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Discrete-Time Adaptive
Command Following and Disturbance Rejection

With Unknown Exogenous Dynamics
Jesse B. Hoagg, Mario A. Santillo, and Dennis S. Bernstein, Fellow, IEEE

Abstract—We present an adaptive controller that requires lim-
ited model information for stabilization, command following, and
disturbance rejection for mult-input multi-output minimum-phase
discrete-time systems. Specifically, the controller requires knowl-
edge of the open-loop system’s relative degree as well as a bound
on the first nonzero Markov parameter. Notably, the controller
does not require knowledge of the command or the disturbance
spectrum as long as the command and disturbance signals are gen-
erated by a Lyapunov-stable linear system. Thus, the command
and disturbance signals are combinations of discrete-time sinu-
soids and steps. In addition, the Markov-parameter-based adaptive
controller uses feedback action only, and thus does not require a
direct measurement of the command or disturbance signals. Using
a logarithmic Lyapunov function, we prove global asymptotic con-
vergence for command following and disturbance rejection as well
as Lyapunov stability of the adaptive system when the open-loop
system is asymptotically stable.

Index Terms—Adaptive control, discrete time, Lyapunov
stability.

I. INTRODUCTION

THE ADAPTIVE control literature focuses primarily on
adaptive stabilization, adaptive tracking, and model refer-

ence adaptive control. These adaptive control problems have
been approached using parameter-estimation-based adaptive
controllers and high-gain adaptive controllers. In addition to
stabilization and command following, disturbance rejection is
a third common objective, arising in noise control, vibration
suppression, and structural control. In the present paper, we
consider the combined stabilization, command following, and
disturbance rejection problem for uncertain minimum-phase
discrete-time systems with command and disturbance signals
generated by exogenous dynamics with unknown spectra. Fur-
thermore, unlike adaptive feedforward control, we do not require
a direct measurement of the command or disturbance signals.

A discrete-time adaptive feedback disturbance rejection al-
gorithm based on a retrospective performance measure is devel-
oped in [1]. The retrospective performance of a system is the
performance of the system at the current time assuming that the
current controller was used over a past window of time. In [1],
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the retrospective performance is used in connection with time-
series modeling of the plant and the controller to develop an
adaptive disturbance rejection algorithm that requires knowl-
edge of only the numerator of the transfer function from the
control to the performance, and does not require knowledge of
the disturbance spectrum. Extensions of this method and exper-
imental results are given in [2] and [3].

Although the discrete-time adaptive control literature is more
limited than the continuous-time literature, there are discrete-
time versions of many continuous-time algorithms [4]–[7], as
well as adaptive control algorithms unique to discrete time [8],
[9]. The authors present in [8] five algorithms for stabilization
and command following of single-input single-output (SISO)
and multi-input multi-output (MIMO) minimum-phase systems.
Although these algorithms require only that the command signal
be bounded, they are based on the assumption that an ideal
tracking controller exists. Disturbance rejection is not addressed.
The authors consider in [10] output regulation with a known
plant and an unknown exosystem that generates reference and
disturbance signals.

In the present paper, we develop a discrete-time adaptive
MIMO output feedback controller for stabilization, command
following, and disturbance rejection in minimum-phase sys-
tems. This Markov-parameter-based adaptive control algorithm
requires knowledge of only the open-loop system’s relative de-
gree and a bound on the first nonzero Markov parameter. We
assume that the command and disturbance signals are generated
by a Lyapunov-stable linear system so that the command and
disturbance signals consist of discrete-time sinusoids and steps.
However, we do not require any information regarding the spec-
trum of the command or the disturbance, and we do not require
a direct measurement of the command or the disturbance. We
prove globally asymptotic command following and disturbance
rejection, as well as Lyapunov stability of the closed-loop error
system when the open-loop dynamics are asymptotically stable.
If there are no command or disturbance signals, then we prove
output stabilization, that is, global asymptotic convergence of
the output to zero.

The present paper uses three key tools to prove global con-
vergence of the performance variable. First, we use a nonmin-
imal state-space realization of the plant. Similar nonminimal
state-space realizations are considered in [9] and [11]. The non-
minimal state-space realization has a state that consists entirely
of delayed inputs and outputs, which allows us to represent
dynamic output feedback as static full-state feedback. More
precisely, the dynamic output feedback can be written as the
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product of a known feedback vector and a matrix of estimated
controller parameters. Second, we prove the existence of an
ideal fixed-gain controller that incorporates a deadbeat inter-
nal model controller. For more information on deadbeat in-
ternal model control, see [12]. Lastly, we use a logarithmic
Lyapunov-like function to prove asymptotic command follow-
ing and disturbance rejection. Logarithmic Lyapunov functions,
that is, quadratic functions that incorporate a logarithm, are used
in [4]–[7] and [13]–[15] to prove Lyapunov stability of discrete-
time systems. A quadratic Lyapunov-like function is used in [16]
to establish the convergence of discrete-time systems. Using
the logarithmic Lyapunov function, we prove global asymptotic
convergence for command following and disturbance rejection
as well as Lyapunov stability of the adaptive system when the
open-loop system is asymptotically stable.

II. PROBLEM FORMULATION

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) + Bu(k) + D1w(k) (2.1)

y(k) = Cx(k) + D2w(k) (2.2)

where x(k) ∈ R
n , y(k) ∈ R

ly , u(k) ∈ R
lu , w(k) ∈ R

lw , and
k ≥ 0. Our goal is to design an adaptive output feedback con-
troller under which the performance variable y converges to
zero in the presence of the exogenous signal w. Note that w
can represent either a command signal to be followed, an exter-
nal disturbance to be rejected, or both. For example, if D1 = 0
and D2 �= 0, then the objective is to have the output Cx follow
the command signal −D2w. On the other hand, if D1 �= 0 and
D2 = 0, then the objective is to reject the disturbance w from
the performance measurement Cx. The combined command fol-
lowing and disturbance rejection problem is considered when
D1 and D2 are block matrices. More precisely, if

D1 = [D̂1 0], D2 = [0 D̂2 ]

and

w(k) =
[

w1(k)
w2(k)

]

then the objective is to have Cx follow the command −D̂2w2
while rejecting the disturbance w1 . Lastly, if D1 and D2 are
empty matrices, then the objective is output stabilization, that
is, global asymptotic convergence of y = Cx (and thus x) to
zero.

In the nonadaptive case, a sufficient condition for command
following and disturbance rejection is lu ≥ ly [12], [17]. Fur-
thermore, we require that ly ≥ lu because the construction of
an ideal fixed-gain controller in Section IV requires that the first
nonzero Markov parameter from u to y be left invertible. Thus,

we require that ly = lu . Henceforth, l
�
= ly = lu . Weakenings

of these conditions and some of the assumptions listed later are
discussed in the conclusions.

Next, define the transfer function matrix

Gyu (z)
�
= C(zI − A)−1B =

∞∑
i=d

z−iHi (2.3)

and define d to be the smallest positive integer i such that the

ith Markov parameter Hi
�
= CAi−1B is nonzero. We make the

following assumptions.
A1) The triple (A,B,C) is controllable and observable.
A2) If λ ∈ C and

rank

[
A − λI B

C 0

]
< normal rank

[
A − zI B

C 0

]

then |λ| < 1.

A3) d is known.
A4) Hd is nonsingular.
A5) There exists H̄d ∈ R

l×l such that 2HT
d Hd ≤ HT

d H̄d +
H̄T

d Hd and H̄d is known.
A6) There exists an integer n̄ such that n ≤ n̄ and n̄ is known.
A7) The performance variable y(k) is measured and is avail-

able for feedback.
A8) The exogenous signal w(k) is generated by

xw (k + 1) = Aw xw (k) (2.4)

w(k) = Cw xw (k) (2.5)

where xw ∈ R
nw and Aw has distinct eigenvalues, all of

which are on the unit circle.
A9) There exists an integer n̄w such that nw ≤ n̄w and n̄w is

known.
A10) The exogenous signal w(k) is not measured.
A11) A,B,C,D1 ,D2 , Aw ,Cw , n, nw , and Hd are not known.

Assumption A1) implies that the McMillan degree of Gyu (z)
is n. In the SISO case, Assumption A1) prevents pole-zero
cancellation when forming the transfer function Gyu (z), which
implies that the order of Gyu (z) is n.

Let Gyu (z) have a left coprime matrix-fraction description
Gyu (z) = µ(z)−1ν(z), where µ(z) and ν(z) are l × l polyno-
mial matrices. Without loss of generality, we assume that µ(z)
is in column-Hermite form, that is, µ(z) is upper triangular,
where each diagonal entry is a monic polynomial whose degree
is higher than the degree of all of the remaining entries in its
column [18, Th. 6.3-2]. Thus, we can write

µ(z) = zm µ0 + zm−1µ1 + · · · + zµm−1 + µm (2.6)

where m ≤ n and µ0 , . . . , µm ∈ R
l×l are upper triangular. Note

that the leading coefficient matrix µ0 is not necessarily Il . How-
ever, it can be seen that there exists an l × l upper-triangular
polynomial matrix

Q(z)
�
=




zh1 1 q12z
h1 2 · · · q1lz

h1 l

zh2 2 · · · q2lz
h2 l

. . .
...

zhl l


 (2.7)

such that the leading term of α(z)
�
= Q(z)µ(z) is zm Il . Thus,

we can write

α(z) = zm Il + zm−1α1 + zm−2α2 + · · · + zαm−1 + αm

(2.8)
where α1 , . . . , αm ∈ R

l×l . Furthermore, Gyu (z) has the matrix-

fraction description Gyu (z) = α(z)−1β(z), where β(z)
�
=
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Q(z)ν(z), and we can write

β(z) = zm−dβd + zm−d−1βd+1 + · · · + zβm−1 + βm (2.9)

where βd, . . . , βm ∈ R
l×l . Note that if the input to Gyu is u =

δ(0)ei , where δ(0) is the unit impulse at k = 0 and ei is the ith
column of Il , then the output is

y(k) =
{

0, 0 ≤ k < d

βdei, k = d.
(2.10)

Thus, it follows that βd = Hd . Note that α(z) and β(z) are not
necessarily left coprime. However, since µ(z) and ν(z) are left
coprime, it follows that Q(z) is the greatest common left divisor
of α(z) and β(z). Furthermore, since det Q(z) = zh1 1 + ···+hl l ,
the pole-zero cancellation that occurs when forming the transfer
function Gyu (z) = α(z)−1β(z) occurs only at z = 0.

