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SUMMARY

This paper proposes a procedure for identifying the inertia matrix of a rotating body. The procedure based on Euler’s
equation governing rotational motion assumes errors-in-variables models in which all measurements, torque as well as
angular velocities, are corrupted by noises. In order for consistent estimation, we introduce an extended linear regression
model by augmenting the regressors with constants and the parameters with noise-contributed terms. A transformation, based
on low-pass filtering, of the extended model cancels out angular acceleration terms in the regressors. Applying the method
of least correlation to the model identifies the elements of the inertia matrix. Analysis shows that the estimates converge to
the true parameters as the number of samples increases to infinity. Monte Carlo simulations demonstrate the performance
of the algorithm and support the analytical consistency. Copyright q 2009 John Wiley & Sons, Ltd.

Received 4 June 2008; Revised 3 November 2008; Accepted 23 December 2008

KEY WORDS: identification; inertia matrix; errors in variables; least-correlation estimate; nonlinear identification

1. INTRODUCTION

It is a trend to use smaller, lighter and cheaper instru-
ments for systems, which usually means that measure-
ments are more corrupted by noise. This is true for
uninhabited air or space vehicles, where there is a
premium on size and weight. Control requirements,
however, may be stricter than those of conventional
vehicles in order to meet the needs for clustering
or formation flight [1, 2]. Many existing algorithms
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for identifying inertial parameters in space use the
method of least squares [3–7], however, this technique
exhibits high sensitivity to errors in regressors [8].
The regressors in identification models are composed
of measurements, such as angular velocity, angular
acceleration and attitude, which are not free from
noise [3–7]. The models, where input as well as
output measurements are contaminated by noise, are
known as errors-in-variables (EIV) models [9, 10].
It is known that the least-squares method tends to
generate error-prone estimates for EIV models [8].
Making the problem worse is that the regressors in
the estimation models are not linear in the measure-
ments when the models are based on Euler equation
[3, 4, 7] or derived from angular-momentum conserva-
tion [5, 6]. The method of least correlation [11] has
a capability to cope with the noisy measurements of
all variables provided that the regressors are linear in
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the variables. An extension of this method provides
consistent estimates for nonlinear systems described
by polynomials in the variables [12].

This paper describes an application of the least-
correlation methods for identifying the inertia matrix
of a rotating body. In this work we assume that the
external torque and angular velocity are measured with
noise, but the angular acceleration is not available. The
estimation model based on Euler’s equation is formu-
lated via two steps, specifically, by extending the linear
regression model by augmenting the regressors with
constants and the parameters with noise-contributed
terms, and transforming the extended model to an
equivalent form without angular acceleration terms.
Applying the method of least correlation to the
extended and transformed model provides an algorithm
identifying the inertia matrix of a rotating body with
consistency.

Analysis shows that the procedure gives consis-
tent estimates, that is, the estimates converge to the
true parameters as the number of samples increases
to infinity. Simulation results, for example, confirm
the performance of the estimation method numeri-
cally. The estimation method introduced in this work
can be applied to various kinds of systems such as
spacecraft [5–7, 13], robots [3] and other rotating struc-
tures [4, 14].

The content is organized as follows. Section 2
provides the model, problem statement and assump-
tions. Section 3 describes the main results including
the estimation procedure for the inertia matrix and
a performance analysis of the estimation algorithm.
The results of Monte Carlo simulation are reported in
Section 4. Concluding remarks are stated in Section 5.

2. PROBLEM AND ASSUMPTIONS

The rotational motion of a rigid body is governed by
Euler’s equation

J �̇∗(t)+�∗(t)× J�∗(t)=M∗(t) (1)

where J ∈R3×3 denotes the inertia matrix which is
constant, symmetric and positive definite, �∗(t)∈R3

is the angular velocity vector and M∗(t)∈R3 is the
external moment (or torque) acting on the body about

its mass center. Let �(t)∈R3 and M(t)∈R3 denote the
measurements of �∗(t) and M∗(t), respectively, that is,

�(t)��∗(t)+�(t) (2)

M(t)�M∗(t)+�(t) (3)

where �(t)∈R3 and �(t)∈R3 are measurement noises.
We assume that �(t) is measured, but �̇(t) is not. Our
goal is to identify all components of J by using �(t)
and M(t).

