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Optimal Nonzero Set Point Regulation Via Fixed-Order 
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Abstract-Standard LQG control theory is generalized to a regulation 
problem involving specified nonzero set points for the state and control 
variables and nonzero-mean disturbances. For generality, the results are 
obtained for the problem of fixed-order (i.e., not necessarily full-order) 
dynamic compensation. When the state, control, and disturbance offsets 
are set to zero and the compensator order is set equal to the plant 
dimension, the standard LQG result is recovered. These results provide 
the dynamic counterpart for the nonzero set point regulation results 
obtained in [l] via static controllers. 

I. INTRODUCTION 

As discussed in [I] ,  the standard quadratic performance criterion 
expresses the desire to maintain the state and control variables in the 
neighborhood of the origin. If regulation is desired about nonzero state 
and control offsets, then, in special cases, the set points can be translated 
to the origin and standard theory can be applied (see, e.g., [2, pp. 270- 
2761). In general, however, (see [l]) such a translation may either be 
suboptimal or impossible. The latter situation may occur, for example, if 
the number of state components with specified nonzero set points is 
greater than the number of controls, while the former is the case when the 
control offset is particularly costly. 

Motivated by the work of Leizarowitz and Artstein [3], [4] on the more 
general problems of periodic and nonperiodic tracking, the nonzero set 
point problem was addressed in [ l ]  for the case of static output-feedback 
controllers. The goal of the present note is to derive analogous results for 
the case of dynamic compensation considered by Leizarowitz in [SI. As in 
[l], the solution we obtain has the satisfying feature that the closed-loop 
dynamic-feedback-compensation gains are independent of the open-loop 
control components which arise from the state and control set points. 
Thus, if the state set point is changed during operation, then only the 
open-loop control components require updating. Consequently, there is 
no need to recalculate the closed-loop gains by solving Riccati equations 
in real time. The overall theory thus permits the treatment of step 
commands within standard LQG theory. 

For generality the development herein incorporates several special 
features which provide additional flexibility in applications. These 
include: 1) constant disturbance vectors in addition to zero-mean additive 
plant and measurement noise (i.e., nonzero-mean disturbances); 2) 
correlated plant and measurement noise; 3) state/control performance 
cross-weighting; 4) arbitrary set points for selected linear combinations of 
the state and control variables (see L1 and L2 in the problem statement in 
Section 111); and 5 )  fixed-order (i.e., full- or reduced-order) compensa- 
tion. Because of the last feature, the results obtained in the present note 
also generalize the results of [6]. For clarity, we specialize the main result 
to the usual full-order LQG case. 

11. NOTATION AND DEFINITIONS 

W, Elrxs, ar, 2 Real numbers, r X s real matrices, a''', 
expectation. 
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Matrix with eigenvalues in open left-half plane. 
inverse. 

Positive integers. 
n + n,. 
n, m, I ,  n,, A-dimensional vectors. 
n x n ,  n x m, I x n, I x m matrices. 
n, X n,, n, x I ,  m x n, matrices. 
q X n ,  r x m matrices. 
q, r-dimensional set point vectors. 
n, I-dimensional constant disturbance vectors. 
m, n,-dimensional control vectors. 

[ : : ]  ' [ Bll;]  ' [Ic] 
n, I-dimensional zero-mean white noise processes. 
Intensities of w l ,  w2; VI 2 0,  V, > 0. 
n x I cross intensity of wl ,  w 2 .  

n, n,-dimensional vectors. 

For arbitrary n x n Q, P define: 

Qa QC'+ VIZ, P, 6 B 7 P + L T R : , L l ,  

A ,  2 A - Q , V ; ' C ' ,  A P  A - B ( L : R Z L Z ) - I P C .  
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111. DYNAMIC COMPENSATION FOR NONZERO SET POINT 
REGULATION 

A. Nonzero Set Point Problem 

Given the nth-order stabilizable and detectable plant 

x ( t ) = A x ( t ) + B u ( t ) + w l ( t ) + y l ,  t E [O ,  a), 

y ( t ) = C x ( t ) + D u ( t ) +  w2(t)+y2 

design a fixed-order dynamic compensator 

xC (0  = A A  t 1 + BJ (0  + CY,, 

U (  1 )  = C,x , ( t )  + CY 

which minimizes the steady-state performance criterion 

Remark 3.1: The cost functional (3.5) is identical to the LQG criterion 
(usually stated in terms of an averaged integral) with the exception of the 
shifted set points 6, and iS2 and matrices L ,  and L2 for selecting linear 
combinations of components of x and U. 

