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Abstract

Prediction of solar storms has become a very important issue due to the fact that they can affect dramatically
the telecommunication and electrical power systems at the earth. As a result, a lot of research is being done in
this direction, space weather forecast. Magnetohydrodynamics systems are being studied in order to analyse the
space plasma dynamics, and techniques which have been broadly used in the prediction of earth environmental
variables like the Kalman filter (KF), the ensemble Kalman filter (EnKF), the extended Kalman filter (EKF), etc.,
are being studied and adapted to this new framework. The assimilation of a wide range of space environment data
into first-principles-based global numerical models will improve our understanding of the physics of the geospace
environment and the forecasting of its behaviour. Therefore, the aim of this paper is to study the performance of
nonlinear observers in magnetohydrodynamics systems, namely, the EnKF.

The EnKF is based on a Monte Carlo simulation approach for propagation of process and measurement errors.
In this paper, the EnKF for a nonlinear two-dimensional magnetohydrodynamic (2D-MHD) system is considered.
For its implementation, two software packages are merged, namely, the Versatile Advection Code (VAC) written in
Fortran and Matlab of Mathworks. The 2D-MHD is simulated with the VAC code while the EnKF is computed in
Matlab. In order to study the performance of the EnKF in MHD systems, different number of measurement points
as well as ensemble members are set.
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1. Introduction

In this paper, a first attempt is done for investigating the performance of the ensemble Kalman filter
(EnKF) [5,6] in space weather forecast. Space weather forecast is an area of research that has become
very active in the last years due to the need to predict solar storms. These solar storms can dramatically
affect the telecommunication, electrical power systems, satellites, pipelines, climate, etc., at the earth.
To predict such events data assimilation techniques can be used, data assimilation consists basically of
combining physical first-principle-based models with measurements of the physical variables. Hence,
these measurements are used to correct the estimation of the dynamics of the whole system, due to the
lack of information about initial conditions, boundary conditions, wrong and nonmodelled dynamics,
etc. Therefore, in this paper we use magnetohydrodynamic (MHD) equations as basis for the physical
first-principle-based model, and the EnKF for correcting the estimation of the physical variables.

One of the motivation for using the EnKF is that it is very easy to implement due to the fact that it
does not need any model linearization like the extended Kalman filter (EKF) [1]. Therefore, the EnKF
can be set mainly into two modules; the model simulator and the data assimilation module. These facts
make the EnKF very attractive for real applications. Hence, in this paper we use the VAC code [11] as
the MHD simulator module and Matlab for the data assimilation module. Finally, the two codes are run
simultaneously using a script written in Matlab.

This paper is organized as follows, in Sections 2–4 the MHD system and EnKF are introduced,
respectively. In Section 5 numerical results are presented and, finally, in Section 6 some conclusions
are given.

2. MHD system equations

The topic of MHD is ubiquitous in plasma physics. Examples where the theory has been used with
success range from explaining the dynamo generation and subsequent evolution of magnetic fields
within stellar and planetary interiors, to accounting for the gross stability of magnetically confined ther-
monuclear plasmas. It transpires that MHD is capable of providing a good description of such large-
scale disturbances, indicating that the MHD account of plasma behaviour is necessarily a macroscopic
one. In essence, MHD is a macroscopic, nonrelativistic theory that is concerned with global phenom-
ena in magnetic plasmas. It gives an accurate description of many of the complicated interactions of
magnetic fields with the plasmas of the sun and stars. The theory is a marriage between fluid mechanics
and electromagnetism. Despite its apparent simplicity, MHD describes a remarkably rich and varied mix
of phenomena and the subject is one whose development continues to flourish [4,7].

The basic equations of MHD can be summarized as follows:
mass continuity:

��

�t
+ ∇(��) = 0, (1)

adiabatic equation of state:

d

dt

(
p

��

)
= 0, (2)
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momentum equation,

�
d�

dt
= J × B − ∇p, (3)

Ampere’s law:

∇ × B = �0J , (4)

Faraday’s law:

∇ × E = −�B

�t
, (5)

Gauss’ law:

∇B = 0, (6)

resistive Ohm’s law:

E + � × B = �J , (7)

where each of the symbols has its customary meaning (see the list of symbols below), with the convective
derivative

d

dt
�

�

�t
+ �∇.

