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Correlation bounds for discrete-time systems with banded dynamics�
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Abstract

We consider the steady-state error covariance for a discrete-time system with banded dynamics. Such systems frequently arise from the
spatial and temporal discretization of partial differential equations. In such systems, the magnitudes of the entries of the steady-state covariance
matrix typically decrease as the distance from the diagonal increases. We obtain a bound on the entries of the covariance matrix beyond a
given distance from the diagonal.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

For discrete-time linear systems driven by possibly non-
Gaussian stochastic disturbances, the state covariance is deter-
mined by a Lyapunov difference equation. When measurements
are available for reducing the state uncertainty through estima-
tion, the covariance of the state-estimate error evolves accord-
ing to a Riccati difference equation. The structure of the state
estimator is determined by the Kalman filter, which is widely
used for data assimilation [1,11].

For high-dimensional systems, the computational burden of
updating the covariance of the state estimate is O(n3), where
n is the order of the state. Consequently, it is common practice
to work with a sparse approximation of the error covariance.
For example, computationally efficient data assimilation tech-
niques are used in [7] to estimate electron densities on a global
(Earth-wide) grid. In particular, the dense correlation matrix
is replaced by a sparse approximation obtained by neglecting
(that is, zeroing) correlations between quantities in spatially
discretized cells that lie along different magnetic flux lines.
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Similarly, data assimilation techniques developed in [3] take
advantage of the block-tridiagonal structure of the dynamics in
computing the error covariance. To reduce the computational
burden, only covariance matrix entries located within a spec-
ified distance of the diagonal are updated at each time step.
Extensions of these methods to more general block-banded dy-
namics are applied to an ocean-circulation model in [2].

Motivated by these works, the goal of the present paper is
to bound the error incurred when the covariance matrix for a
system with banded dynamics is replaced by a sparse, banded
approximation. Banded dynamics are a direct consequence of
nearest-neighbor interactions in discretized partial differential
equations [6, pp. 88–98, 9,8]. Since the steady-state covariance
matrix is the solution to a linear matrix equation, the structure
of the inverse of a banded matrix is of interest. Relevant litera-
ture includes the results of [10] on banded positive-semidefinite
matrices whose off-diagonal entries are nonpositive. A bound
on the entries of the inverse of an arbitrary banded matrix is
given in [5], where the magnitudes of the entries of the in-
verse are shown to decay exponentially with distance from the
diagonal. Since the steady-state error covariance matrix is the
product of the inverse of a banded matrix and another matrix
which may not be banded, the bound in [5] cannot be used to
obtain similar bounds on the entries of the steady-state error
covariance matrix.

Rather than bounding every entry of the steady-state co-
variance matrix, we obtain bounds on the off-diagonal entries
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of the steady-state covariance matrix for a linear system whose
dynamics are asymptotically stable and banded. These bounds
are given in terms of the norm of the neglected matrix entries.
We demonstrate these results on a compartmental model driven
by white noise.

The present paper is limited to the analysis of the covariance
of stochastically driven linear systems. Extensions to covari-
ance approximation in data assimilation algorithms for systems
with banded dynamics will be explored in future work.

2. Banded matrices

Let A ∈ Rn×n and assume that the nonzero entries of A are
restricted to a banded region around the main diagonal. We
define the semi-width �(A) of A to be

�(A)� min{l : Ai,j = 0 for all i, j such that |i − j | > l}.
(2.1)

For example, if A is diagonal, then �(A)=0; if A is tridiagonal,
then �(A)=1; and if A is pentadiagonal, then �(A)=2. Clearly,
�(A)�n − 1. It is easy to see that �(AB)��(A) + �(B).
More generally, we have the following observation.

Proposition 2.1. Let A1, . . . , Ap ∈ Rn×n. Then,

�(A1 · · · Ap)� min

{
n − 1,

p∑
i=1

�(Ai)

}
. (2.2)

3. Correlation bounds

Consider the linear time-invariant discrete-time system

xk+1 = Axk + wk , (3.1)

where xk, wk ∈ Rn and wk is zero-mean white noise with
covariance Q. Furthermore, we assume that A is asymptotically
stable, that is,

sprad(A) < 1, (3.2)

where for all A ∈ Rn×n, the spectral radius of A is defined by

sprad(A)� max{|�| : � ∈ spec(A)}. (3.3)

The positive-semidefinite state covariance Pk�E[xkx
T
k ], where

E[·] denotes the expected value, is updated using

Pk+1 = AP kA
T + Q. (3.4)

Since A is asymptotically stable and Q is positive semidefinite,
P�limk→∞Pk exists and satisfies the discrete-time Lyapunov
equation

P = APAT + Q. (3.5)

Furthermore,

P =
∞∑
i=0

AiQAiT. (3.6)

Let � > 0 satisfy

sprad(A) < � < 1, (3.7)

so that

sprad

(
1

�
A

)
= 1

�
sprad(A) < 1. (3.8)

It thus follows from (3.6) that

P =
∞∑
i=0

�2iQi , (3.9)

where Q0 = Q and, for all i = 1, 2, . . . , Qi is defined by

Qi�
(

A

�

)i

Q

(
AT

�

)i

. (3.10)

Since �(�A) = �(A) = �(AT), it follows from (2.2) that, for
all i = 0, 1, . . . ,

�(Qi)� min{n − 1, 2i�(A) + �(Q)}. (3.11)

Next, for i = 0, . . . , n − 1, define Hi ∈ Rn×n by

Hi�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 1 0 · · · 0
...