Measurements are frequently described as stochastic
processes with deterministic components. To provide
a common framework for deterministic and stochastic
signals [15, pp. 33–34], we assume that all measure-
ments are quasi-stationary and employ the notation

Ē[ f (kh)]� lim
N→∞

1

N

N∑
k=1

E[ f (kh)] (4)

for discrete-time signal f (kh),k=1,2, . . .,N with
sampling interval h, where E denotes expectation. We
implicitly assume that the limit in (4) exists.

We introduce the following assumptions.

A1. The measurements �(kh) and M(kh) are
quasi-stationary and jointly quasi-stationary
[15, p. 34].

A2. The noises �(kh) and �(kh) are zero-mean and
finitely cross-correlated with �(kh), that is,
there exists the smallest �>0 such that

Ē[�(kh)�T(kh−sh)]=0 for all |s|>� (5)

Ē[�(kh)�T(kh−sh)]=0 for all |s|>� (6)

A3. For � given by A2, �(kh) satisfies

rank{R̄��(k,k′,N)+ R̄��(k′,k,N)}=3 (7)

where k′ =k−�,N denotes the number
of samples and the empirical correlation
R̄��(k1,k2,N) is defined by

R̄��(k1,k2,N)� 1

N�

N∑
k=1+�

�(k1h)�T(k2h) (8)

where N� =N−� and k1=k,k2=k−� or k1=
k−�,k2=k.
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3. ESTIMATION OF THE
INERTIA MATRIX

By using (2) and (3), (1) is written as

J (�̇− �̇)+(�−�)×J (�−�)=M−� (9)

where the time argument t is omitted for convenience.
For an arbitrary vector x�[x1 x2 x3]T, let us define
two operators [16]

L(x)�

⎡
⎢⎢⎢⎣
x1 0 0 0 x3 x2

0 x2 0 x3 0 x1

0 0 x3 x2 x1 0

⎤
⎥⎥⎥⎦ (10)

x×�

⎡
⎢⎢⎢⎣

0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤
⎥⎥⎥⎦ (11)

and a parameter vector

��[J11 J22 J33 J23 J13 J12]T (12)

so that J x = L(x)�. Then with the regressor matrix
�(t)∈R6×3 defined by

�T(t)�L(�̇− �̇)+(�−�)×L(�−�) (13)

Equation (9) is equivalent to the linear regression equa-
tion

z(t)=�T(t)� (14)

where z(t)�M∗(t)=M(t)−�(t).
Let us split �(t) into three parts as

�(t)=�(t)−	(t)−
(t) (15)

where

�T(t)�L(�̇)+�×L(�) (16)

	T(t)�L(�̇)+�×L(�) (17)


T(t)��×∗ L(�)+�×L(�∗) (18)

Letting

�∗(t)�[p∗ q∗ r∗]T, �(t)�[p q r ]T

�(t)�[�p �q �r ]T
gives

�T�

⎡
⎢⎢⎣

ṗ −qr qr q2−r2 ṙ+ pq q̇−rp

rp q̇ −rp ṙ− pq r2− p2 ṗ+qr

−pq pq ṙ q̇+rp ṗ−qr p2−q2

⎤
⎥⎥⎦ (19)

	T�

⎡
⎢⎢⎣

�̇p −�q�r �q�r �2q −�2r �̇r +�p�q �̇q −�r�p

�r�p �̇q −�r�p �̇r −�p�q �2r −�2p �̇p+�q�r

−�p�q �p�q �̇r �̇q +�r�p �̇p−�q�r �2p−�2q

⎤
⎥⎥⎦ (20)


T �

⎡
⎢⎢⎣

0 −�qr∗ �qr∗ �qq∗−�rr∗ �pq∗ −�r p∗
�r p∗ 0 −�r p∗ −�pq∗ �rr∗−�p p∗ �qr∗

−�pq∗ �pq∗ 0 �r p∗ −�qr∗ �p p∗−�qq∗

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0 −q∗�r q∗�r q∗�q −r∗�r p∗�q −r∗�p
r∗�p 0 −r∗�p −p∗�q r∗�r − p∗�p q∗�r