On the other hand, the right-hand side of (7) may be neglected to yield the ideal Ohm’s law:

E + � × B = 0. (8)

This states that there is no electric field in the rest frame of the fluid. Eqs. (1)–(6) with (8) constitute the
ideal MHD equations, which is usually contracted to MHD. The inclusion of (7) is described as resistive
MHD.

It can be seen that the equations are essentially an amalgam of fluids mechanics and ‘pre-Maxwell’
electromagnetism. The fluid inertia is affected by forces due to the fluid pressure gradients and to the
J × B term, which is the Lorentz force in continuum form. It will be noted, however, that the Ohm’s law
couples the fluid to the fields. If the magnetic flux is conserved, then this equation provides constraints
on the allowable class of fluid displacements described by the theory, and this in turn has implications
for the topology of the magnetic fields.

Finally, MHD possesses those conservation properties enjoyed by fluid mechanics and electromag-
netism, namely:

• conservation of mass,
• conservation of momentum,
• conservation of energy (both mechanical and electromagnetic),
• conservation of magnetic flux.



O.B. Mendoza et al. / Journal of Computational and Applied Mathematics 189 (2006) 242–259 245

List of symbols

�0 permeability of free space (N A2)

� resistivity of plasma
� average mass density of plasma (kg/m3)

p pressure (N/m2)

� ratio of specific heats
v velocity of the fluid element (m/s)
J current density (A/m2)

E electric field
B magnetic field

3. The Kalman filter

The Kalman filter (KF) [9] is an estimator for what is called the linear-quadratic Gaussian estimation
problem, which is the problem of estimating the instantaneous stage of a linear dynamic system perturbed
by a Gaussian random process-process noise, and using measurements linearly related to the state but
corrupted also by a Gaussian random process-measurement noise. The resulting estimator is statistically
optimal with respect to any quadratic function of estimation error.

Given a linear dynamical model in discrete form as

xk+1 = Akxk + Bkuk + wk, k�0 (9)

with output

yk = Ckxk + vk , (10)

where xk ∈ Rn, uk ∈ Rm, yk ∈ Rp, and Ak, Bk, Ck are known real matrices of appropriate size. The input
uk and output yk are assumed to be measured, and wk ∈ Rnk and vk ∈ Rp are uncorrelated white noise
processes with known variances and correlation given by Qk , and Rk , respectively.

3.1. Estimation problem

Consider the discrete-time dynamical system described by (9) and (10). For this system, we take a state
estimator of the form

x̂k|k = x̂k|k−1 + Lk(yk − ŷk|k−1), k�0, (11)

where Lk ∈ Rn×m and x̂k|k−1 is the estimate of xk based on observations up to time k − 1, with output

ŷk|k−1 = Cx̂k|k−1. (12)

In order to solve this problem a recursive procedure is used. The first step, is to project ahead xk−1|k−1
using (9)

x̂k|k−1 = Ak−1xk−1|k−1 + Bk−1uk−1, (13)
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then, define the prior state estimation error by

ek|k−1
�= xk − x̂k|k−1, k > 0. (14)

Substituting (13) and (9) into (14) we obtain

ek|k−1 = Ak−1ek−1|k−1 + wk−1, (15)

now, define the prior error covariance matrix by

Pk|k−1
�= E[ek|k−1e

T
k|k−1], (16)

hence,

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 + Qk−1. (17)

Next, define the state estimator error

ek|k
�= xk − x̂k|k , (18)

consequently, the Kalman gain Lk minimizes

Jk(Lk) = tr(Pk|k), (19)

where the estimation error covariance matrix Pk|k ∈ Rn×n

Pk|k
�= E[(ek|k − E[ek|k]])(ek|k − E[ek|k])T]. (20)

As a result, the Kalman gain can be obtained by

Lk = Pk|k−1C
T
k (Rk + CkPk|k−1C

T
k )−1 (21)

with the error covariance matrix update

Pk|k = (In − LkCk)Pk|k−1. (22)

Summarizing the algorithm we have for k = 1, 2, . . .

1. Project ahead the error covariance matrix and the estimated states:

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 + Qk−1,

x̂k|k−1 = Ak−1x̂k−1|k−1 + Bk−1uk−1.