Define the transfer function matrix

Gyw (z)
�
= C(zI − A)−1D1 + D2 (2.11)

and assuming that Gyw has a matrix-fraction description of the
form Gyw = α(z)−1γ(z), which is not necessarily left coprime,
we can write

γ(z) = zm γ0 + zm−1γ1 + · · · + zγm−1 + γm (2.12)

where γ0 , . . . , γm ∈ R
l×lw . Therefore, for k ≥ m, the state-

space system (2.1), (2.2) has the time-series representation

y(k) =
m∑

i=1

−αiy(k − i) +
m∑

i=d

βiu(k − i) +
m∑

i=0

γiw(k − i).

(2.13)
Definition 2.1: Let G be a strictly proper transfer function

matrix. Then the normal rank of G is rank G = rank G(λ) for
almost all λ ∈ C.

Next, note that it follows from (2.3) and Assumption A4)
that, for all sufficiently large λ ∈ C, rank Gyu (λ) = l. Thus,
Gyu (z) has full normal rank, that is, normal rank Gyu = l. Con-
sequently, normal rank ν = l.

Definition 2.2: Let G be a strictly proper s × t transfer func-
tion matrix with the Smith–McMillan form

G(z) = U1(z)




q1 (z )
p1 (z ) 0

. . .
qr (z )
pr (z )

0 0(s−r)×(t−r)


U2(z)

(2.14)
where r = normal rank G, U1 and U2 are unimodular matrices,
and q1 , . . . , qr , p1 , . . . , pr are monic polynomials such that, for
all i = 1, . . . , r, qi and pi are coprime, and for all i = 1, . . . ,
r − 1, pi+1 divides pi and qi divides qi+1 . Then the poles of G,
counting multiplicity, are the roots of p1 · · · pr , and the transmis-
sion zeros of G, counting multiplicity, are the roots of q1 · · · qr .

Lemma 2.1: Let G be a strictly proper s × t transfer function
matrix with a left coprime matrix-fraction description G(z) =
P (z)−1Z(z). Then, λ ∈ C is a transmission zero of G if and
only if rank Z(λ) < normal rank Z. Furthermore, p ∈ C is a
pole of G if and only if det P (p) = 0.

Assumption A2) states that the invariant zeros of (A,B,C)
are contained in the open unit circle. Since, by Assumption
A1), (A,B,C) is minimal, it follows that the invariant zeros of
(A,B,C) are exactly the transmission zeros of Gyu (z). There-
fore, Assumption A2) is equivalent to the assumption that the
transmission zeros of Gyu (z) are contained in the open unit
circle. Since µ(z) and ν(z) are left coprime, it follows from
Lemma 2.1 that Assumption A2) is equivalent to the assump-
tion that, if λ ∈ C and rank ν(λ) < normal rank ν, then |λ| < 1.
Furthermore, since normal rank ν = l by Assumption A4),
it follows that Assumption A2) implies that, if λ ∈ C and
det ν(λ) = 0, then |λ| < 1. Consequently, since det β(λ) =
det Q(λ)det ν(λ) = zh1 1 + ···+hl l det ν(λ), it follows that, if λ ∈
C and det β(λ) = 0, then |λ| < 1.

For SISO systems, Assumption A5) specializes to the as-
sumption that sgn Hd is known and an upper bound on the
magnitude |Hd | is known. For MIMO systems, Assumption
A5) is a generalization of this SISO assumption. In particu-
lar, if Hd is positive definite, then Assumption A5) specializes
to the assumption that an upper bound on the magnitude of
λmax(Hd) is known. Similarly, if Hd is negative definite, then
Assumption A5) specializes to the assumption that an upper
bound on the magnitude of |λmin(Hd)| is known. More pre-
cisely, if Hd is positive definite, then Assumption A5) is satisfied
with H̄d > λmax(Hd)Il , while, if Hd is negative definite, then
Assumption A5) is satisfied with H̄d > |λmin(Hd)|Il . Note that
Assumptions A4) and A5) imply that H̄d is nonsingular.

Assumption A8) restricts our consideration to command and
disturbance signals that consist of discrete-time sinusoids and
steps. The assumption that the eigenvalues of Aw are distinct
entails no loss in generality compared to the assumption that the
eigenvalues of Aw are semisimple, that is, appear only in Jordan
blocks of order 1. For example, consider the system

xw (k + 1) =
[

λ 0
0 λ

]
xw (k), w(k) = xw (k) (2.15)

where xw (k)
�
= [xw1(k) xw2(k)]T . We consider two cases.

First, suppose that xw1(0) �= 0 and construct the system

xw r(k + 1) = λxw r(k), wr(k) =

[
1

xw 2 (0)
xw 1 (0)

]
xw r(k).

(2.16)
Then, with xwr (0) = xw1(0), it follows that

wr(k) =

[
1

xw 2 (0)
xw 1 (0)

]
λkxw r(0) =

[
λkxw1(0)
λkxw2(0)

]
= w(k).

(2.17)
A similar argument applies to the case xw2(0) �= 0. Therefore,
it follows that there exists a system with distinct eigenvalues
whose output is identical to the output of (2.4), (2.5). Of course,
Jordan blocks of order greater than 1 give rise to unbounded
disturbances, which are not considered.

Assumption A10) implies that a direct measurement
of the command and disturbance is not required, while
Assumption A11) implies that the spectrum of the command and
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disturbance signals is unknown. We stress that y(k) is the only
signal available for feedback.

III. NONMINIMAL STATE-SPACE REALIZATION

We use a nonminimal state-space realization of the time-series
system (2.13) whose state consists entirely of measured infor-
mation. More specifically, the state consists of past values of the
performance variable y(k) and the control u(k). To construct
the nonminimal state-space realization of the time-series sys-
tem (2.13), we introduce the following notation. For a positive
integer p, define the nilpotent matrix

Np
�
=




0l×l · · · 0l×l 0l×l

Il · · · 0l×l 0l×l

...
. . .

...
...

0l×l · · · Il 0l×l


 ∈ R

lp×lp (3.1)

and define

E1
�
=

[
Il

0l(p−1)×l

]
∈ R

lp×l (3.2)

where the dimension p is given by context.
Now, let nc ≥ m and consider the 2lnc-order nonminimal

state-space realization of (2.13)

φ(k + 1) = Aφ(k) + Bu(k) + D1W (k) (3.3)

y(k) = Cφ(k) + D2W (k) (3.4)

where

A �
= Anil +

[
E1C

0ln c ×2ln c

]
, B �

=
[

0ln c ×l

E1

]
(3.5)

C �
=

[
−α1 · · · −αm 0l×l(n c −m )

0l×l(d−1) βd · · · βm 0l×l(n c −m )
]

(3.6)

D1
�
=

[
E1D2

0ln c ×(m+1)lw

]
, D2

�
= [ γ0 · · · γm ] (3.7)

where

Anil
�
=

[ Nn c 0ln c ×ln c

0ln c ×ln c Nn c

]
(3.8)

is nilpotent; and

φ(k)
�
=




y(k − 1)
...

y(k − nc)
u(k − 1)

...

u(k − nc)




, W (k)
�
=




w(k)
...

w(k − m)


 . (3.9)

Note that the definition of C in (3.6) requires nc ≥ m. The triple
(A,B, C) is stabilizable and detectable. However, (A,B, C) is
neither controllable nor observable. In particular, (A,B, C) has
n controllable and observable eigenvalues, while the remaining
2lnc − n eigenvalues are located at 0. Moreover, (A,B) has

Fig. 1. Closed-loop system with the ideal fixed-gain controller. The
pseudo-input e facilitates the proof of Theorem 4.1, but is otherwise set to
zero.

lnc − n uncontrollable eigenvalues at 0, while (A, C) has lnc
unobservable eigenvalues at 0. Note that in this basis, the state
φ(k) contains only past values of the performance variable y
and the control u.

Now, we consider the time-series controller

u(k) =
n c∑
i=1

Miu(k − i) +
n c∑
i=1

Niy(k − i) (3.10)

where, for all i = 1, . . . , nc , Mi ∈ R
l×l and Ni ∈ R

l×l . The
control can be written as

u(k) = θφ(k) (3.11)

where

θ
�
= [N1 · · · Nn c M1 · · · Mn c ] ∈ R

l×2ln c . (3.12)

The control (3.11), which is a dynamic output feedback in terms
of y, can be computed by recording and using nc past values of
the performance variable y and the control u. However, (3.11)
is a full-state-feedback control law for the nonminimal state-
space system (3.3)–(3.8). The closed-loop system consisting of
(3.3)–(3.8) with the linear time-invariant feedback (3.11) is

φ(k + 1) = Ãφ(k) + D1W (k) (3.13)

y(k) = Cφ(k) + D2W (k) (3.14)

where

Ã �
= A + Bθ = Anil +

[
E1C
E1θ

]
. (3.15)

IV. IDEAL FIXED-GAIN CONTROLLER

In this section, we prove the existence and derive properties
of an ideal fixed-gain controller of the form (3.10) for the open-
loop system (2.1) and (2.2). This controller, whose structure is
illustrated in Fig. 1, is used in subsequent sections to construct an
error system for analyzing the adaptive closed-loop system. We
stress that the ideal controller is not intended for implementa-
tion. An ideal fixed-gain controller consists of two distinct parts,
specifically, a precompensator, which cancels the transmission
zeros of the open-loop system, and a deadbeat internal model
controller, which operates in feedback on the observable states
of the precompensator cascaded with the open-loop system.

