = 0. Since the second term is greater than or
equal to kl2(1 − cos �), the second term yields � = 2n�, where
n ∈ {0, ±1, ±2, . . .}. As � ∈ [−�, �), V(�, �̇) is zero only at
(�, �̇)=(0, 0). Therefore, V(�, �̇) is positive definite on S1×R.

Differentiating (8.5) with respect to time along solutions of
the closed-loop system yields

V̇(�, �̇)=2

((
2ml2+9

8
mbarl

2
)

sin2 �+ 5

24
mbarl

2
)

�̇�̈

+
(

4ml2+9

4
mbarl

2
)

(sin �)(cos �)�̇
3

+l(kp−2kl)(sin �)�̇

+2kl2(2 cos �0− cos �)(sin �)�̇

+2kl2(sin �)(1− cos �)�̇

=2�̇

{
−2cl2(sin2 �)�̇−2kl2(cos �0− cos �) sin �

+ lu

2
+ l

2
(kp−2kl) sin �

+ kl2(2 cos �0− cos �) sin �+kl2(sin �)(1− cos �)

}

=2�̇

{
−2cl2(sin2 �)�̇ − 2kl2(cos �0− cos �) sin �

− l

2
kp sin �− l

2
kd �̇+ l

2
kp sin �−kl2 sin �

+ 2kl2(cos �0− cos �) sin �+kl2 sin �

}

=−(4cl2(sin2 �)+kd)�̇
2 �0. (8.6)

Thus, V̇(�, �̇) is negative semidefinite, and hence the equilib-
rium (0, 0) is Lyapunov stable.
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Next, for �1 and �2 in [−�/2, �/2], consider the expression

(V(�1, 0) − V(�2, 0))(|�1| − |�2|)
= kl2

{[
kp

kl
− 2 + 2(2 cos �0 − cos �1)

]
(1 − cos �1)

−
[
kp

kl
− 2 + 2(2 cos �0 − cos �2)

]
(1 − cos �2)

}
× (|�1| − |�2|)

= kl2(cos �1 − cos �2)(|�1| − |�2|)
×

[
−kp

kl
+ 2 − 4 cos �0 − 2 + 2(cos �1 + cos �2)

]
= kl2(cos �1 − cos �2)(|�1| − |�2|)

×
[
−kp

kl
− 4 cos �0 + 2(cos �1 + cos �2)

]
. (8.7)
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Fig. 19. Plot of the second term in the Lyapunov function (8.5). The plot is

for the non-dimensionalized values corresponding to kl2 = 1 and
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Fig. 20. Time histories of � and �̇ of (4.1) under the action of the non-linear controller (8.1), (8.4) with initial conditions �(0) = �
4 rad and �̇(0) = 1 rad/s.

The controller stabilizes the horizontal equilibrium.

Since �0 ∈ [0, �/2] and �1 and �2 lie in [−�/2, �/2], we have

−kp

kl
− 4 cos �0 + 2(cos �1 + cos �2)� − kp

kl
+ 4 < 0 (8.8)

and, for �1 �= �2,

(cos �1 − cos �2)(|�1| − |�2|) < 0. (8.9)

Combining (8.7), (8.8) and (8.9) yields that, if �1 and �2 lie in
[−�/2, �/2] and �1 �= �2, then (V(�1, 0) − V(�2, 0))(|�1| −
|�2|) > 0. This implies that, for all �1 and �2 in [−�/2, �/2],
V(�1, 0) <V(�2, 0) if and only if |�1| < |�2|��/2.

Now let 	 ∈ (0,V(�/2, 0)) and consider the sublevel set of
the Lyapunov function V(�, �̇) given as

K	 � {(�, �̇) ∈ [−�, �) × R : V(�, �̇)�V(�/2, 0) − 	}.
(8.10)

Note that, for all (�, �̇) ∈ K	,

V(�, 0)�V(�, �̇) <V(�/2, 0).

