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Abstract

We consider the steady-state error covariance for a discrete-time system with banded dynamics. Such systems frequently arise from the
spatial and temporal discretization of partial differential equations. In such systems, the magnitudes of the entries of the steady-state covariance
matrix typically decrease as the distance from the diagonal increases. We obtain a bound on the entries of the covariance matrix beyond a

given distance from the diagonal.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

For discrete-time linear systems driven by possibly non-
Gaussian stochastic disturbances, the state covariance is deter-
mined by a Lyapunov difference equation. When measurements
are available for reducing the state uncertainty through estima-
tion, the covariance of the state-estimate error evolves accord-
ing to a Riccati difference equation. The structure of the state
estimator is determined by the Kalman filter, which is widely
used for data assimilation [1,11].

For high-dimensional systems, the computational burden of
updating the covariance of the state estimate is O(n>), where
n is the order of the state. Consequently, it is common practice
to work with a sparse approximation of the error covariance.
For example, computationally efficient data assimilation tech-
niques are used in [7] to estimate electron densities on a global
(Earth-wide) grid. In particular, the dense correlation matrix
is replaced by a sparse approximation obtained by neglecting
(that is, zeroing) correlations between quantities in spatially
discretized cells that lie along different magnetic flux lines.
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Similarly, data assimilation techniques developed in [3] take
advantage of the block-tridiagonal structure of the dynamics in
computing the error covariance. To reduce the computational
burden, only covariance matrix entries located within a spec-
ified distance of the diagonal are updated at each time step.
Extensions of these methods to more general block-banded dy-
namics are applied to an ocean-circulation model in [2].

Motivated by these works, the goal of the present paper is
to bound the error incurred when the covariance matrix for a
system with banded dynamics is replaced by a sparse, banded
approximation. Banded dynamics are a direct consequence of
nearest-neighbor interactions in discretized partial differential
equations [6, pp. 8898, 9,8]. Since the steady-state covariance
matrix is the solution to a linear matrix equation, the structure
of the inverse of a banded matrix is of interest. Relevant litera-
ture includes the results of [10] on banded positive-semidefinite
matrices whose off-diagonal entries are nonpositive. A bound
on the entries of the inverse of an arbitrary banded matrix is
given in [5], where the magnitudes of the entries of the in-
verse are shown to decay exponentially with distance from the
diagonal. Since the steady-state error covariance matrix is the
product of the inverse of a banded matrix and another matrix
which may not be banded, the bound in [5] cannot be used to
obtain similar bounds on the entries of the steady-state error
covariance matrix.

Rather than bounding every entry of the steady-state co-
variance matrix, we obtain bounds on the off-diagonal entries
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of the steady-state covariance matrix for a linear system whose
dynamics are asymptotically stable and banded. These bounds
are given in terms of the norm of the neglected matrix entries.
We demonstrate these results on a compartmental model driven
by white noise.

The present paper is limited to the analysis of the covariance
of stochastically driven linear systems. Extensions to covari-
ance approximation in data assimilation algorithms for systems
with banded dynamics will be explored in future work.

2. Banded matrices

Let A € R™" and assume that the nonzero entries of A are
restricted to a banded region around the main diagonal. We
define the semi-width w(A) of A to be

w(A)=min{l : A; j =0 for all i, j such that |i — j| >1I}.
Q2.1

For example, if A is diagonal, then w(A)=0; if A is tridiagonal,

then w(A)=1; and if A is pentadiagonal, then w(A)=2. Clearly,

w(A)<n — 1. It is easy to see that w(AB) <w(A) + w(B).
More generally, we have the following observation.

Proposition 2.1. Let Ay, ..., A, € R"*". Then,

P
w(Ar---Ap) < min{n—l,zw(Ai)}. (2.2)

i=1
3. Correlation bounds

Consider the linear time-invariant discrete-time system

Xkl = AXg + wy, 3.1

where x;, wy € R" and wy is zero-mean white noise with
covariance Q. Furthermore, we assume that A is asymptotically
stable, that is,
sprad(A) <1, 3.2)
where for all A € R"™", the spectral radius of A is defined by
sprad(A)£ max{|/| : A € spec(A)}. 3.3)

The positive-semidefinite state covariance Py L [xkx,;r], where
&[] denotes the expected value, is updated using

Priq =APkAT+ 0. 3.4

Since A is asymptotically stable and Q is positive semidefinite,
P2limy_, o Py exists and satisfies the discrete-time Lyapunov
equation

P =APAT 4 Q. 3.5)
Furthermore,
oo . .
P=YAlQAT, (3.6)
i=0

Let ¢ > 0 satisfy

sprad(A) <e <1, 3.7
so that
1 1
sprad (—A) = —sprad(A) < 1. 3.8)
e E;
It thus follows from (3.6) that
© .
P = Z 82l Ql, (3.9)
i=0

where Qg = Q and, foralli =1,2,..., Q; is defined by

(AN AT
oo(2)ol)
€ €
Since w(cA) = w(A) = w(AT), it follows from (2.2) that, for
alli =0,1,...,