First, we demonstrate how to construct the ideal fixed-gain
controller. Using Assumption A4), consider the l × l exactly
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proper precompensator

u∗(k) = −H−1
d

m−d∑
i=1

βd+iu∗(k − i) + udb(k) (4.1)

which has a minimal state-space realization of the form

x̂pc(k + 1) = Âpc x̂pc(k) + B̂pcudb(k) (4.2)

u∗(k) = Ĉpc x̂pc(k) + udb(k) (4.3)

where x̂pc ∈ R
n̂p c and n̂pc is the McMillan degree of Ĝpc(z)

�
=

β(z)−1zm−dHd , which is the transfer function from udb to u∗.
Note that n̂pc ≤ l(m − d). The poles of the precompensator
Ĝpc(z) are exactly the transmission zeros of the open-loop
transfer function Gyu (z). Furthermore, Assumption A2) im-
plies that the transmission zeros of Gyu (z), and thus the poles
of Ĝpc(z), are asymptotically stable. Therefore, the cascade

Gyu (z)Ĝpc(z) = α(z)−1β(z)β(z)−1zm−dHd

= α(z)−1zm−dHd (4.4)

has asymptotically stable pole-zero cancellation. Let no be the
McMillan degree of Gyu (z)Ĝpc(z), and note that no ≤ lm.

Define the pseudo-input

e(k)
�
= u(k) − u∗(k) (4.5)

and cascade the precompensator (4.2), (4.3) with the open-loop
system (2.1), (2.2) to obtain[

x(k + 1)
x̂pc(k + 1)

]
=

[
A BĈpc

0 Âpc

] [
x(k)

x̂pc(k)

]

+
[

B

B̂pc

]
udb(k) +

[
B

0

]
e(k) +

[
D1

0

]
w(k)

(4.6)

y∗(k) = [C 0 ]
[

x(k)
x̂pc(k)

]
+ D2w(k) (4.7)

where y∗ is the ideal system output. Since the poles of Ĝpc(z)
cancel the transmission zeros of Gyu (z),([

A BĈpc

0 Âpc

]
,

[
B

B̂pc

]
, [ C 0 ]

)
(4.8)

is not minimal. However, since (A,B) and (Âpc , B̂pc) are con-
trollable, it follows that (4.8) is controllable. Thus([

A BĈpc

0 Âpc

]
, [ C 0 ]

)
(4.9)

is not observable. In fact, it follows from the pole-zero can-
cellations between Ĝpc(z) and Gyu (z) that the unobservable
modes of (4.9) are exactly the poles of Ĝpc(z), all of which are
asymptotically stable.

Next, let x̂db ∈ R
n̂d b , and let

x̂db(k + 1) = Âdb x̂db(k) + B̂dby∗(k) (4.10)

udb(k) = Ĉdb x̂db(k) (4.11)

be an internal model controller (whose existence is shown later)
for the observable states of (4.6) and (4.7) that guarantees exact
command following and disturbance rejection in finite time, that
is, (4.10), (4.11) is a deadbeat internal model controller. Thus,
the ideal fixed-gain controller consists of the precompensator
(4.2), (4.3) and the deadbeat internal model controller (4.10),
(4.11). Define the transfer function matrix of the deadbeat in-
ternal model controller (4.10), (4.11) by

Ĝdb(z)
�
= Ĉdb(zI − Âdb)−1B̂db .

The following theorem constructs the ideal fixed-gain controller

u∗(k) =
n c∑
i=1

M∗iu∗(k − i) +
n c∑
i=1

N∗iy∗(k − i) (4.12)

which can be expressed as

u∗(k) = θ∗φ∗∗(k) (4.13)

where

θ∗
�
= [N∗1 · · · N∗n c M∗1 · · · M∗n c ] (4.14)

and

φ∗∗(k)
�
=




y∗(k − 1)
...

y∗(k − nc)
u∗(k − 1)

...

u∗(k − nc)




. (4.15)

The closed-loop system with the ideal fixed-gain controller is
shown in Fig. 1 and is given by

φ(k + 1) = Ã∗φ(k) + D1W (k) (4.16)

y(k) = Cφ(k) + D2W (k) (4.17)

where

Ã∗
�
= A + Bθ∗ = Anil +

[
E1C
E1θ∗

]
. (4.18)

Theorem 4.1: Consider the ideal closed-loop system consist-
ing of (4.16), (4.17), where Ã∗, B, and C are given by (4.18),
(3.5), and (3.6), respectively. Furthermore, let

nc ≥ no + 2lnw + m − d. (4.19)

Then there exists an ideal linear output-feedback controller
(4.12) of order nc such that the following statements hold.

1) For all initial conditions φ∗∗(0) and xw (0) and all integers
k ≥ k0 , where

k0
�
= no + nc + d − m (4.20)

it follows that y∗(k) = 0.
2) Ã∗ is asymptotically stable.
3) For i = 1, 2, 3, . . .

CÃi−1
∗ B =

{
Hd, i = d

0, i �= d.
(4.21)
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Proof: We show that a time-series representation of the fixed-
gain controller (4.2), (4.3), (4.10), and (4.11) depicted in Fig. 1
exists and satisfies 1)–3).

First, consider the cascade (4.6), (4.7), and recall that (4.8) is
controllable but not observable. Furthermore, the unobservable
modes of (4.9) are precisely the poles of Ĝpc(z), all of which are
asymptotically stable because of Assumption A2). Therefore,
it follows from the Kalman decomposition that there exists a
nonsingular matrix T ∈ R

(n+ n̂p c )×(n+ n̂p c ) such that[
Ao 0
A21 Aō

]
= T

[
A BĈpc

0 Âpc

]
T−1 (4.22)

[ Co 0 ] = [C 0 ] T−1 (4.23)

where Ao ∈ R
no ×no , (Ao , Co) is observable, and Aō is asymp-

totically stable.

Now, defining

[
xo(k)
xō (k)

]
�
= T

[
x(k)

x̂pc(k)

]
, where xo(k) ∈

R
no , and applying this change of basis to the cascade (4.6)

and (4.7) yields[
xo(k + 1)
xō (k + 1)

]
=

[
Ao 0
A21 Aō

] [
xo(k)
xō (k)

]

+
[

Bo

Bō

]
udb(k) +

[
Be,o

Be,ō

]
e(k)

+
[

D1,o

D1,ō

]
w(k) (4.24)

y∗(k) = [Co 0 ]
[

xo(k)
xō (k)

]
+ D2w(k) (4.25)

where xo ∈ R
no and[

Bo

Bō

]
= T

[
B

B̂pc

]
,

[
Be,o

Be,ō

]
= T

[
B
0

]
[

D1,o

D1,ō

]
= T

[
D1

0

]
. (4.26)

Note that (Ao , Bo , Co) is a minimal realization of the transfer
function matrix

Go(z)
�
= Co [zI − Ao ]−1Bo = Gyu (z)Ĝpc(z)

= α(z)−1zm−dHd. (4.27)

Next, we consider a deadbeat internal model controller of the
form (4.10), (4.11) designed for the observable subsystem of
(4.24), (4.25) given by

xo(k + 1) = Aoxo(k) + Boudb(k) + Be,oe(k) + D1,ow(k)

(4.28)

y∗(k) = Coxo(k) + D2w(k). (4.29)

The invariant zeros of (Ao , Bo , Co) are located at the origin, and
thus do not coincide with the eigenvalues of Aw by Assumption
A8). Since, in addition, (Ao , Bo , Co) is minimal, the dimension
of y equals the dimension of u, and normal rank Go = l, it
follows from Theorem A.1 with n̂ = no , n̂w = nw , and l̂y = l

that, for all n̂db satisfying

n̂db ≥ no + 2lnw (4.30)

there exists a discrete-time controller (4.10), (4.11) such that the
dynamics matrix

Ãdbo
�
=

[
Ao BoĈdb

B̂dbCo Âdb

]
(4.31)

of the closed-loop system (4.10), (4.11), (4.28), and (4.29),
which represents the feedback interconnection of Go and Ĝdb , is
nilpotent. Furthermore, with e(k) ≡ 0, for all initial conditions
(xo(0), xō (0), x̂db(0), xw (0)) and all integers k ≥ no + n̂db , it
follows that y∗(k) = 0.

The closed-loop system (4.10), (4.11), (4.24), and (4.25) is


xo(k + 1)
x̂db(k + 1)
xō (k + 1)


 =




Ao BoĈdb 0
B̂dbCo Âdb 0
A21 BōĈdb Aō






xo(k)
x̂db(k)
xō (k)




+




Be,o

0
Be,ō


 e(k) +




D1,o

B̂dbD2

D1,ō


w(k)

(4.32)

y∗(k) = [Co 0 0 ]




xo(k)
x̂db(k)
xō (k)


 + D2w(k).

(4.33)

Since Ãdbo is nilpotent and Aō is asymptotically stable, it fol-
lows that 


Ao BoĈdb 0

B̂dbCo Âdb 0
A21 BōĈdb Aō


 (4.34)

is asymptotically stable.
To construct the ideal fixed-gain controller, we first write the

transfer function matrix of (4.10), (4.11) as

Ĝdb(z) = M̂(z)−1N̂(z) (4.35)

where

M̂(z) = zn̂d b Il + zn̂d b −1M̂1 + · · · + zM̂n̂d b −1 + M̂n̂d b

(4.36)

N̂(z) = zn̂d b −1N̂1 + zn̂d b −2N̂2 + · · · + zN̂n̂d b −1 + N̂n̂d b

(4.37)

where, for i = 1, . . . , n̂db , M̂i ∈ R
l×l and N̂i ∈ R

l×l . There-
fore, (4.10), (4.11) has the time-series representation

udb(k) = −
n̂d b∑
i=1

M̂iudb(k − i) +
n̂d b∑
i=1

N̂iy∗(k − i). (4.38)

Now, let n̂db = nc + d − m, and note that, since (4.19) holds,
n̂db = nc + d − m ≥ no + 2lnw , as required by (4.30). With
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e(k) ≡ 0, and thus u(k) = u∗(k) for all k ≥ k0 , the ideal fixed-
gain controller, which consists of the precompensator (4.1) and
the deadbeat internal model controller (4.38), is given by (4.12),
where, for i = 1, 2, . . . , nc

M∗i
�
= −H−1

d βd+i −
i∑

j=1

M̂jH
−1
d βd+i−j (4.39)

N∗i
�
= N̂i (4.40)

where, for all i > m, βi = 0, and for all i > n̂db , M̂i = N̂i = 0.
To show 1), consider the 2lnc-order nonminimal state-space

realization of the controller (4.13), (4.39), and (4.40) given by

φ∗∗(k + 1) = Acφ∗∗(k) + Bcy∗(k) (4.41)

u∗(k) = Ccφ∗∗(k) (4.42)

where

Ac
�
= Anil +

[
0ln c ×2ln c

E1θ∗

]
, Bc

�
=

[
E1

0ln c ×l

]
, Cc

�
= θ∗.