2. Compute the Kalman gain:

Lk = Pk|k−1C
T
k (Rk + CkPk|k−1C

T
k )−1

3. Update the estimated states:

x̂k|k = x̂k|k−1 + Lk(yk − ŷk|k−1)

4. Update the error covariance matrix:

Pk|k = (In − LkCk)Pk|k−1
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4. The ensemble Kalman filter

The EnKF is a sequential data assimilation method where the error statistics are predicted by solving
the Fokker–Planck (35), which describes the time evolution of a probability density function of a model
state, using a Monte Carlo or ensemble integration. The method was originally proposed by Evensen
[5]. By integrating an ensemble of model states forward in time it is possible to calculate statistical
moments like mean and error covariances whenever such information is required. Thus, all the statistical
information about the predicted model state that is required at analysis times is contained in the ensemble.
More details can be found for instance in [3,6,10].

The method is presented in three stages:

• representation of error statistics;
• prediction of error statistics;
• the estimation problem.

4.1. Representation of error statistics

The error covariance matrices for the prior and current estimate, Pk|k−1 and Pk|k , are in the classical
KF defined in terms of the true state as

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T], (23)

Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)T], (24)

where E[·] denotes an expectation value. Now, for the EnKF assume that we have an ensemble of
forecasted model states that randomly sample the model errors at time k. Let us denote this ensemble as
Xk|k−1 and is defined by

Xk|k−1
�=(x̂1

k|k−1, . . . , x̂
N
k|k−1), (25)

where the superscript denotes the ensemble member. Then, the ensemble mean ¯̂xk|k−1 is defined by

¯̂xk|k−1
�= 1

N

N∑
i=1

x̂
j
k|k−1. (26)

Since the true state xk is not known, and in order to write (23) and (24) in terms of (25), we therefore
define the ensemble covariance matrices around the ensemble mean as follows: define the ensemble of
prior estimation errors by

Ek|k−1
�=(x̂1

k|k−1 − ¯̂xk|k−1, . . . , x̂
N
k|k−1 − ¯̂xk|k−1), (27)

and the ensemble of estimation errors by

Ek|k
�=(x̂1

k|k − ¯̂xk|k, . . . , x̂N
k|k − ¯̂xk|k). (28)
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Table 1
Settings of the boundary conditions used in the VAC code to simulate a bowshock

Left-hand Right-hand Top Bottom

Out bowshock Inside bowshock

� Fixed Open Symmetric Open Open
vx Fixed Open Asymmetric Open Open
vy Fixed Open Symmetric Open Open
p Fixed Open Symmetric Open Open
Bx Fixed Open Asymmetric Open Open
By Fixed Open Symmetric Open Open

Hence,

Pk|k−1 ≈ P̂k|k−1
�= 1

N − 1
E[Ek|k−1ET

k|k−1], (29)

Pk|k ≈ P̂k|k
�= 1

N − 1
E[Ek|kET

k|k] (30)

which are averages over the ensembles. Thus, we can use an interpretation where the ensemble mean
is the best estimate and the spreading of the ensemble around the mean is a natural definition of the
error in the ensemble mean. Since the error covariances defined in (29) and (30) are defined as ensemble
averages, there will clearly exist infinitively many ensembles with an error covariance equal to P̂k|k−1 and
P̂k|k . Thus, instead of storing a full covariance matrix, we can represent the same error statistics using an
appropriate ensemble of model states. Given an error covariance matrix, an ensemble of finite size will
always provide an approximation to the error covariance matrix. However, when the size of the ensemble
N increases the errors in the Monte Carlo sampling will decrease proportional to 1/

√
N .

Suppose now that we have N model states in the ensemble, each of dimension n. Each of these model
states can be represented as a single point in an N-dimensional state space. All the ensemble members
together will constitute a cloud of points in the state space. Such a cloud of points in the state space can,
in the limit when N goes to infinity, be described using a probability density function

�(x) = dN

N
, (31)

where dN is the number of points in a small unit volume and N is the total number of points. With
knowledge about either �(x) or the ensemble representing �(x), we can calculate whichever statistical
moments (such as mean, covariances, etc.) we want whenever they are needed.

The conclusion so far is that the information contained by a full probability density function can be
exactly represented by an infinite ensemble of model states.