The closed-loop system (3.1)-(3.4) can be written as 

generality we further restrict our attention to the set 

S '  6 { ( A c ,  B,, C,) E S: (Ac,  B,) is controllable 

and (Ac,  C,) is observable}. 

Now J(A,, B,, C,, C Y ,  C Y < )  is given by 

J(A,, Bc, C,, CY,  u,)=tr [ Q + m m T l ~ - 2 m T L ~ R 1 6 1 + 6 ~ R ~ 6 ~  

-26:R12L2Ccmr- 26:R12L2a 

+26 ~ R 1 2 6 2 + 2 r n ~ C : L : R 2 L 2 ~ - 2 m ~ C ~ L : R 2 b 2  

- ~ C Y ~ L : R ~ ~ ~ + C Y ' L : R ~ L ~ C Y + ~ : R ~ ~ ~ .  (3.11) 

To obtain closed-form expressions for the feedback gains we further 
restrict consideration to the set 

S "  2 { (Ac,  Bc, C,) E S ' :  Q>O}, 

where 

The following factorization lemma is needed for the statement of the 
main result. 

Gemma 3.1: Suppose n x n Q, P are nonnegative definite and rank 
QP = n,. Then there exist n, x n G, r and n, x n, invertible M such 
that 

QP= G TMr, (3.12) 
~( t )=Af ( t )+Bo7+~( t )+y ,  t E [O,  03) (3.6) 

r G T = I n r .  (3.13) 

where f ( t )  6 [xr( t ) ,  xT(t)] a;"d the closed-loop disturbance $(f) has 
nonnegative-definite intensity V .  To analyze (3.6) define the covariance 
matrix 

where f i ( f )  e S[f(f)]. As shown in [l] ,  Q(t) and m(t)  satisfy 

Q(t)=AQ(t)+ Q(t)AT+ v, (3.7) 

To guarantee that J is finite and independent of initial conditions, we 
restrict our attention to the set of admissible stabilizing compensators 

S g { ( A c ,  B,, Cc): A is asymptotically stable}. 

O=AQ+QAT+ v, (3.9) 

0 = Am + El5 + +. (3.10) 

Since the value of J is independent of the internal realization of the 
transfer function corresponding to (3.3) and (3.4), without loss of 

Furthermore, G, M ,  and r are unique except for a change of basis in B " c .  
0 

has a group generalized inverse (QP)# = 
Proof: See [6]. 

As shown in [6], 
GTM-'I', and the matrix 

is an oblique projection. A triple (G, M, r) satisfying (3.12) and (3.13) 
with G, r E W n c x " ,  M E R,x"c, and n, = rank Q p  will be called a 
projective factorization of Q P .  Furthermore, define the complementary 
projection T~ I, - 7. Optimizing (3.11) subject to (3.9) and (3.10) 
yields the following result illustrated in Fig. 1. 

Theorem 3.1: Suppose (A,, B,, C,, C Y ,  CY<) solves the nonzero set point 
problem with (Ac, Bc, C,) E S".  Then there exist n x n nonnegative- 
definite matrices Q, P, Q, P such that, for some projective factorization 
(C, M ,  r) of Q p ,  A,, B,, C,, CY, and CY, are given by 

B, = r Q. V ;  I ,  (3.16) 
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and such that Q, P ,  Q, and P satisfy 

0 = A  Q + QA T +  VI - Qa V ;  ' Q ,'+ 7 A Qc V z  ' Q ,'T , (3.19) 

0 = A  ' P +  PA + L :RI Ll - P,'(L TRZLZ) -'Pa 

+ T T P , ' ( L ~ R ~ L ~ ) - ' P ~ T ~ ,  (3.20) 

O=ApQ+QA, '+Q,V; lQ~-7 .Q,V; lQ, '~~ ,  (3.21) 

o = A  gj+ PA,+ P,'(L T R ~ L ~ )  - I  P, - 7 ; P,'(L ;R~L*)  , (3.22) 

rank &=rank P=rank QP=n,. (3.23) 

Proof: See Section IV. 0 
Remark 3.2: The results of [6]  are a special case of Theofem 3.1. To 

see this set lil = y, = 0, 6 2  = 0, y2 = 0, L ,  = I,, and L2 = I,,,, which 
yields the results of [6]  with the added features of correlated plant/ 
measurement noise (V12) ,  cross weighting ( R I 2 ) ,  and a direct transmission 
term (D)  in the plant dynamics. 