(4.43)
Note that Ac = A + BCc − BcC. Therefore, the ideal closed-
loop system (3.3)–(3.8) and (4.41)–(4.43) is[

φ∗(k + 1)
φ∗∗(k + 1)

]
=

[ A BCc

BcC Ac

] [
φ∗(k)
φ∗∗(k)

]

+
[B

0

]
e(k) +

[ D1

BcD2

]
W (k) (4.44)

y∗(k) = [ C 0 ]
[

φ∗(k)
φ∗∗(k)

]
+ D2W (k) (4.45)

where

φ∗(k)
�
=




y∗(k − 1)
...

y∗(k − nc)
u(k − 1)

...

u(k − nc)




. (4.46)

The closed-loop system (4.44) and (4.45) is a nonminimal
representation of the closed-loop system (4.32) and (4.33). Fur-
thermore, every unobservable or uncontrollable mode of (4.44)
and (4.45) is located at zero. Thus, the spectrum of

Ãcl
�
=

[ A BCc

BcC Ac

]
(4.47)

consists of the eigenvalues of (4.34) as well as 4lnc − n −
n̂pc − n̂db eigenvalues located at zero. Therefore, since (4.34)
is asymptotically stable, it follows that (4.47) is asymptotically
stable. Furthermore, since (4.44), (4.45) is a nonminimal repre-
sentation of (4.32), (4.33), it follows that, with e(k) ≡ 0, for all
initial conditions φ∗∗(0) and xw (0) and all k ≥ no + n̂db = k0 ,
y∗(k) = 0. Thus, we have verified 1).

To show 2), consider the change of basis

[ Ã∗ BCc

0 Anil

]
=

[
I 0
−I I

] [ A BCc

BcC Ac

] [
I 0
I I

]
(4.48)

[ B
−B

]
=

[
I 0
−I I

] [B
0

]
(4.49)

[ C 0 ] = [ C 0 ]
[

I 0
I I

]
. (4.50)

Since (4.47) is asymptotically stable and Anil is nilpotent, it
follows from (4.48) that Ã∗ is asymptotically stable, verifying
2).

To show 3), we compute the closed-loop Markov parame-
ters H̃y∗e,i from the pseudo-input e to the performance variable
y∗ using a state-space realization of the closed-loop system
and a transfer function matrix representation of the closed-loop
system. First, consider the nonminimal state-space realization
(4.44) and (4.45). For i = 1, 2, . . . , define the Markov parame-
ters

H̃y∗e,i
�
= [ C 0 ]

[ A BCc

BcC Ac

]i−1 [B
0

]

= [ C 0 ]
[ Ã∗ BCc

0 Anil

]i−1 [ B
−B

]

= CÃi−1
∗ B +

i−1∑
j=1

−CÃj−1
∗ BM∗i−j (4.51)

where M∗i = CcAi−1
nil B for i = 1, 2, . . . , nc and M∗i = 0 for all

i > nc .
Next, consider the transfer function matrix representation of

the open-loop system

y∗ = Gyu (z)u + Gyw (z)w

= Gyu (z)u∗ + Gyu (z)e + Gyw (z)w

= Gyu (z)Ĝpc(z)Ĝdb(z)y∗ + Gyu (z)e + Gyw (z)w

(4.52)

which implies that the closed-loop system is

y∗ = G̃yee + G̃yw w (4.53)

where

G̃ye
�
= [Il − Gyu (z)Ĝpc(z)Ĝdb(z)]−1Gyu (z)

= [Il − α(z)−1zm−dHdM̂(z)−1N̂(z)]−1α(z)−1β(z)

= [α(z) − zm−dHdM̂(z)−1N̂(z)]−1β(z)

= D̃(z)−1M̂(z)H−1
d β(z) (4.54)

G̃yw
�
= [Il − Gyu (z)Ĝpc(z)Ĝdb(z)]−1Gyw (z)

= D̃(z)−1M̂(z)H−1
d γ(z), (4.55)
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and D̃(z)
�
= M̂(z)H−1

d α(z) − zm−dN̂(z). Notice that D̃(z)
can be written as

D̃(z) = zm+ n̂d b H−1
d + zm+ n̂d b −1D̃1 + · · · + D̃m+ n̂d b

(4.56)
where, for i = 1, 2, . . . ,m + n̂db , D̃i ∈ R

l×l . Since (4.31) is
nilpotent, it follows that the poles of G̃ye and G̃yw are located at
zero; in particular, det D̃(z) = zl(m+ n̂d b )det H−1

d . In fact, it fol-
lows from (4.56) that the coefficients of the deadbeat controller
M̂(z)−1N̂(z) can be chosen so that D̃1 = · · · = D̃m+ n̂d b = 0,
and thus

G̃ye(z) =
[
zm+ n̂d b H−1

d

]−1
Ñ(z) = z−m−n̂d b HdÑ(z)

(4.57)
where

Ñ(z)
�
= M̂(z)H−1

d β(z) = zm+ n̂d b Ñ0 + · · · + Ñm+ n̂d b

(4.58)
and

Ñi =




0, 0 ≤ i < d

Il , i = d

H−1
d βi +

i−d∑
j=1

M̂jH
−1
d βi−j , d < i ≤ m + n̂db .

(4.59)
Therefore, it follows from (4.39) that

Ñi =




0, 0 ≤ i < d

Il , i = d

−M∗i−d d < i ≤ m + n̂db .

(4.60)

It follows from (4.57) that the closed-loop Markov parameters
H̃y∗e,i from the pseudo-input e to the performance variable y∗
are H̃y∗e,i = HdÑi for i = 1, 2, . . . ,m + n̂db and H̃y∗e,i = 0
for i > m + n̂db , which implies

H̃y∗e,i =




0, 0 ≤ i < d

Hd, i = d

−HdM∗i−d , d < i ≤ m + n̂db

0, i > m + n̂db .

(4.61)

Then, property 3) follows from comparing the expressions
for H̃y∗e,i given by (4.51) and (4.61). More specifically,
since (4.61) implies that H̃y∗e,1 = · · · = H̃y∗e,d−1 = 0, it fol-
lows from (4.51) that CB = CÃ∗B = · · · = CÃd−2

∗ B = 0. Next,
since CB = CÃ∗B = · · · = CÃd−2

∗ B = 0 and H̃y∗e,d = Hd [us-
ing (4.61)], it follows from (4.51) that CÃd−1

∗ B = Hd . Now,
since CB = CÃ∗B = · · · = CÃd−2

∗ B = 0, CÃd−1
∗ B = Hd , and

H̃y∗e,d+1 = −HdM∗1 [using (4.61)], it follows from (4.51) that
CÃd

∗B = 0. Lastly, since CB = CÃ∗B = · · · = CÃd−2
∗ B = 0,

CÃd−1
∗ B = Hd , CÃd

∗B = 0, and H̃y∗e,d+2 = −HdM∗2 [using
(4.61)], it follows from (4.51) thatCÃd+1

∗ B = 0. Continuing this
analysis yields CB = CÃ∗B = · · · = CÃd−2

∗ B = 0, CÃd−1
∗ B =

Hd , and CÃd
∗B = CÃd+1

∗ = · · · = 0. �

V. ERROR SYSTEM

We now construct an error system using the ideal fixed-gain
controller and a controller whose gains are updated by an adap-

tive law. By Assumption A11), the controller order nc given by
(4.19) is unknown. However, since m ≤ n and no ≤ lm, it fol-
lows that no + m + 2lnw − d ≤ (l + 1)n̄ + 2ln̄w − d. There-
fore, if

nc ≥ (l + 1)n̄ + 2ln̄w − d (5.1)

then nc satisfies (4.19). Assumptions A3), A6), and A9) imply
that the lower bound on nc given by (5.1) is known.

The closed-loop system consisting of (3.3)–(3.8) with the
ideal feedback (4.13) is

φ∗∗(k + 1) = Ã∗φ∗∗(k) + D1W (k) (5.2)

y∗(k) = Cφ∗∗(k) + D2W (k) (5.3)

where, by 2) of Theorem 4.1, Ã∗ is asymptotically stable.
Next, consider the controller

u(k) =
n c∑
i=1

Mi(k)u(k − i) +
n c∑
i=1

Ni(k)y(k − i) (5.4)

where, for all i = 1, . . . , nc , Mi : N → R
l×l and Ni : N → R

l×l

are given by the adaptive law presented in the following section.
The control can be expressed as

u(k) = θ(k)φ(k) (5.5)

where

θ(k)
�
= [N1(k) · · · Nn c (k) M1(k) · · · Mn c (k) ] .