(3.10)

(01 < minfn — 1, 2iw(A) + o(0)). (3.11)
Next, fori =0, ...,n — 1, define H; € R"*" by
1 ... 1 0 --- 07
H: 0 , (3.12)
0
Lo -~ 0 1 - 1]

where the semi-width of the band of ones is chosen such that

o(H;) =i. (3.13)
Now, fori =0, ...,n — 1, define P; by
Pi2£H; o P, (3.14)

where o denotes the Schur product. Then the (k, /) entry of P;
is given by

Py if [k — 1<,

(Pk,y = {0 else. (3.15)

Forall j=0,1,...andi=0, ..., n—1,if o(Q;) <w(H;), then
(1,—H;)oQ =0, where 1, is the n x n matrix whose entries are
all equal to 1. Therefore, for i =0, ..., n — 1, taking the Schur
product of (3.9) with 1, — H; and using (1, — Hj))oP=P — P;
yields

o0
P—P = Z e (1, — Hy) o Q;, (3.16)
J=L()
where L : N — N is defined by
L()2 max {o, floor (%) n 1} . (3.17)
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Proposition 3.1. Assume that A € R"*" satisfies (3.2) and let
&> 0 satisfy sprad(A) <e< 1. Let || - || be a norm on R™".
Then,

A 1 i
ca=max —| A" (3.18)
ieN &

exists.

Proof. It follows from (3.8) that lim;_, o, (1/¢') A’ = 0. Hence,
o4 exists. [

Proposition 3.2. Assume that A € R™" satisfies (3.2) and

let ¢ >0 satisfy sprad(A) <e< 1. Let || - || be a monotonic

submultiplicative norm on R"*". Then, fori =0,...,n — 1,
£2L(0) )

IIP—Pi||<1_€20AIIQII- (3.19)

Proof. Since | - || is monotonic, it follows that, for all i =

0,....n—1land j=0,1,...,

(1, — Hi) o QII<I1Q)ll. (3.20)
Furthermore, since || - || is submultiplicative, it follows that, for
all j=0,1,...,

1 ?
Io;I<liel H JAJ : (3.21)

Hence, it follows from Proposition 3.1 that, for all j=0, 1, ...,

10;lI<IQld. (3.22)
Taking the norm of P — P; in (3.16) and using (3.20) yields

1P — Pl <ED1 000l + O 0 gyl + -+ (3.23)
It then follows from (3.22) that
IP — Pl <A1 QII(*ED + 2HOF2 4., (3.24)
Since 0 <e< 1,

o o gL

Z & = — (3.25)

Jj=L(0)
Therefore, (3.24) and (3.25) imply (3.19). O

4. Compartmental model example

We consider a system comprised of n compartments or sub-
systems that exchange energy through mutual interaction [4].
Applying conservation of energy yields, fori =1, ..., n,

xi(k+ 1) =i (k) — Pxi (k) + a(xip1 (k) — x; (k)

— o(xi (k) — xj—1(k)), 4.1
Table 1
Parameters used in the compartmental model example
o p sprad(A) €
0.1 0.8 0.2 0.4, 0.3, 0.21

102

104 1

106

108

10-10

Fig. 1. |P — P;||g and bound (3.19) for & = 0.1 and f = 0.8 and various
values of e.

log (IPi,jI)

Fig. 2. Surface plot of log(|P; j|) for «=0.1 and #=0.8.

where 0 < f§ < 1 is the loss coefficient and 0 < o < 1 is the flow
coefficient. It follows from (4.1) that

x(k+1) = Ax(k), 4.2)
where
Xé[X] xn]T (43)
and A € R"*" is defined by
1—f—u o 0 0 .- 0
o 1—f—20 o 0 --- 0
AL 0 o 1-p—20 « 0
0 0 o 1-p—u
4.4)

Since A is tridiagonal, w(A) =1. We choose n =20 and evaluate
P using (3.5) with Q = I,, for (o, f) = (0.1, 0.8). The spectral
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radius of A, and the chosen value of ¢ are shown in Table 1.
We choose | - || to be the Frobenius norm || - ||f.

Note that for (o, ) = (0.1, 0.8), sprad(A) < 1 and hence, o4
defined in (3.18) exists and is determined numerically. Next, for
i=0,...,9, weplot (*£@0 /(1 — &) | Qllp and || P — P; |l
with (a, f) = (0.1, 0.8) in Fig. 1. Note that || Q|| = +/20. The
magnitudes of the entries of the steady-state covariance P for
(o, ) = (0.1,0.8) are plotted in Fig. 2. It can be seen that
the magnitude of the entries of the covariance decrease as the
distance from the diagonal increases.
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