As discussed in [ 6 ] ,  in the fulkorder5LQG) case n, = n the Lyapunov 
equations (3.21) and (3.22) for Qand P a r e  superfluous. In this case G = 
r-l and thus G = r = 7 = I, without loss of generality. To develop 
further connections with standard LQG theory, assume 

and define 

In this case S " becomes 

s I' 2 { ( A c ,  Bc, C,) E S ': 6>0} 

where 

Coro//ury 3.1: Let n, = n, assume (3.24) is satisfied, and suppose 
( A c ,  B,, C,, a ,  a,) solves the full-order nonzero set point problem with 
( A c ,  B,, C,) E 8" .  Then there exist n X n nonnegative-definite matrices 
Q, P such that A,, B,, C,, a ,  and a, are given by 

A ,  = A - BR, ' B ' P -  QCT V;  ' C+ QCT V;'DR;'B TP, 

O=AQ+ QA '+ VI - QCTV,'CQ, 

0 = A  ' P +  PA + RI - PBR 2 ' B  'P.  

Remark 3.3: Note that by setting lil = y, = 0, h2 = 0, y2 = 0, and D 
= 0, Corollary 3.1 yields the standard LQG result. 

Remark 3.4: It is easy to see that in the full-order case n, = n a 
solution to the nonzero set point problem exists as long as fi is positive 
definite. In the reduced-order case, however, the situation is more 
complex. For details, see [8]. 

Iv. PROOF OF THEOREM 3.1 

To optimize (3.11) over the open set S "  subject to the constraints (3.9) 
and (3.10), form the Lagrangian 

where the Lagrange multipliers A,, z 0, k E a*, and E a* x A  are not 
all zero. Setting ac/aQ = 0 and using the fact that A is asymptotically 
stable, it follows that A,, = 1 without loss of generality. 

Now partition A x A Q, Pinto n x n, n X. n,, n, x n, subblocks and 
E WE into s3" and P c  components as 

Thus, the stationarity conditions are given by 
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ad:  - I (4.3) R A  +- ATx +I?:,&- sg=O, -= 
a f i  2 

1 1 
[ L  TR2L.2 0107 + [ L  :R y2Ll L :R2L2Cc] A - [ L  :RI2 L :R2]S+ - B ‘XI + - D TBTX2 

-- 2 2 ] = 0 ,  (4.4) 
a6 8% [ 1 2 X2 

(4.5) 
ad: 1 
- = P r2 QI2 + P2 Q2 + - X 2 r n  r = 0, 8 . 4  2 

(4.6) 
ad: I 1 1 
- = P Y2 VI, + PzB, V2 + ( P  r2 QI + P2Q L)C ’+ ( P  T2Q12 + P2Q2) C f D  + X2rn TCT+ - 2 X2y :+ - 2 X 2 a  TD T =  0, a B, 

-- ad:  - L :R ;LI QI2 + L :R2L2CcQ2 +L :R ;Llmm,‘+ L :R2L2Ccmcm:+ B ‘(PI QI2 + P12Q2) + DTBr(P;  QI2 + P2Q2) - L :R ;hl rnT 
a c c  

1 
+L :R2L2arn r- L :R2b2rn r+ - 2 E T X I  rn ,‘= 0. (4.7) 

Expanding (4.1) and (4.2) yields 

0 = AQI + QI A ‘ + VI + BC,Q T2 + Q12 C r B ‘, (4.8) 

O=AQl2 t Q12A:+ BCcQ2+ QICTBf+ Vl2Bf+ Q12CrDTBr, (4.9) 

0 = AcQ2 + Q2A r+ BeCQ12 + Q :,CTBr+ B, V2Bf 

+BcDCcQ2+Q2C:DTBT, (4.10) 

O=A ‘PI + PIA + L rRlLl+ CTBrPL+ P12BcC, (4.1 1) 

0 = A  TP12 + PIZA, + CTB fP2 + PI BC, + L :R12L2Cc + PI2 B,DC,, (4.12) 

0 = A  rP2 + P2A,+ C:BTP12 + P;BC,+ CrL :R2L2Cc 

+ CTD ‘BfP2 + P2BcDCc. (4.13) 

Next, note that (4.4) implies that A2 = 0, and thus (4.5) can be written 

(4.14) 

as 

- P;  I P r2 Q l z Q  ; I =In,. 