(5.6)
Inserting (5.5) into (3.3) yields

φ(k + 1) = Aφ(k) + Bθ(k)φ(k) + D1W (k). (5.7)

Next, defining

θ̃(k)
�
= θ(k) − θ∗ (5.8)

and substituting θ(k) = θ̃(k) + θ∗ into (5.7), the closed-loop
system consisting of (3.3), (3.4) with the time-varying feedback
(5.5) becomes

φ(k + 1) = Ã∗φ(k) + Bθ̃(k)φ(k) + D1W (k) (5.9)

y(k) = Cφ(k) + D2W (k). (5.10)

Now, we construct an error system by combining the ideal
closed-loop system (5.2), (5.3) with the closed-loop system
(5.9), (5.10). Define the error state

φ̃(k)
�
= φ(k) − φ∗∗(k) (5.11)

and subtract (5.2), (5.3) from (5.9), (5.10) to obtain

φ̃(k + 1) = Ã∗φ̃(k) + Bθ̃(k)φ(k) (5.12)

ỹ(k) = Cφ̃(k) (5.13)

where

ỹ(k)
�
= y(k) − y∗(k). (5.14)

Note that the Markov parameters of the error system (5.12),
(5.13) are given by 3) of Theorem 4.1.

The following proposition shows that y(k) is linear in the es-
timation error θ̃(k). This proposition is essential for developing
the adaptive law and analyzing the stability of the error system.
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Proposition 5.1: Consider the error system (5.12) and (5.13).
For all k ≥ k0 ,

ỹ(k) = y(k) = Hdθ̃(k − d)φ(k − d). (5.15)

Proof: Substituting (5.12) into (5.13) yields

ỹ(k) =
k∑

i=1

CÃi−1
∗ Bθ̃(k − i)φ(k − i). (5.16)

It now follows from 3) of Theorem 4.1 and (5.16) that ỹ(k) =
Hdθ̃(k − d)φ(k − d). Furthermore, it follows from 1) of The-
orem 4.1 that, for all k ≥ k0 , y∗(k) = 0, that is, ỹ(k) = y(k).
Hence, for all k ≥ k0 , (5.15) holds. �

VI. ADAPTIVE CONTROLLER AND STABILITY ANALYSIS

We now present the adaptive law for the controller (5.5),
(5.6) and analyze the properties of the closed-loop error system.
Consider the cost function

J (k)
�
=

1
2
ỹT(k)ỹ(k). (6.1)

Substituting (5.15) into (6.1), the gradient of J (k) with respect
to θ̃(k − d) is given by

∂J (k)
∂θ̃(k − d)

= HT
d y(k)φT(k − d). (6.2)

Since, by Assumption A11), Hd is unknown, we replace Hd in
(6.2) with H̄d , and, in place of (6.2), we use the implementable
gradient

G(k)
�
= H̄T

d y(k)φT(k − d). (6.3)

Note that the implementable gradient (6.3) can be used in prac-
tice due to Assumptions A3), A5), and A7).

Now, consider the adaptive law

θ(k + 1) = θ(k − d) − η(k)G(k) (6.4)

where η : N → [0,∞) is a step-size function. Note that, if
G(k) = 0, then η(k) is irrelevant. In accordance with Assump-
tions A10) and A11), the adaptive control law (6.4) does not
require a measurement of the exogenous signal w(k) and does
not use knowledge of the exogenous dynamics (2.4), (2.5).

Subtracting θ∗ from both sides of (6.4) yields the estimator-
error update equation

θ̃(k + 1) = θ̃(k − d) − η(k)G(k). (6.5)

The closed-loop error system is thus given by

Y (k + 1) = AY Y (k) + BY y(k) (6.6)

θ̃(k + 1) = θ̃(k − d) − η(k)G(k) (6.7)

...

θ̃(k − d + 1) = θ̃(k − 2d) − η(k − d)G(k − d) (6.8)

where

AY
�
= Nl(nc +d) , BY

�
=

[
Il

0l(nc +d−1)×l

]

Y (k)
�
=




y(k − 1)
...

y(k − nc − d)


 . (6.9)

Theorem 6.1: Consider the open-loop system (2.1), (2.2) sat-
isfying Assumptions A1)–A11) and the adaptive feedback con-
troller (5.1), (5.5), (5.6), (5.15), and (6.4). Furthermore, for all
k ≥ k0 , let ζ(k) ∈ R be such that

0 < ζl
�
= infj≥k0 ζ(j) ≤ ζ(k) ≤ ζu

�
= supj≥k0

ζ(j) < 2.
(6.10)

Finally, for all k ∈ N such that G(k) �= 0, let η(k) ∈ [0,∞)
satisfy

η(k) = 0, if k < k0 (6.11)

η(k) = ζ(k)ηopt(k), if k ≥ k0 (6.12)

where

ηopt(k)
�
=

‖y(k)‖2
2

‖G(k)‖2
F

. (6.13)

Then, for all initial conditions x(0) and θ(0), θ(k) is bounded,
u(k) is bounded, limk→∞ y(k) = 0, and x(k) satisfying (2.1)
is bounded. If, in addition, the open-loop dynamics matrix A is
asymptotically stable and u(k) = 0 for all k = 0, . . . , k0 − 1,
then, for all xw (0), the zero solution of the closed-loop error
system (6.6)–(6.8) is Lyapunov stable.

Proof: Let k ≥ k0 so that, by Proposition 5.1, ỹ(k) = y(k).
Consider the quadratic function

J(Y )
�
= Y TPY (6.14)

where P > 0 satisfies the discrete-time Lyapunov equation

P = AT
Y PAY + Q + αI (6.15)

where Q > 0 and α > 0. Note that P exists since AY is asymp-
totically stable. Defining

∆J(k)
�
= J(Y (k + 1)) − J(Y (k)) (6.16)

it follows from (6.6) that

∆J(k) =Y T(k + 1)PY (k + 1) − Y T(k)PY (k)

= − Y T(k)(Q + αI)Y (k) + Y T(k)AT
Y PBY y(k)

+ yT(k)BT
Y PAY Y (k) + yT(k)BT

Y PBY y(k)

≤− Y T(k)(Q + αI)Y (k) + yT(k)BT
Y PBY y(k)

+ αY T(k)Y (k)

+
1
α

yT(k)
[
BT

Y PAY AT
Y PBY

]
y(k)

≤− Y T(k)QY (k) + σ1y
T(k)y(k) (6.17)

where σ1
�
= λmax(BT

Y PBY + 1
α BT

Y PAY AT
Y PBY ).

Now, consider the positive-definite, radially unbounded
Lyapunov-like function

V (Y (k), θ̃(k), . . . , θ̃(k − d))
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�
= ln(1 + a1Y

T(k)PY (k)) + a2

d∑
i=0

‖θ̃(k − i)‖2
F

= ln(1 + a1J(Y (k))) + a2

d∑
i=0

‖θ̃(k − i)‖2
F (6.18)

where a1 > 0 and a2 > 0 are specified later. The Lyapunov-like
difference is thus given by

∆V (k)
�
=V (Y (k + 1), θ̃(k + 1), . . . , θ̃(k − d + 1))

− V (Y (k), θ̃(k), . . . , θ̃(k − d)). (6.19)

Evaluating ∆V (k) along the trajectories of the closed-loop error
system (6.6)–(6.8) yields

∆V (k) = ln
[
1 + a1Y

T(k + 1)PY (k + 1)
]

− ln
[
1 + a1Y

T(k)PY (k)
]
+ a2η

2(k)‖G(k)‖2
F

− 2a2η(k)
[
tr(θ̃(k − d)GT(k))

]
= ln [1 + a1J(Y (k)) + a1∆J(k)]

− ln [1 + a1J(Y (k))] + a2η
2(k)‖G(k)‖2

F

− 2a2η(k)
[
tr(θ̃(k − d)φ(k − d)yT(k)H̄d)

]
= ln [1 + a1J(Y (k)) + a1∆J(k)]

− ln [1 + a1J(Y (k))] + a2η
2(k)‖G(k)‖2

F

− 2a2η(k)yT(k)H̄d θ̃(k − d)φ(k − d)

= ln [1 + a1J(Y (k)) + a1∆J(k)]

− ln [1 + a1J(Y (k))]

+ a2
(
− 2η(k)φT(k − d)θ̃T(k − d)HT

d

× H̄d θ̃(k − d)φ(k − d) + η2(k)‖G(k)‖2
F
)

= ln [1 + a1J(Y (k)) + a1∆J(k)]

− ln [1 + a1J(Y (k))] + a2η
2(k)‖G(k)‖2

F

− a2η(k)φT(k − d)θ̃T(k − d)

× [HT
d H̄d + H̄T

d Hd ]θ̃(k − d)φ(k − d).

(6.20)

By Assumption A5) and using (5.15), we have

∆V (k) ≤ ln
(

1 +
a1∆J(k)

1 + a1J(Y (k))

)

+ a2
[
− 2η(k)φT(k − d)θ̃T(k − d)

× HT
d Hdθ̃(k − d)φ(k − d) + η2(k)‖G(k)‖2

F
]

= ln
(

1 +
a1∆J(k)

1 + a1J(Y (k))

)

+ a2
[
−2η(k)‖y(k)‖2

2 + η2(k)‖G(k)‖2
F
]

= ln
(

1 +
a1∆J(k)

1 + a1J(Y (k))

)

− 2a2η(k)‖y(k)‖2
2 + a2η

2(k)
‖y(k)‖2

2

ηopt(k)

= ln
(

1 +
a1∆J(k)

1 + a1J(Y (k))

)

− 2a2η
2
opt(k)

η(k)
ηopt(k)

‖y(k)‖2
2

ηopt(k)

+ a2η
2
opt(k)

(
η(k)

ηopt(k)

)2 ‖y(k)‖2
2

ηopt(k)

= ln
(

1 +
a1∆J(k)

1 + a1J(Y (k))

)

− a2η
2
opt(k)

[
2ζ(k) − ζ2(k)

]
‖G(k)‖2

F

≤ ln
(

1 +
a1∆J(k)

1 + a1J(Y (k))

)
− a2κη2

opt(k)‖G(k)‖2
F

= ln
(

1 +
a1∆J(k)

1 + a1J(Y (k))

)
− a2κ

‖y(k)‖4
2

‖G(k)‖2
F

(6.21)

where κ is defined by

κ
�
= inf

j≥k0

[
2ζ(j) − ζ2(j)

]
= min

{
2ζl − ζ2

l , 2ζu − ζ2
u
}
. (6.22)

Since 0 < ζl ≤ ζu < 2, it follows that κ is positive.
Since, for all x > 0, ln x ≤ x − 1, using

‖G(k)‖2
F ≤ σ2

max(H̄d)‖y(k)‖2
2‖φ(k − d)‖2

2 (6.23)

and (6.17), we have

∆V (k) ≤ a1
∆J(k)

1 + a1J(Y (k))
− a2κ

yT(k)y(k)
σ2

max(H̄d)‖φ(k − d)‖2
2

≤−a1
Y T(k)QY (k)

1 + a1Y T(k)PY (k)

+ a1σ1
yT(k)y(k)

1 + a1Y T(k)PY (k)

− a2κ
yT(k)y(k)

σ2
max(H̄d)‖φ(k − d)‖2

2
. (6.24)

Furthermore, defining

U0(k)
�
=




u(k − 1)
...

u(k − nc)


 , Y0(k)

�
=




y(k − 1)
...

y(k − nc)


 (6.25)

it follows from ‖φ(k − d)‖2
2 = ‖Y0(k − d)‖2

2 + ‖U0(k − d)‖2
2

that

∆V (k) ≤ −a1
Y T(k)QY (k)

1 + a1Y T(k)PY (k)

+ a1σ1
yT(k)y(k)

1 + a1λmin(P)‖Y (k)‖2
2
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− a2κ
yT(k)y(k)

σ2
max(H̄d) [‖Y0(k − d)‖2

2 + ‖U0(k − d)‖2
2 ]

.