−p∗�q p∗�q 0 r∗�p −q∗�r p∗�p−q∗�q

⎤
⎥⎥⎦ (21)
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Substituting (15) into (14) yields an EIV model

y(t)=�T(t)�+e(t) (22)

e(t)=�(t)−	T(t)�−
T(t)� (23)

where y(t)�M(t).
Let us consider how to treat the noise included

in �(t). Assume for the moment that �̇(t) is given.
Employing the method of least correlation for (22) and
(23) yields estimates with biases even if the noises
satisfy A2. The biases come from �(t) since the second
term on the right-hand side of (17) contains quadratic
components of �p,�q ,�r [11, 12]. Let us consider
an augmented regressor matrix �a(t)∈R9×3 and an
extended parameter vector �a(t)∈R9 defined by

�a(t)=[�T(t) − I3]T (24)

�a(t)=[�T �7(t) �8(t) �9(t)]T (25)

respectively, where I3∈R3×3 is the identity matrix and
�7,�8,�9 are given by

�7 � −J22�q�r + J33�q�r + J23(�
2
q −�2r )

+J13�p�q − J12�r�p (26)

�8 � J11�r�p− J33�r�p− J23�p�q

+J13(�
2
r −�2p)+ J12�q�r (27)

�9 � −J11�p�q + J22�p�q + J23�r�p

−J13�q�r + J12(�
2
p−�2q) (28)

Using (24)–(25) gives the extended EIV model

y(t)=�T
a (t)�a(t)+ea(t) (29)

ea(t)=�(t)−L(�̇)�−
T(t)� (30)

Note that �a(t) in (29) is not available because �̇(t)
is not measured by assumption. With the differential
operator p�d/dt and a constant �>0, we introduce the
low-pass filter [17, p. 284]

�= 1

1+�p
(31)

in order to remove �̇(t) from (29)–(30). Applying the
operator (31) to (29)–(30) and introducing

�a f
(t)�[�T

f (t) − I3]T (32)

�a f (t)�[�T �T[7−9] f (t)]T (33)

with

�T
f (t)�L

(
�−� f

�

)
+�(�×L(�)) (34)

�[7−9] f (t)�[�7 f (t) �8 f (t) �9 f (t)]T (35)

yields the EIV regression model

y f (t)=�T
a f

(t)�a f (t)+ea f (t) (36)

ea f (t)=� f (t)−L

(
�−� f

�

)
�−
Tf (t)� (37)

since [�(�T
a (t)�a(t))](t)=�T

a f
(t)�a f (t), where (·) f (t)�

[�(·)](t), (·) f (0)�0. Note that �a f
(t) and ea f (t) do

not contain �̇(t) and �̇, respectively.
We now work with sampled measurements. Given

an arbitrary estimate �̄a f , consider the criterion

J 2=
(

1

N�
(Y0−�0�̄a f )

T(Y�−���̄a f )

)2

(38)

where Y0,Y� ∈R3N� and �0,�� ∈R3N�×9 are defined
by

Y0�

⎡
⎢⎢⎢⎢⎢⎣

y f (Nh)

y f (N1h)

...

y f (h+�h)

⎤
⎥⎥⎥⎥⎥⎦ , Y��

⎡
⎢⎢⎢⎢⎢⎣

y f (N�h)

y f (N�+1h)

...

y f (h)

⎤
⎥⎥⎥⎥⎥⎦ (39)

�0�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�T
a f

(Nh)

�T
a f

(N1h)

...

�T
a f

(h+�h)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, ���

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�T
a f

(N�h)

�T
a f

(N�+1h)

...

�T
a f

(h)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(40)
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Note that J is an empirical correlation between the
residuals of the estimate �̄a f . When �=0, J yields the
least-squares estimate.

Minimizing (38) with respect to �̄a f gives

�̂a f (�,N)= (�T
0/���/0)

−1�T
0/�Y�/0 (41)

where

�0/��
[

�0

��

]
, ��/0�

[
��

�0

]
, Y�/0�

[
Y�

Y0

]
(42)

The matrix �T
0/���/0∈R9×9 in (41), given as

�T
0/���/0

=
N∑

k=1+�

[
� f (kh)�T

f ((k−�)h) −� f (kh)

−�T
f ((k−�)h) I3

]

+
N∑

k=1+�

[
� f ((k−�)h)�T

f (kh) −� f ((k−�)h)

−�T
f (kh) I3

]

is nonsingular due to A3. The estimate (41) has the
following property.