The existence of Q;’ and P;’  follows from the fact that (Ac ,  B,, C,) is 
minimal. See [6] for details. Now define the n X n matrices 

Q 4 Q I - Q I Z Q ; ’ Q : ~ ~  P 2 P I - P I z P ; ~ ~ ‘ ~ ,  

Q P Q,,Q;’QL, P & P12P;IP:2, 

7 P -Q12Q;lP;IPr2 

and the n, x n, n, x n,, and n, x n matrices 

G & Q;’QL, M 2 Q2P2, I’ & -P;IP;. 

Note that r = G T .  Clearly, Q, P, Q, and P are symmetric and 
nonnegative definite. 

Next note that with the above definitions, (4.14) is equivalent to (3.13) 
and that (3.12) holds. Hence, r = G T  is idempotent, i.e., r2  = 7. 
Sylvester’s inequality yields (3.23). Note also that 

Q=rQ, P=P7.  
The components of Q and P can be written in terms of Q, P, Q, P ,  G ,  

and r as 

Q~ = Q+ Q. P,  = P+P, 

Q12=QrT, PI2= -PGT, 

Q ~ =  r Qr p2 = GPG? 
The expressions (3.16) and (3.17) follow from (4.6) and (4.7) by using 
the n, and n components of (4.4), respectively, and the above identities. 
Next, computing either r(4.9)-(4.10) or G(4.12) + (4.13) yields (3.15). 

Substituting this expression for A, into (4.8)-(4.13) it follows that (4.10) 
= r(4.9) and (4.13) = G(4.12). Thus, (4.10) and (4.13) are superfluous 
and can be omitted. Next, using (4.8) + GT(4 .9 )G - (4.9)G - 
[ (4 .9 )qr  and GT(4.9)G - (4.9)G - [(4.9)GJT yields (3.19) and 
(3.21). Using (4.11) + rTG(4.12)r - (4.12)r - [(4.12)rIr and 
frG(4.12)r - (4.12)r - [(4.12)rlr yields (3.20) and (3.22). 

To obtain (3.18) note that (4.4) can be rewritten as 

(4.15) 
1 
2 

R207 +R, ,m -N$+- B T j ;  = 0. 

Next, note that (4.3) is equivalent to 

TRfi + A  - Tsg-A - T R  T - 12a. (4.16) 
1 -  - 
2 
- - A  - 

Substituting (4.16) into (4.15) yields 

(R2 - B T A - T R L ) O i  + (al2 - ETA -TR)m + (B‘A - T ’ S - N ) $ =  0. (4.17) 

Next, note that (3.10) is equivalent to 

A =  -A--lB- a-A-J+. (4.18) 

Now, substituting (4.18) into (4.17) yields 

(E2 - R12A - I B -  BTA - T R T  + BTA - TRA - 1B)G = (& BTA - T 3 ) S  
12 

+ (al2 - BTA -TR)A- ’+ .  (4.20) 

Finally, note that the coefficient of 07 in (4.20) is equivalent to s2 and thus 
(4.20) yields (3.18). 0 

V. CONCLUDING REMARKS 

The results of the present note can be combined with the results of [l] to 
obtain nonstrictly proper controllers leading to a generalization of [7]. 
Current research is focused on extending the results of the present note to 
larger classes of command and disturbance signals. 
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A Study of Controllability and Time-Optimal Control of 
a Robot Model with Drive Train Compliances and 

Actuator Dynamics 

A. AILON AND G. LANGHOLZ 

Abstract-The problems of robot controllability and time-optimal 
control where drive train compliances and actuator dynamics are 
incorporated in the mathematical model is the subject of this note. This 
study demonstrates the conditions that ensure the existence of a time- 
optimal control, and establishes controllability of the augmented model 
(robot and actuator) in open- and closed-loop form. This note describes a 
procedure for the derivation of easily computable functional inequalities 
which represent upper bounds on the norm of the augmented system’s 
time response. 