(6.26)

Assumption A2) implies that the invariant zeros of the system
(2.1)–(2.5) from u to y are asymptotically stable. Thus, it follows
from Theorem B.1 with p = nc that there exist b1 > 0 and b2 >
0 such that

‖U0(k − d)‖2
2 ≤ b1 + b2

∥∥∥∥∥∥∥



y(k − 1)
...

y(k − nc − 1)



∥∥∥∥∥∥∥

2

2

= b1 + b2

∥∥∥∥
[

Y0(k)
y(k − nc − 1)

]∥∥∥∥
2

2

≤ b1 + b2

∥∥∥∥∥∥∥∥∥∥∥∥




Y0(k)
y(k − nc − 1)
y(k − nc − 2)

...

y(k − nc − d)




∥∥∥∥∥∥∥∥∥∥∥∥

2

2

= b1 + b2‖Y (k)‖2
2 . (6.27)

Therefore, since ‖Y0(k − d)‖2
2 ≤ ‖Y (k)‖2

2 , it follows that

∆V (k) ≤−a1
Y T(k)QY (k)

1 + a1Y T(k)PY (k)

+ a1σ1
yT(k)y(k)

1 + a1λmin(P)‖Y (k)‖2
2

− a2κ
yT(k)y(k)

σ2
max(H̄d) [b1 + ‖Y0(k − d)‖2

2 + b2‖Y (k)‖2
2 ]

≤−a1
Y T(k)QY (k)

1 + a1Y T(k)PY (k)

+ a1σ1
yT(k)y(k)

1 + a1λmin(P)‖Y (k)‖2
2

− a2κ
yT(k)y(k)

σ2
max(H̄d) [b1 + (b2 + 1)‖Y (k)‖2

2 ]

=−a1
Y T(k)QY (k)

1 + a1Y T(k)PY (k)

+ a1σ1
yT(k)y(k)

1 + a1λmin(P)‖Y (k)‖2
2

− a2κ
b3y

T(k)y(k)
1 + b4‖Y (k)‖2

2
(6.28)

where b3
�
= 1/(σ2

max(H̄d)b1) and b4
�
= (b2 + 1)/b1 .

Next, letting a1
�
= b4/λmin(P) and a2

�
= a1σ1/(b3κ), it fol-

lows that

∆V (k) ≤ −W (Y (k)) (6.29)

where

W (Y (k))
�
= a1

Y T(k)QY (k)
1 + a1Y T(k)PY (k)

. (6.30)

To show that θ̃(k) and Y (k) are bounded, summing (6.29) from
k0 to k − 1, where k0 ≤ k − 1, yields

0 ≤V (Y (k), θ̃(k), . . . , θ̃(k − d))

≤−
k−1∑
j=k0

W (Y (j)) + V (Y (k0), θ̃(k0), . . . , θ̃(k0 − d))

≤V (Y (k0), θ̃(k0), . . . , θ̃(k0 − d)). (6.31)

Thus, V (Y (k), θ̃(k), . . . , θ̃(k − d)) is bounded. Since
V (Y (k), θ̃(k), . . . , θ̃(k − d)) is positive definite and radially
unbounded, it follows that θ̃(k) and Y (k) are bounded. Thus,
θ(k) = θ̃(k) + θ∗ is bounded.

Now, we show that limk→∞ Y (k) = 0. Since V is positive
definite, it follows from (6.29) that

0 ≤ lim
k→∞

k∑
j=k0

W (Y (j))

≤− lim
k→∞

k∑
j=k0

∆V (j)

=V (Y (k0), θ̃(k0), . . . , θ̃(k0 − d))

− lim
k→∞

V (Y (k), θ̃(k), . . . , θ̃(k − d))

≤V (Y (k0), θ̃(k0), . . . , θ̃(k0 − d)) (6.32)

where all three limits exist. Thus, limk→∞ W (Y (k)) = 0. Next,
note that

0 ≤ υ(‖Y (k)‖) ≤ W (Y (k)) (6.33)

where

υ(‖Y (k)‖) �
=

a1λmin(Q)‖Y (k)‖2
2

1 + a1λmax(P)‖Y (k)‖2
2
. (6.34)

Thus, limk→∞ υ(‖Y (k)‖) = 0. Rewriting (6.34) as

‖Y (k)‖ =

√
υ(‖Y (k)‖)

a1(λmin(Q) − υ(‖Y (k)‖)λmax(P))
(6.35)

it follows that limk→∞ Y (k) = 0, and thus limk→∞ y(k) = 0.
Finally, it follows from (6.27) that u(k) is bounded. Thus, φ(k)
is bounded. Since φ(k) is the state of the nonminimal state-
space realization (3.3)–(3.8) of the time-series representation
(2.13) for the original state-space system (2.1), (2.2), it follows
that x(k) is bounded.

To prove the last statement of Theorem 6.1, let xw (0) be
given, and let

X (k)
�
=




Y (k)
θ̃(k − d)

...

θ̃(k − 2d)


 (6.36)
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be the state of the closed-loop error system (6.6)–(6.8). Since
V is positive definite, and, by (6.29), ∆V is negative semidefi-
nite, it follows from [19, Lemma A.3.12] that the zero solution
of the closed-loop error system is Lyapunov stable starting at
k0 . Therefore, given ε0 > 0, there exists δ0 > 0 such that, if
‖X (k0)‖ < δ0 , then ‖X (k)‖ < ε0 for all k ≥ k0 .

Now, assume that the open-loop dynamics matrix A is asymp-
totically stable and that u(k) = 0 for all k < k0 . Then, it fol-
lows that there exists δ1 > 0 such that, if ‖X (0)‖ < δ1 , then
‖X (k)‖ < δ0 for all k = 0, . . . , k0 − 1. Consequently, for all
ε0 > 0, there exists δ1 > 0 such that, if ‖X (0)‖ < δ1 , then
‖X (k)‖ < ε0 for all k ≥ 0. Therefore, the zero solution of the
closed-loop error system (6.6)–(6.8) is Lyapunov stable starting
at k = 0. �

The step size ηopt(k) given by (6.13) has the following inter-
pretation. Note that (6.21) can be written as

∆V (k) ≤ ln
(

1 +
a1∆J(k)

1 + a1J(Y (k))

)

+ a2
[
(η(k) − ηopt(k))2 − η2

opt(k)
]
‖G(k)‖2

F .

(6.37)

Since the quadratic function (η(k) − ηopt(k))2 − η2
opt(k)

achieves its minimum at η(k) = ηopt(k), it follows that the
upper bound for ∆V (k) given by (6.37) is minimized by
η(k) = ηopt(k).

An analogous optimal step size is constructed in [1], where
an ideal (not necessarily deadbeat) controller is assumed to
exist. However, in the present paper, an ideal deadbeat internal
model controller is proven to exist and have the properties given
by Theorem 4.1 and Proposition 5.1. Hence, for all k ≥ k0 ,
ỹ(k) = y(k) is known, and thus ηopt(k) is computable.

In [1], ỹ(k) = y(k) − y∗(k) is unknown since y∗(k) is un-
known, and thus the optimal step size is not computable in [1].
To obtain a computable step size in [1], several implementable
step sizes are defined. We can construct an analogous step size
ηimp(k). Specifically, ηimp(k) defined by

ηimp(k)
�
=

1
ε + σ2

max(H̄d)‖φ(k − d)‖2
2

(6.38)

where ε ≥ 0, satisfies

ηimp(k) ≤ ηopt(k). (6.39)

Theorem 6.1 holds with (6.12) replaced by

η(k) = ζ(k)ηimp(k). (6.40)

However, (6.38) is not needed in the present paper since ỹ(k) =
y(k) is known for all k ≥ k0 , and thus ηopt(k) is computable,
and thus implementable.

Let {ψ(k)}∞k=k0
satisfy

ζu

2
< supj≥k0

ψ(j) < ∞ (6.41)

and define ζ̂(k)
�
= ζ (k)

ψ (k) . Then, if (6.10) holds for {ζ(k)}∞k=k0
,

then it also holds with {ζ(k)}∞k=k0
replaced by {ζ̂(k)}∞k=k0

.
The term ψ(k) can be viewed as a tuning variable relating to

the magnitude of the bound H̄d representing the accuracy with
which Hd is modeled. In particular, by defining the time-varying
bound

H̄d,k
�
=

√
ψ(k)H̄d (6.42)

H̄d can be replaced with H̄d,k in Assumption A5) and (6.3). The
example in the next section shows that the transient response
is directly related to ψ(k), and thus ζ(k). Therefore, ψ(k) and
ζ(k) are indirectly related to the conservatism of the bound H̄d

on the first nonzero Markov parameter.