Theorem 1
Suppose that A1–A3 are satisfied. Then, for all k, as
N goes to infinity, the least-correlation estimate (41)
for the model (36)–(37) converges to the expectation
of �a f (kh), that is,

lim
N→∞ �̂a f (�,N)= E[�a f (kh)] (43)

Proof
The proof is sketched in Appendix A. �

Note that (41) is a consistent estimate of �, which
is clear from the componentwise expression of (43)
written as

lim
N→∞

⎡
⎣ �̂(�,N)

�̂[7−9] f (�,N)

⎤
⎦=

[
�

E[�[7−9] f (kh)]

]
(44)

If the components of �(kh) are independent, iden-
tically distributed (i.i.d.) with the same variance, then
augmenting the regressor matrix and extending the

parameter vector are not necessary since Ē[�i (kh)]=
0, i =7,8,9 for all k from (26)–(28). That is, the
estimate

�̂ f (�,N)= (�oT
0/��

o
�/0)

−1�oT
0/�Y�/0 (45)

is consistent, where the relevant matrices are defined
by

�o
0/��

[
�o

0

�o
�

]
, �o

�/0�
[

�o
�

�o
0

]
(46)

�o
0�

⎡
⎢⎢⎢⎢⎢⎢⎣

�T
f (Nh)

�T
f (N1h)

...

�T
f (h+�h)

⎤
⎥⎥⎥⎥⎥⎥⎦

, �o
��

⎡
⎢⎢⎢⎢⎢⎢⎣

�T
f (N�h)

�T
f (N�+1h)

...

�T
f (h)

⎤
⎥⎥⎥⎥⎥⎥⎦

(47)

4. NUMERICAL EXAMPLES

Consider a body with the inertia matrix

J =
⎡
⎢⎣

1.20 0.11 −0.18

0.11 1.70 0.16

−0.18 0.16 2.13

⎤
⎥⎦ (48)

The system (1) with (48) is driven by M∗(t) in Figure 1.
We assume that �(t)=0 since it does not contribute to
the bias errors of identification. In each simulation, we
sample M(t) and�(t) at every 10ms. The measurement
noise �(t) is Gaussian with zero mean and covariance

Cov[�(t) �T(t)]=

⎡
⎢⎢⎣

2
p 0 0

0 2q 0

0 0 2r

⎤
⎥⎥⎦

For this example, we consider two cases of measure-
ment noises which are finitely and infinitely correlated.
In the first case the input measurements are corrupted
as

�(t)��∗(t)+��(t)+(1−�)�(t−1) (49)

with �=0.7. As �(kh) is not correlated with �((k−
�)h) when |�|�2, we choose �=2 or �h=0.02s. The
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Figure 1. Moment M(t) applied to the body.

1 2 3 4 5 6
–0.5

0

0.5

1

1.5

2

2.5

Parameters θ

E
st

im
at

es

"+" : True Value; Bars : mean ± 3σ

Least–Squares

Least–Correlation

Extended Least–Correlation

Figure 2. Identification results from measurements
corrupted by the finitely correlated noise (49) with

(p,q ,r )= (0.4,0.3,0.2) deg/s.

value �=10 is chosen to provide a small bandwidth
for the low-pass filter (31). In order to identify the
inertia matrix (48) we employ three algorithms, the
least-correlation estimate (45), the least-squares esti-
mate, which is obtained from (45) by setting �=0, and
the extended least-correlation estimate in (41).

Figure 2 summarizes simulation results from the
algorithms. Each bar in Figure 2 represents the possible
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Figure 3. Identification results from measurements
corrupted by the infinitely correlated noise (50) with

(p,q ,r )= (0.4,0.3,0.2) deg/s.

range of each parameter identified by the corresponding
algorithm. The maximum and minimum values of each
bar are evaluated by Ē[�̂i ]± ̄(�̂i ) from 100 empirical
Monte Carlo runs for each, where Ē and ̄ denote the
empirical mean and the standard deviation, respectively.
Figure 2 confirms that the extended least-correlation
estimates, (41) and (45), outperform the conventional
least squares as well as the standard least-correlation
estimate. All 3 ranges of the least-squares estimates in
Figure 2 are out of their true parameters. Both the stan-
dard and extended least-correlation algorithms generate
good estimates, but the extended version tends to give
estimates with less bias than the standard.