4.2. Prediction of error statistics

The EnKF was designed to resolve two major problems related to the use of the EKF [1] with nonlinear
dynamics in large state spaces. The first problem relates to the use of an approximate closure scheme in
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with VAC

Simulated data

Matlab VAC

Initialization

Initial ensemble
generator

integration
1 sampling time

Ensemble filter gain

Ensemble filter

computation

data assimilation

Updated ensemble
estimation

LayerData Assimilation

Layer

Updated ensemble
mean

Fig. 1. Block diagram scheme of the EnKF implementation using VAC and Matlab.

the EKF, and the other to the huge computational requirements associated with the storage and forward
integration of the error covariance matrix. The EKF applies a closure scheme where third- and higher-
order moments in the error covariance equation are discarded. This linearization has been shown to be
invalid in a number of applications. In fact, the equation is no longer the fundamental equation for the
error evolution when the dynamical model is nonlinear. For a nonlinear model where we appreciate that
the model is not perfect and contains model errors, we can write it as a discrete-time stochastic differential
equation as

xk+1 = A(xk) + �k (32)

with �k the model error at time k defined by

�k

�= Gk(xk)�k (33)

with Gk(xk) ∈ Rn×l is a state-dependent matrix, where the covariance matrix Qk ∈ Rn×n is defined as

Qk
�= E[Gk(xk)Gk(xk)

T] (34)
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Fig. 2. Comparison of the performance of the EnKF for different number of measurement points as well as ensemble members,
where V —velocity, and B—magnetic field. Dotted line is the RMSE for 10 measurement points, dashed line the RMSE for
100 measurement points, and solid line the RMSE for 200 measurement points. Notice that 1 iteration corresponds to 1 data
assimilation sampling time.

and �k ∈ Rl is a process we want to approximate as white noise. Eq. (32) implies that even if the initial
state is known precisely, future model states cannot, since unknown random model errors are continually
added.

Conceptually, the evolution of (31) can be modelled with the Fokker–Planck equation

��(xk)

�t
= −∇[A(xk)�(xk)] +

∑
i,j

�2

�xk(i) �xk(j)

(
Qk

2

)
ij

�(xk). (35)

This equation does not apply any important approximations and can be considered as the fundamental
equation for the time evolution of error statistics. A detailed derivation is given in [8]. The equation
describes the change of the probability density in a local volume which is dependent on the divergence
term describing a probability flux into the local volume (impact of the dynamical equation) and the
diffusion term which tends to flatten the probability density due to the effect of stochastic model errors.
If (35) could be solved for the probability density function, it would be possible to calculate statistical
moments like the mean state and the error covariance for the model forecast to be used in the analysis
scheme. The EnKF applies a so-called Markov chain Monte Carlo (MCMC) method to solve (35). The
probability density can be represented using a large ensemble of model states. By integrating these model
states forward in time according to the model dynamics described by (32), this ensemble prediction is
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Fig. 3. Comparison of performance for the case of 10 measurement points. At the top-right, the big dots are the location of the
measurement points on the grid. Where k is the number of data assimilation sampling times.

equivalent to solving the Fokker–Planck equation using a MCMC method. This procedure forms the
backbone for the EnKF.

4.3. The estimation problem

In the standard KF estimation problem the definition of Pk|k−1 and Pk|k are used. It is now given a
derivation of the estimation problem for the EnKF using (29) and (30).

The EnKF performs an ensemble of parallel data assimilation cycles, using (11) as follows:
for i = 1, . . . , N

x̂i
k|k = x̂i

k|k−1 + Lek
(yi

k − C(x̂i
k|k−1)), (36)
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Fig. 4. Comparison of performance for the case of 100 measurement points. At the top-right, the big dots are the location of the
measurement points on the grid. Where k is the number of data assimilation sampling times.

where C is the observation operator, which is permitted to be a nonlinear operator, and the observations
yi
k=yk+�i are perturbed observations defined such that �i ∼ N(0, Re). In the limit of an infinite ensemble

the matrix Re will converge toward the prescribed error covariance matrix R used in the standard KF.
Similar to the standard KF, in (36) Lek

is defined as

Lek
= P̂k|k−1C

T(CP̂k|k−1C
T + Re)

−1 (37)

with the difference that C can be nonlinear which is a powerful advantage compare to other nonlinear KF
that are based on linearized models like EKF. Envision a situation where errors grow rapidly but saturate
at low amplitude; the linear assumption of error growth in the EKF will result in an overestimate of the
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Fig. 5. Comparison of performance for the case of 200 measurement points. At the top-right, the big dots are the location of the
measurement points on the grid. Where k is the number of data assimilation sampling times.

prior error variance, but the differences among ensemble members will not grow without bound and thus
should provide a more accurate model of the actual prior error statistics.