VII. MASS-SPRING-DASHPOT EXAMPLE

Consider the 3-mass structure with all possible spring and
dashpot connections given by

Mq̈ + Cq̇ + Kq = µ




0
u

0


 + µ




w1

w2

w3


 (7.1)

where

M
�
= diag(m1 ,m2 ,m3) (7.2)

C
�
=


 c1 + c1,2 + c1,3 −c1,2 −c1,3

−c1,2 c1,2 + c2 + c2,3 −c2,3
−c1,3 −c2,3 c1,3 + c2,3 + c3




(7.3)

K
�
=


k1 + k1,2 + k1,3 −k1,2 −k1,3

−k1,2 k1,2 + k2 + k2,3 −k2,3
−k1,3 −k2,3 k1,3 + k2,3 + k3




(7.4)

q
�
= [ q1 q2 q3 ]T (7.5)

u is the control, and w1 , w2 , and w3 are disturbances. For this
example, the masses are m1 = 0.01 kg, m2 = 0.02 kg, and
m3 = 0.01 kg; the damping coefficients are c1 = 5 kg/s, c2 =
3 kg/s, c3 = 4 kg/s, c1,2 = 0.1 kg/s, c1,3 = 0.2 kg/s, and c2,3 =
0.3 kg/s; and the spring constants are k1 = 11 kg/s2 , k2 = 12
kg/s2 , k3 = 13 kg/s2 , k1,2 = 70 kg/s2 , k1,3 = 60 kg/s2 , and
k2,3 = 30 kg/s2 . The input gain µ = 104 is used for numerical
conditioning.

The control objective is to reject the disturbances w1 , w2 , and
w3 while forcing the position of m2 to follow the command
w4 . Thus, the performance variable is given by y = q2 − w4 .
We assume that the command and disturbance signals are gen-
erated by a Lyapunov-stable discrete-time linear system whose
spectrum is unknown.

The continuous-time system (7.1)–(7.5) is sampled at 100 Hz
with input provided by a zero-order hold. It follows from [20]
that the resulting sampled-data system is minimum phase from
u to y. Thus, Assumption A2) is satisfied. Furthermore, the
sampled-data system has a delay d = 1, and the first nonzero
Markov parameter is H1 = 0.3. Let the bound on the first
nonzero Markov parameter be H̄1 = 1.5H1 = 0.45, which sat-
isfies Assumption A5). Thus, the mass-spring-dashpot sampled-
data system satisfies Assumptions A1)–A11).
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Fig. 2. Adaptive controller with η(k) = ηopt (k) [that is, ζ(k) ≡ 1] is imple-
mented in the feedback loop after 5 s. The performance variable y converges to
zero.

The three unknown disturbance signals are discrete-time sinu-
soids with frequency ω1 = 5 Hz, while the unknown command
signal is a discrete-time sinusoid with frequency ω2 = 13 Hz
plus a constant bias. More specifically, the unknown disturbance
and command signals are

w1(k) = sin 2πω1Tsk (7.6)

w2(k) = −1.5 sin 2πω1Tsk (7.7)

w3(k) = 2 sin 2πω1Tsk (7.8)

w4(k) = sin 2πω2Tsk + 7 (7.9)

where the sample time is Ts = 0.01 s. The open-loop system
is given the initial conditions q(0) = [ 1 2 0 ]Tm and q̇(0) =
[−1 −2 0 ]T m/s. Fig. 2 is a time history of the performance
variable y. The system is allowed to run open loop for 5 s. Then,
the adaptive controller (5.5) and (6.4) with nc = 20, d = 1,
H̄1 = 0.45, and η(k) = ηopt(k) is implemented in feedback
with the initial condition θ(0) = 0. The performance variable
y converges to zero, which implies that the position q2 asymp-
totically follows the command w4 and rejects the disturbances
w1 , w2 , and w3 . In particular, Fig. 3 shows that the controller
places poles at the disturbance and command frequencies ω1 =
5 Hz and ω2 = 13 Hz. Note that k0 = 21, which corresponds to
0.21 s.

The controller’s transient performance has significant peaks,
as shown in Fig. 2. This transient behavior is due in part to the
bound H̄1 on the first nonzero Markov parameter H1 . How-
ever, the speed of adaptation, and thus the transient perfor-
mance are directly influenced by ζ(k). Specifically, the con-
troller adapts more slowly when ζ(k) is small and more quickly
when ζ(k) is large. To demonstrate this effect, consider the adap-
tive controller (5.5) and (6.4) with η(k) = (1/5)ηopt(k). After
the system is allowed to run open loop for 5 s, the adaptive
controller (5.5) and (6.4) with nc = 20, d = 1, H̄1 = 0.45, and
η(k) = (1/5)ηopt(k) is implemented in feedback with the initial
condition θ(0) = 0. Fig. 4 shows that the performance variable
y converges to zero with improved transient performance, but at

Fig. 3. Bode magnitude plot of the adaptive controller at t = 15 s. The adap-
tive controller places poles at the disturbance frequencies ω1 = 5 Hz and
ω2 = 13 Hz. The controller magnitude |Gc (eω T s )| is plotted for ω up to
the Nyquist frequency ωNyq = π/Ts = 314 rad/s.

Fig. 4. Adaptive controller with η(k) = (1/5)ηopt (k) [that is, ζ(k) ≡ 1/5]
is implemented in the feedback loop after 5 s. The performance variable y
converges to zero with improved transient performance, but much slower con-
vergence compared to Fig. 2.

the expense of convergence time. Equivalently, setting ζ(k) ≡ 1,
ψ(k) ≡ 5, and replacing H̄1 with H̄1,k ≡ 0.45

√
5 ∼= 1.0 yields

the same result. In this case, the transient performance is viewed
as a consequence of how well the bound H̄1,k models the first
nonzero Markov parameter H1 .

For this mass-spring-dashpot example, slower adaptation can
reduce peaks in the transient performance, but faster adapta-
tion causes faster convergence. In fact, these observations hold
for many open-loop stable systems; however, if the system is
open-loop unstable, then the effects of adaptation speed dif-
fer. For the open-loop stable mass-spring-dashpot system, one
might consider using slower adaptation when the controller is
initially turned on, then increasing the adaptation speed. In par-
ticular, let ζ(k) = exp(−3/k). Fig. 5 shows a time history of
the performance variable y. The system is allowed to run open
loop for 5 s. Then, the adaptive controller (5.5) and (6.4) with
nc = 20, d = 1, H̄1 = 0.45, and η(k) = exp(−3/k)ηopt(k) is
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Fig. 5. Adaptive controller with η(k) = exp(−3/k)ηopt (k) [that is, ζ(k) =
exp(−3/k)] is implemented in the feedback loop after 5 s. The performance
variable y converges to zero with improved transient performance compared
to Figs. 2 and 4. Furthermore, the performance converges almost as quickly as
Fig. 2, and more quickly than Fig. 4.

implemented in feedback with the initial condition θ(0) = 0.
The performance variable y converges to zero with improved
transient performance and good convergence time. Equivalently,
setting ζ(k) ≡ 1, ψ(k) = exp(3/k), and replacing H̄1 with
H̄1,k = 0.45

√
exp(3/k) yields the same result.

VIII. CONCLUSION

We considered adaptive stabilization, command following,
and disturbance rejection for MIMO minimum-phase discrete-
time systems, where the command and disturbance signals are
generated by a linear system with unknown dynamics. Future
work includes extending the discrete-time adaptive controller
to nonsquare nonminimum-phase plants. Lifting techniques,
which transform a high-rate nonminimum-phase system into a
low-rate minimum-phase system, can be used in this case [21].

APPENDIX A

Theorem A.1: Consider the discrete-time system

x̂(k + 1) = Âx̂(k) + B̂u(k) + D̂1w(k) (A.1)

y(k) = Ĉx̂(k) + D̂2w(k) (A.2)

where x̂(k) ∈ R
n̂ , y(k) ∈ R

l̂y , u(k) ∈ R
l̂u , w(k) ∈ R

lw , and
assume that the following conditions hold.

1) (Â, B̂, Ĉ) is controllable and observable.
2) l̂u ≥ l̂y .
3) The exogenous signal w(k) is generated from the output

of the linear system

x̂w (k + 1) = Âw x̂w (k), w(k) = Ĉw x̂w (k) (A.3)

where x̂w (k) ∈ R
n̂w , (Âw , Ĉw ) is observable, for all λ ∈

spec(Âw ), λ is not a transmission zero of G(z) = Ĉ(zI −
Â)−1B̂, and normal rank G = min(l̂u , l̂y ).

Furthermore, consider the linear time-invariant controller

x̂c(k + 1) = Âc x̂c(k) + B̂cy(k), u(k) = Ĉc x̂c(k) (A.4)

where x̂c(k) ∈ R
nd b so that the closed-loop system is given by

xcl(k + 1) = Aclxcl(k) + Dclw(k) (A.5)

y(k) = Cclxcl(k) + D2w(k) (A.6)

where

Acl
�
=

[
Â B̂Ĉc

B̂cĈ Âc

]
, Dcl

�
=

[
D̂1

B̂cD̂2

]

Ccl
�
= [ Ĉ 0 ] , xcl

�
=

[
x̂

x̂c

]
. (A.7)

Then, for all ndb ≥ n̂ + 2n̂w l̂y , there exists (Âc , B̂c , Ĉc) such
that Acl is nilpotent. Consequently, for all initial conditions
xcl(0), and x̂w (0), and, for all k ≥ 2(n̂ + n̂w l̂y ), y(k) = 0.