According to Theorem 1, (41) gives consistent esti-
mates provided that the measurement noise in regressor
matrix is at most finitely correlated. We, however, try
to show numerically that the estimates can be applied
to problems with infinitely correlated noise which is
violating A2. For this case we use the angular velocity
measurements given by

�(t)��∗(t)+ 1

1+�p
�(t) (50)
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instead of (2), where �=0.04s. Figure 3 shows that the
extended least-correlation algorithm works well on the
infinitely correlated noise provided that A3 is satisfied
with a large value of �. According to the estimates in
Figure 3 with �h=0.16 s (�=16), which is four times
of �=0.04, the algorithm gives almost bias-free results.
This result implies that the extended least-correlation
algorithm can be useful for measurements which are
corrupted by infinitely correlated noises.

5. CONCLUDING REMARKS

This paper introduces a procedure for identifying the
inertia matrix of a rotating body. The estimation algo-
rithm is based on the Euler equation governing rota-
tional motion and assumes errors-in-variables (EIV)
models in which all variables are corrupted by noise.
The main idea is composed of three steps—extending
regressors and parameters, filtering out angular acceler-
ation terms and employing the method of least correla-
tion. In the first step, the regressor matrix is augmented
by the identity matrix with proper size and the param-
eter vector is augmented by terms contributed by noisy
measurements. The second step is to transform the EIV
model of the Euler equation, which contains angular
acceleration terms, to a model that does not contain
the components. The last step, employing the method
of least correlation to the extended and transformed
model, gives an estimate of the inertia matrix. Anal-
ysis shows that the estimates are consistent in the sense
that the estimates converge to the true values as the
number of samples increases to infinity. Monte Carlo
simulations demonstrate the performance and support
the analytical results.

Given the measurements of translational accelera-
tions, attitude angles and external forces of a translating
and rotating rigid body, the proposed algorithm can be
extended to the problem [3] which identifies all iner-
tial parameters including mass and center of mass as
well as inertia matrix. We expect that this extension
gives reasonable results even though the estimates are
not free from bias. If the attitude angles are measured
almost free from noise, then the proposed procedure
gives good estimates of the complete set of inertial
parameters.

APPENDIX A

We sketch the proof of Theorem 1. Equation (41) is
equivalent to

�̂a f (�,N) = (R̄�a f
�a f

(k1,k2)+ R̄�a f
�a f

(k2,k1))
−1

×(r̄�a f
y f (k1,k2)+ r̄�a f

y f (k2,k1)) (A1)

where the empirical correlations are defined by

R̄�a f
�a f

(k1,k2)�
1

N�

N∑
k=1+�

�a f
(k1h)�T

a f
(k2h)

r̄�a f
y f (k1,k2)�

1

N�

N∑
k=1+�

�a f
(k1h)y f (k2h)

with either k1=k,k2=k−� or k1=k−�,k2=k. Using
the discrete-time equivalence of (36) to r̄�a f

y f (k1,k2)

gives

r̄�a f
y f (k1,k2) = t̄�a f

�a f
�a f

(k1,k2,k2)

+r̄�aea f
(k1,k2) (A2)

where the empirical bicorrelation t̄�a f
�a f

�a f
[18] and

r̄�a f
ea f

are defined by

t̄�a f
�a f

�a f
� 1

N�

N∑
k=1+�

�a f
(k1h)�T

a f
(k2h)�a f (k2h)

r̄�a f
ea f

� 1

N�

N∑
k=1+�

�a f
(k1h)ea f (k2h)

respectively.
When N goes to infinity, R̄�a f

�a f
(k1,k2) converges

to R�a f
�a f

(�) due to the ergodic theory [15, Theorem
2.3 in p. 43] and A1, i.e.

lim
N→∞ R̄�a f

�a f
(k1,k2)= R�a f

�a f
(�) (A3)

Applying N →∞ to (A2) yields

r�a f
y f (�)= t�a f

�a f
�a f

(�,�)+r�aea f
(�) (A4)
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where each term is evaluated as follows:

t�a f
�a f

�a f
(�,�)= R�a f

�a f
(�)E[�a f (kh)] (A5)

r�a f
ea f

(�)=0 (A6)

Using (A4)–(A6), r̄�a f
y f (k1,k2) at N →∞ is

expressed as

lim
N→∞ r̄�a f

y f (k1,k2)= R�a f
�a f

(�)E[�a f (kh)] (A7)

for all k. Applying (A3) and (A7) to

lim
N→∞ �̂a f (�,N)= R−1

�a f
�a f

(�)r�a f
y f (�) (A8)

which is an expression of (A1) at N →∞, yields (43).
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