I. INTRODUCTION 

To obtain the control strategy of mechanical manipulators, various 
control schemes are presented in the available literature. A few examples 
are resolved control [ l ] ,  inverse problems technique [2], and resolved 
acceleration control [3]. In most cases, the control scheme involves the 
computation of the appropriate generalized forces by the equation 

H(e)e (2 )+K(e ,  e ) + R ( e ) = q  

where 8 and q are the vectors of the generalized coordinates and forces, 
respectively, H i s  the moment of inertia matrix, K is a vector specifying 
centrifugal and Coriolis effects, and R is a vector specifying gravitational 
effects. 

In much of the literature the actuators providing the drive torques are 
modeled as pure torque sources. However, this approach is in most cases 
a simplification of the realistic models of the system [4]-[8]. 

The objective of this note is to study controllability and to investigate 
the conditions which ensure the existence of a control function that 
transfers the augmented model of the mechanical system, the actuator’s 
dynamics, and the drive train’s compliances, from a given initial position 
to a desired target in a minimum time. The model and the approach are 
useful for the design of a linear controller and can be used as a point of 
departure for a more general model of a robot arm. 

11. THE MATHEMATICAL MODEL 

The Lagrange formulation of a multilink mechanical system is given by 

d(aL/ae,)/dt - a u a e ,  = q,, i = 1, 2 . . . n ( 1 )  
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where L = T - V.  T and I/ are the kinetic and potential energies of the 
system, respectively. 

Let pi be the ith generalized momentum [9]. Using Legender’s dual 
transformation 

p,=aL/ae,, i = l ,  2, ... n. (2) 

Since L is a quadratic function in S I ,  p is linear in d for any given 0, i.e., 
n 

p , = E  a,,(e)e,, i = l ,  2,  ... n (3) 
/ = I  

with ai,(@ = a w a e i a e j .  
The inertial matrix is H = [13~L/ad~ad,],,,, with det (H) = h(O) > 0, 

VO, where det (.) is the determinant of (.). Now, from ( l ) ,  (2), and (3) we 
have 

p,=aL/aO,+q,, i = l , 2 ,  ... n, (4) 

( 5 )  &=E bo(e)pJ, i = l ,  2, ..., n. 
J 

Using (5 )  one obtains 

Equations (4)-(6) constitute the state equations of the n-link mechanical 
system which can be written as 

Z(t = F(z(t  1) + Bq(t 1, z(t0) = zo (7) 

where the vectors z = [ p  T] r, q = [qlq2 . . * qn] T, and F = [FIF, . . . 
Fzn] are in Euclidean vector space with the usual norm ( ( z ( ( ~  = Cf”,, 
(zJ2. We also have 

Fs= E E CsI/p;pJ /[det (H) ] ’ ,  s=l, 2,  ..., n 

= [ d.p.1 /det (HI ,  s = n + l ,  n + 2 ,  ..., 2n 

[ J : l  3 
and B = [{I, where Z is the n X n identity matrix. 

which is confined to move in the vertical plane are given by 

pi= [pIp2111czm2 sin (02-Oi) det ( H ) -  [0 .5p:Iz+0.5p~(11 +m2/ : )  

As an example, the exact equations for the two-link mechanical system 

-p ip2E]2ElI  Ic2mz sin (8, - Ol)]/(det 

-(mlgLl+m2gli) sin 0 1 + ~ 1 = F i ( p l , ~ 2 ,  6 ,  02)+a  

p2= - [pIpzl l lc2m2 sin (Oz-O,) det ( H ) -  [0.5p:I2+0.5p:(Il +m21t) 

-plp2E]2Ell lc2m2 sin (0, - O,)]/(det ( H ) ) 2 -  m2glC2 sin O2 + q2 

= F ~ ( P , ,  pZ. e,, e2)+q2 

e ,  =(~112-p~E) /de t  (ff)=F3(pl, p2, el. ez) 

e2=(p2(1,  +m21:)-piE)/det ( H ) = F , ( P , ,  p2,  6,  0,) (8) 

where E = /I/c2rn2 cos (e2 - e,), m, and I, are the mass and the length of 
the ith link, respectively, 1, is the moment of inertia of the ith link with 
respect to the ith joint, and IC; is the distance from the ith joint to the center 
of gravity of the ith link. 

The term det (H) is a trigonometric function of, and periodical in, 8,. 
This function attains its minimum in the interval 0 5 0; 5 2 r ,  i = 1, 2, 
. . . n, and therefore 

det ( H ) r k > O ,  vz E R2”. (9) 

We turn now to the dynamics of the robot’s drivers. The robot is 
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