Since V(�1, 0) <V(�2, 0) if and only if |�1| < |�2|��/2, it
follows that every (�, �̇) ∈ K	 satisfies |�| < �/2. Thus the
control law (8.1), where u is given in (8.4), is well-defined for
any trajectory in K	.

It is clear that K	 is a compact, invariant sublevel set of
the Lyapunov function V(�, �̇) given in (8.5) for every 	 ∈
(0,V(�/2, 0)). From the invariant set theorem, the closed-loop
solution for an initial condition in K	 converges to the largest
invariant set in {(�, �̇) ∈ K	 : V̇(�, �̇) = 0}.

Next, it can easily be shown that the largest invariant set in
K	 such that V̇(�, �̇) = 0 is the equilibrium (�, �̇) = (0, 0).
Thus, the equilibrium (0, 0) is asymptotically stable, and the
sublevel set K	 is contained in the domain of attraction of the
closed-loop equilibrium (0, 0) for every 	 ∈ (0,V(�/2, 0)).

Let (�0, 0) be an arbitrary initial condition in the set {(�, �̇) ∈
(−�/2, �/2) × R : �̇ = 0}. Then, since V(�1, 0) <V(�2, 0)
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if and only if |�1| < |�2|��/2, it follows that V(�0, 0) <

V(�/2, 0). Therefore, there exists 	0 ∈ (0,V(�/2, 0)) such
that V(�0, 0)�V(�/2, 0) − 	0. Thus, (�0, 0) ∈ K	0 and
hence (�0, 0) lies in a sublevel set contained in the domain of
attraction of the equilibrium (0, 0). Therefore, the set {(�, �̇) ∈
(−�/2, �/2) × R : �̇ = 0} lies in the domain of attraction of
the equilibrium (0, 0) of the closed-loop system.

Suppose kd > 0. Then linearizing the closed-loop equations
(4.1), (8.4), it can be shown that the equilibrium (0, 0) is hyper-
bolic (see [31]). Since the equilibrium (0, 0) is asymptotically
stable, this implies that all eigenvalues of the linearization of
the closed-loop lie in the open left half plane. Therefore, the
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Fig. 21. Control input F given by (8.4) with initial conditions �(0) = �
4 rad

and �̇(0) = 1 rad/s.
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Fig. 22. Time histories of � and �̇ of (4.1) under the action of the non-linear controller (8.1), (8.4) with initial conditions �(0)=− �
3 rad and �̇(0)=−1.5 rad/s.

The controller stabilizes the horizontal equilibrium.

non-linear closed-loop system converges locally exponentially
fast to the equilibrium (0, 0).

Next, consider the closed-loop dynamics obtained by substi-
tuting (8.4) into (4.1) yielding

m[(sin2 �)�̈ + (sin �)(cos �)�̇2] + c(sin2 �)�̇

+ k(sin �)(cos �0 − cos �) = −cos �

4l

kp sin � + kd �̇

cos �
.

To determine the static equilibria, we set all derivatives to zero,
yielding

k(sin �)

(
cos �0 + kp

4kl
− cos �

)
= 0. (8.11)
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Fig. 23. Control input F given by (8.4) with initial conditions �(0)=− �
3 rad

and �̇(0) = −1.5 rad/s.
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Fig. 24. Time histories of � and �̇ of (4.1) under the action of three non-linear controllers, namely, the feedback linearization controller (7.2), the INPD controller
(8.3), and the robust INPD controller (r-INPD) (8.4), with a 5% perturbation in mass m. The initial conditions are �(0) = −1.25 rad and �̇(0) = −10 rad/s.
The feedback linearization controller fails immediately. The robust INPD controller stabilizes the horizontal equilibrium faster than the INPD controller.
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Note that (8.11) holds for � = 0 as well as for � that satisfies

cos � = lkp

4kl2 + cos �0, (8.12)

which is identical to (2.12), where lkp plays the role of the
torsional stiffness kt . There exists � ∈ (−�

2 , �
2 ) satisfying (8.12)

if and only if lkp < 4kl2(1 − cos �0), that is, kp < 4kl(1 −
cos �0). Since kp > 4kl in the controller (8.4), it follows that
(8.12) has no solution and thus the linkage has exactly one
asymptotically stable equilibrium at � = 0 under the action of
the controller. �

The robust-INPD controller (8.4) requires no knowledge of
the system parameters other than an upper bound on kl. The
gains kp and kd in the controller (8.4) are analogous to linear
PD gains, and hence the closed-loop response can be modi-
fied by adjusting the values of these gains appropriately. Let
m = 1, c = 1 N s/m, k = 1 N/m, l = 1 m, kp = 4.1 N m, kd =
2.5 N m s, and �0 = �

4 . For the initial conditions �(0) = �
4 rad

and �̇(0) = 1 rad/s, the time histories of �, �̇, and control input
F are shown in Figs. 20 and 21, respectively. The closed-loop
system for the robust INsPD controller converges to the equilib-
rium (0, 0) in 5 s. These may be compared with results for the
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feedback linearization based controller presented in Figs. 15
and 16 for the same initial conditions. As shown, the closed-
loop for the robust INPD controller converges faster to the
desired equilibrium compared to the feedback linearization con-
troller that takes approximately 15–20 s to converge. Compar-
ing the plots for magnitude of the control input in each case
(Figs. 21 and 16), it is seen that the control magnitude for the
robust INPD controller is slightly larger (7 N m) than the feed-
back linearization controller.

Similarly, for the initial conditions �(0)=−�
3 rad and �̇(0)=

−1.5 rad/s, the time histories of �, �̇, and the control input F are
shown in Figs. 22 and 23, respectively. These may be compared
with results for the feedback linearization based controller pre-
sented in Figs. 17 and 18 for the same initial conditions. The
closed-loop system for the robust INPD controller converges to
the equilibrium (0, 0) in 3 s compared to 20 s for the feedback
linearization controller. Interestingly, the magnitude of the con-
trol actuation for the robust INPD controller (Fig. 23) is less
compared to that for feedback linearization controller (Fig. 18).
This partly follows from the fact that the robust INPD con-
troller, unlike the feedback linearization based controller, does
not cancel any benign non-linearities.

In order to show that the robust INPD controller is indeed
robust to inaccurate information of the system parameters, we
compare the closed-loop performance using the three differ-
ent non-linear controllers, the feedback linearization controller
(7.2), the INPD controller (8.3), and the robust INPD controller
(8.4), respectively. Consider a 5% perturbation in mass m, that
is, the mass m = 1 kg in the system (4.1), whereas the mass
value m = 0.95 kg is used in the control laws. Fig. 24 shows
the response � and �̇ for the three controllers. Note that the
feedback linearization controller immediately fails. The robust
INPD controller stabilizes the horizontal equilibrium faster than
the INPD controller. Similarly, consider a 5% perturbation in
stiffness k, that is, the stiffness k = 1 N/m in the system (4.1),
whereas the stiffness value k = 0.95 N/m is used in the control
laws. Fig. 25 shows the response � and �̇ for the three con-
trollers. Note that only the robust INPD controller stabilizes
the horizontal equilibrium.

9. Conclusion

We studied a preloaded two-bar linkage, which serves as a
lumped analogue of a structure that can undergo snap-through
buckling. We showed that the linkage exhibits hysteresis be-
tween the force actuation and the vertical displacement. We also
showed that the two-bar linkage with inertialess bars has an
inertia singularity and thus is not linearizable at the horizontal
(unstable) equilibrium. Finally, we presented the INPD control
law as well as the robust INPD control law, which stabilizes
the unstable equilibrium with less parametric knowledge of the
system.
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