On the other hand, for a complex model with a high-dimensional state vector, explicitly forming P̂k|k−1
as in (29) would be computationally prohibitive. However, in the EnKF, Lek

can be formed without ever
explicitly computing the full P̂k|k−1. Instead, the components of P̂k|k−1C

T and CP̂k|k−1C
T of Lek

are
computed separately. Define

C(x̂k|k−1)
�= 1

N

N∑
i=1

C(x̂i
k|k−1) (38)



254 O.B. Mendoza et al. / Journal of Computational and Applied Mathematics 189 (2006) 242–259

k=
1

Vest 150 ens.

0.2

0.4

0.6

0.8

5

10

15

Vest 300 ens.

5

10

15

20

Vreal

5

10

15

k=
40

0.2

0.4

0.6

0.8

5

10

15

20

25

10

20

30

5

10

15

20

k=
70

0.2

0.4

0.6

0.8

10

20

30

40

50

10

20

30

40

50

5

10

15

20

k=
11

0

0.05 0.1 0.15

0.2

0.4

0.6

0.8

10

20

30

0.05 0.1 0.15

10

20

30

0.05 0.1 0.15

5

10

15

Fig. 6. Comparison of performance for the case of 10 measurement points. At the top-right, the big dots are the location of the
measurement points on the grid. Where k is the number of data assimilation sampling times.

which represents the mean of the estimate of the observation interpolated from the background forecasts.
Then

P̂k|k−1C
T �= 1

N − 1

N∑
i=1

(x̂i
k|k−1 − ¯̂xk|k−1)(C(x̂i

k|k−1) − C(x̂k|k−1))
T (39)

and

CP̂k|k−1C
T �= 1

N − 1

N∑
i=1

(C(x̂i
k|k−1) − C(x̂k|k−1))(C(x̂i

k|k−1) − C(x̂k|k−1))
T. (40)
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Fig. 7. Comparison of performance for the case of 100 measurement points. At the top-right, the big dots are the location of the
measurement points on the grid. Where k is the number of data assimilation sampling times.

After the estimation is done, a short-range forecast is computed by running the physics first-principle-
based model (32) until new measurements are taken, then the data assimilation cycle is repeated.

5. Numerical results

In order to investigate how the EnKF operates in MHD systems, we took the ideal MHD system
equations (1)–(6) with (8), setting the boundary conditions of the right-hand side such that it simu-
lates the magnetosphere around the Earth. This system was simulated with the VAC code [11] with the
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Fig. 8. Comparison of performance for the case of 200 measurement points. At the top-right, the big dots are the location of the
measurement points on the grid. Where k is the number of data assimilation sampling times.

following parameters:

• grid size: 34 × 54;
• initial conditions of the state space variables:

◦ mass density, � = 1.0 kg/m3;
◦ velocity in x- and y-directions, vx = 20 m/s, vy = 0 m/s;
◦ pressure, p = 1.0 kg/ms2;
◦ magnetic field in x- and y-directions, Bx = 0 mT, By = 1.0 mT;

• ratio of specific heats, � = 5/3;
• simulation sampling time, 1 × 10−4 s;
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• data assimilation sampling time, 4 × 10−4 s;
• spatial discretization method: total variation diminishing Lax–Friedrich-TVDLF, using the Powell’s

scheme to maintain ∇B = 0.

As a result the order of the system is 11,016, six state space variables and 34 × 54 gridpoints. To excite
the system, a square sinusoidal wave for By varying from 1 to 1.5 mT, and Vx from 20 to 30 m/s, were
generated at the left-hand boundary, simulating a magnetic storm, and the right-hand boundary was set
such that it simulates a bowshock like the one formed in the magnetosphere around Earth. Therefore the
boundary conditions for the VAC are set as seen in Table 1.