Proof: A straightforward extension of the arguments used in
Section II to show that Aw can be chosen to have distinct eigen-
values shows that, without loss of generality, Âw can be assumed
to be cyclic. We consider the open-loop system (A.1)–(A.2)
connected in cascade with an internal model of the exogenous
dynamics

x̂1(k + 1) = AW x̂1(k) + BW y(k) (A.8)

where AW
�
= Il̂y

⊗ Âw , BW
�
= Il̂y

⊗ B̂w , and B̂w ∈ R
n̂w is

chosen such that (Âw , B̂w ) is controllable [22, Fact 5.12.6].
Note that the dynamics (A.8) contains l̂y copies of the exogenous
dynamics Âw . The cascade (A.1), (A.2), and (A.8) is[

x̂(k + 1)
x̂1(k + 1)

]
=

[
Â 0

BW Ĉ AW

] [
x̂(k)
x̂1(k)

]

+
[

B̂

0

]
u(k) +

[
D̂1

BW D̂2

]
w(k) (A.9)

[
y(k)
x̂1(k)

]
=

[
Ĉ 0
0 I

] [
x̂(k)
x̂1(k)

]
+

[
D̂2

0

]
w(k).

(A.10)

Now, we show that the augmented system (A.9), (A.10) is
controllable and observable. First, define the stable region

S �
= {λ ∈ C : |λ| < 1} (A.11)

and the unstable region U �
= C\S. Let z ∈ U and λ ∈

spec(Âw ) ⊂ U . Since (Â, B̂) is controllable, it follows that

rank

[
Â − zI B̂ 0
BW Ĉ 0 AW − zI

]

≥ rank

[
Â − λI B̂ 0
BW Ĉ 0 AW − λI

]

≥ rank

([
In̂ 0 0
0 BW AW − λI

]

×


 Â − λI B̂ 0

Ĉ 0 0
0 0 Il̂y n̂w




 . (A.12)
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Conditions 2) and 3) imply that

rank




Â − λI B̂ 0
Ĉ 0 0
0 0 Il̂y n̂w


 = n̂ + l̂y + l̂y n̂w

which is full row rank. Therefore,

n̂ + l̂y n̂w ≥ rank
[

Â − zI B̂ 0
BW Ĉ 0 AW − zI

]

≥ rank
[

In̂ 0 0
0 BW AW − λI

]
. (A.13)

Since (AW ,BW ) is controllable, it follows that

rank
[

In̂ 0 0
0 BW AW − λI

]
= n̂ + l̂y n̂w

and thus

rank
[

Â − zI B̂ 0
BW Ĉ 0 AW − zI

]
= n̂ + l̂y n̂w . (A.14)

Hence,
([

Â 0
BW Ĉ AW

]
,

[
B̂
0

])
is controllable. Since, in addition,

(Â, Ĉ) is observable, it follows that
([

Â 0
BW Ĉ AW

]
,

[
Ĉ 0
0 I

])
is observable. Thus, there exists an observer-based controller
that stabilizes the augmented system (A.9)–(A.10) and yields
a closed-loop system with nilpotent dynamics. It follows that,
for all ndb ≥ n̂ + 2n̂w l̂y , there exists a linear time-invariant
controller (A.4) of order ndb such that the equilibrium of the
closed-loop system (A.5)–(A.7) is asymptotically stable, where
Acl is nilpotent, and, for all initial conditions xcl(0) and x̂w (0),
limk→∞ y(k) = 0.

The closed-loop system (A.5)–(A.7) with exogenous input
w(k) can be written as

xs(k + 1) = Asxs(k), y(k) = Csxs(k), (A.15)

where

As
�
=

[
Acl DclĈw

0 Âw

]
, Cs

�
= [Ccl D̂2Ĉw ] (A.16)

and xs
�
=

[ xcl
x̂w

]
. Since limk→∞ y(k) = 0 and Acl is asymptoti-

cally stable, it follows from [12] and [17, Lemma 2.1] that there
exists S ∈ R

2(n̂+ n̂w l̂y )×n̂w such that

AclS − SÂw = DclĈw (A.17)

CclS = D̂2Ĉw . (A.18)

Now, define

Q
�
=

[
I −S

0 I

]

and consider the change of basis

Ās
�
= Q−1AsQ =

[
Acl 0
0 Âw

]
, C̄s

�
= CsQ = [Ccl 0 ] .

(A.19)

Then, we have y(k) = C̄sĀ
k
s Q−1xs(0) = CclA

k
cl [xcl(0) +

Sx̂w (0)]. Since, Acl ∈ R
2(n̂+ n̂w l̂y )×2(n̂+ n̂w l̂y ) is nilpotent, it

follows that, for all initial conditions xcl(0) and x̂w (0), and
for all k ≥ 2(n̂ + n̂w l̂y ), y(k) = 0. �

APPENDIX B

Consider the discrete-time system (2.1), (2.2), where y(k) ∈
R

l and u(k) ∈ R
l . To derive the inverse system, we increment

(2.2) by d steps, yielding

y(k + d) = Cx(k + d) + D2w(k + d) (B.1)

= CAdx(k) + Hdu(k)

+ [D2 CD1 · · · CAd−1D1 ]




w(k + d)
...

w(k)




(B.2)

where Hd
�
= CAd−1B is the first nonzero Markov parameter

from u to y. It follows from (B.2) and Assumption A4) that

u(k) = −H−1
d CAdx(k) + H−1

d y(k + d)

− H−1
d [ D2 CD1 · · · CAd−1D1 ]




w(k + d)
...

w(k)


 .

The inverse system is thus given by

x(k + 1) = ARx(k) + BRyd(k) + D1RWd(k) (B.3)

u(k) = CRx(k) + DRyd(k) + D2RWd(k) (B.4)

where

AR
�
= A − BH−1

d CAd, BR
�
= BH−1

d

CR
�
= −H−1

d CAd, DR
�
= H−1

d

D1R
�
= [−BH−1

d D2 −BH−1
d CD1 · · ·

−BH−1
d CAd−2D1 D1 − BH−1

d CAd−1D1 ]

D2R
�
= [−H−1

d D2 −H−1
d CD1 · · · −H−1

d CAd−1D1 ]

yd(k)
�
= y(k + d), Wd(k)

�
=




w(k + d)
...

w(k)


 . (B.5)

Since, by Assumption A1), (A,B,C) is minimal, it follows from
[23, Proposition 4.2] that the eigenvalues of AR consist of the
invariant zeros of (A,B,C) as well as n − d eigenvalues equal
to zero. Therefore, by Assumption A2), AR is asymptotically
stable.

Theorem B.1: Consider the system (2.1), (2.2) and its in-
verse (B.3), (B.4). Let p be a positive integer. Then, subject to
Assumptions A1), A2), A4), and A8), there exist c1 > 0 and
c2 > 0 such that

‖Ũ(k − d)‖2
2 ≤ c1 + c2‖Ỹ (k)‖2

2 (B.6)
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where

Ũ(k)
�
=




u(k − 1)
...

u(k − p)


 , Ỹ (k)

�
=




y(k − 1)
...

y(k − p − 1)


 . (B.7)

Proof: By successive substitution

u(k) =CRAk
Rx(0) + DRyd(k) + D2RWd(k)

+
k∑

i=1

CRAi−1
R BRyd(k − i)

+
k∑

i=1

CRAi−1
R D1RWd(k − i).

Taking the norm of both sides yields

‖u(k)‖2 ≤ 5
{
‖CR‖2‖Ak

R‖2‖x(0)‖2 + ‖DR‖2‖yd(k)‖2

+ ‖D2R‖2‖Wd(k)‖2

+

[
k∑

i=1

‖CR‖‖Ai−1
R ‖‖BR‖‖yd(k − i)‖

]2

+

[
k∑

i=1

‖CR‖‖Ai−1
R ‖‖D1R‖‖Wd(k − i)‖

]2



where ‖ · ‖ is the Euclidean norm. Since AR is asymptotically
stable, it follows that there exist λ ∈ [0, 1) and c > 0 such that,
for every positive integer k, ‖Ak

R‖ ≤ cλk . Therefore, there exists
c3 > 0 such that

‖u(k)‖2 ≤ c3

[
λ2k + ‖yd(k)‖2 +

( k∑
i=1

λi−1‖yd(k − i)‖
)2

+ ‖Wd(k)‖2 +
( k∑

i=1

λi−1‖Wd(k − i)‖
)2

]
.

Since, by Assumption A8), w(k) is bounded for all k, it follows
that ‖Wd(k)‖2 is also bounded, that is, there exists ρ > 0 such
that ‖Wd(k)‖2 ≤ ρ for all k. Thus, there exists c4 > 0 such that

‖u(k)‖2 ≤ c4

[
ρ + λ2k + ‖yd(k)‖2 +

( ∞∑
i=1

λi−1
)

×
( k∑

i=1

λi−1‖yd(k − i)‖2
)

+
(

ρ
∞∑

i=1

λi−1
)2

]
.

Since |λ| < 1, it follows that
∑∞

i=1 λi−1 = 1
1−λ

, where 00 �
= 1.

Thus, it follows that there exist c5 > 0 and c6 > 0 such that

‖u(k)‖2 ≤ c5

[
c6 + ‖yd(k)‖2 +

k∑
i=1

λi−1‖yd(k − i)‖2

]
.

(B.8)

Summing both sides of (B.8) from k − p to k − 1 yields

k−1∑
j=k−p

‖u(j)‖2 ≤ c5


c7 +

k−1∑
j=k−p

‖yd(j)‖2

+
k−1∑

j=k−p

j∑
i=1

λi−1‖yd(j − i)‖2


 (B.9)

where c7 > 0. Introducing τ
�
= j − i yields

k−1∑
j=k−p

‖u(j)‖2

≤ c5


c7+

k−1∑
j=k−p

‖yd(j)‖2 +
k−2∑

τ =k−p

k−1∑
j=τ +1

λj−τ−1‖yd(τ)‖2




≤ c8


c7 +

k−1∑
j=k−p

‖yd(j)‖2 +
k−2∑

τ =k−p−1

‖yd(τ)‖2




≤ c1 + c2

k−1∑
j=k−p−1

‖yd(j)‖2 (B.10)

where c8 > 0. Decrementing (B.10) by d steps and using the
definitions of yd(k), Ũ(k), and Ỹ (k) from (B.5) and (B.7) yields
(B.6). �
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