Fig. 1 depicts a general scheme of the EnKF implementation by running Matlab and the VAC code
simultaneously. Since we can see in the scheme we did not need any extra code for the model; anyhow,
we had to write the code of the EnKF in Matlab, and some code to read and write the VAC’s files where
the initial and final conditions in each data assimilation sampling time are saved. As a result, we have
got a modular data assimilation system where the nonlinear model integration module is executed by the
VAC code, while the data assimilation module for Matlab. This is one of the motivation for using the
EnKF, because it is quite straightforward to implement, and the results are very confident.

To investigate the performance of the EnKF in MHD systems a magnetic storm around the earth
was simulated by changing the boundary conditions as mentioned above. We study three cases, for
10, 100, and 200 measurement points, and for each case we use 50, 150, and 300 ensemble members,
respectively.

Fig. 2 shows the root mean square error (RMSE) of the state space estimation for the whole scenarios.
On the first column, when 50 ensemble members are used, it can be seen that the data assimilation
process always crashes independent of the number of measurement points, this is due to the fact that
the number of ensemble members are not enough to give a good approximation of the error covariance
matrix Pk|k−1, contrary to the cases of 150 and 300 ensemble members which seems to be enough to
obtain a good representation of the error covariance matrix Pk|k−1; therefore, it is difficult for the EnKF
approach to find an appropriate filter gain. As a result the EnKF takes the system to regions where the
model integration becomes unfeasible.

In the other cases, 150 and 300 members, the data assimilation process works more reliable, even
for the cases with 10 measurement points. Although the worst performance is for the case of 10 mea-
surement points with 150 and 300 ensemble members, the results are close to the other cases indicating
that the number of ensemble members is more important than the number of measurement points; how-
ever, the number and location of the measurement points are important as well. In the experiments, the
location of the measurement point are chosen such that at least half of the points were located in the
right-half plane around the bowshock where the more drastic changes occurs, this guarantees that the
data assimilation process will track the big changes in the system, otherwise the estimation would be
very poor.

On the other hand, in two of the cases of 150 and 300 ensemble members, we observe how the EnKF
struggle to correct the trajectory of the system when the perturbation reaches the bowshock (magneto-
sphere). In the first 10 data assimilation sampling times we see that the RMSE decreases, this is due to the
fact that the initial conditions are close to the current ones and the perturbation is far from the bowshock.
Then after, the RMSE increases because the perturbation reaches the bowshock originating big changes
in the dynamics of the system. Finally, the EnKF manage to keep the estimated system stable and close
to the real one.
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Furthermore, Figs. 3–5, and 6–8 depict in detail how the magnetic field and the plasma velocity around
the earth are estimated, respectively, for different cases. It can be seen clearer that the more ensemble
members and measurement points are taken, the better the estimation is, as expected.

6. Conclusions

In this paper, we introduced a new area of application for the EnKF, space weather forecast. The EnKF
is an extension of the KF to the nonlinear case, where based on a Monte Carlo simulation approach the
measurement and process noise errors are propagated. One of the advantages of the EnKF is its facility
to be implemented as a modular system, with mainly two modules, namely, the model simulator and the
data assimilation module. This scheme permits the use of specialized codes for each task, making the
EnKF more robust and reliable.

The EnKF has shown an acceptable performance for the data assimilation experiment study in this
paper. The results are very promising, despite that simplification has been done with respect to the real
space weather forecast problem. One interesting result we can draw from this experiment, is that, if we are
able to place strategically some measurement points in the magnetosphere around the Earth, that would
be enough to expect a good estimation of the dynamics of the system, assuming that the models we used
are correct. We mention this, because in the real case there are very few satellites out there in the space
which can be used as measurement points. Nevertheless, notice that when we say few measurement points
compare to the order of the system, this could be a huge number for practical and economical issues.
Therefore, the problem of how to get measurements of the physical variables of the space plasma close
to Earth has to be solved before any data assimilation technique can be used in real life. Another solution
is to design estimators for local areas around the measurement points as suggested in [2].

On the other hand, another drawback of the EnKF despite the fact that the statistics can be approximated
with a small ensemble, is that it is still very demanding computationally. Anyhow, the order of complexity
is similar to other nonlinear KFs [5]. Also a lot of research has to be done in this direction. Furthermore,
the knowledge of the process and measurement noise are needed in order to have more accurate results.
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