. . .
. . .

. . .
...

1
. . .

. . . 0

0
. . .

. . . 1
...

. . .
. . .

. . .
...

0 · · · 0 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.12)

where the semi-width of the band of ones is chosen such that

�(Hi) = i. (3.13)

Now, for i = 0, . . . , n − 1, define Pi by

Pi�Hi ◦ P , (3.14)

where ◦ denotes the Schur product. Then the (k, l) entry of Pi

is given by

(Pi)k,l =
{

Pk,l if |k − l|� i,

0 else.
(3.15)

For all j =0, 1, . . . and i=0, . . . , n−1, if �(Qj )��(Hi), then
(1n−Hi)◦Qj =0, where 1n is the n×n matrix whose entries are
all equal to 1. Therefore, for i = 0, . . . , n− 1, taking the Schur
product of (3.9) with 1n −Hi and using (1n −Hi)◦P =P −Pi

yields

P − Pi =
∞∑

j=L(i)

�2j (1n − Hi) ◦ Qj , (3.16)

where L : N → N is defined by

L(i)� max

{
0, floor

(
i − �(Q)

2�(A)

)
+ 1

}
. (3.17)
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Proposition 3.1. Assume that A ∈ Rn×n satisfies (3.2) and let
� > 0 satisfy sprad(A) < � < 1. Let ‖ · ‖ be a norm on Rn×n.
Then,

�A� max
i∈N

1

�i
‖Ai‖ (3.18)

exists.

Proof. It follows from (3.8) that limi→∞(1/�i )Ai = 0. Hence,
�A exists. �

Proposition 3.2. Assume that A ∈ Rn×n satisfies (3.2) and
let � > 0 satisfy sprad(A) < � < 1. Let ‖ · ‖ be a monotonic
submultiplicative norm on Rn×n. Then, for i = 0, . . . , n − 1,

‖P − Pi‖� �2L(i)

1 − �2
�2

A‖Q‖. (3.19)

Proof. Since ‖ · ‖ is monotonic, it follows that, for all i =
0, . . . , n − 1 and j = 0, 1, . . . ,

‖(1n − Hi) ◦ Qj‖�‖Qj‖. (3.20)

Furthermore, since ‖ · ‖ is submultiplicative, it follows that, for
all j = 0, 1, . . . ,

‖Qj‖�‖Q‖
∥∥∥∥ 1

�j
Aj

∥∥∥∥
2

. (3.21)

Hence, it follows from Proposition 3.1 that, for all j =0, 1, . . . ,

‖Qj‖�‖Q‖�2
A. (3.22)

Taking the norm of P − Pi in (3.16) and using (3.20) yields

‖P − Pi‖��2L(i)‖QL(i)‖ + �2L(i)+2‖QL(i)+1‖ + · · · . (3.23)

It then follows from (3.22) that

‖P − Pi‖��2
A‖Q‖(�2L(i) + �2L(i)+2 + · · ·). (3.24)

Since 0 < � < 1,
∞∑

j=L(i)

�2j = �2L(i)

1 − �2
. (3.25)

Therefore, (3.24) and (3.25) imply (3.19). �

4. Compartmental model example

We consider a system comprised of n compartments or sub-
systems that exchange energy through mutual interaction [4].
Applying conservation of energy yields, for i = 1, . . . , n,

xi(k + 1) = xi(k) − �xi(k) + �(xi+1(k) − xi(k))

− �(xi(k) − xi−1(k)), (4.1)

Table 1
Parameters used in the compartmental model example

� � sprad(A) �

0.1 0.8 0.2 0.4, 0.3, 0.21

0 1 2 3 4 5 6 7 8 9
10-10

10-8

10-6

10-4

10-2

100

102 ε=0.4
ε=0.3
ε=0.21
||P-Pi||F

i

Fig. 1. ‖P − Pi‖F and bound (3.19) for � = 0.1 and � = 0.8 and various
values of �.
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Fig. 2. Surface plot of log(|Pi,j |) for � = 0.1 and � = 0.8.

where 0 < � < 1 is the loss coefficient and 0 < � < 1 is the flow
coefficient. It follows from (4.1) that

x(k + 1) = Ax(k), (4.2)

where

x�[x1 · · · xn]T (4.3)

and A ∈ Rn×n is defined by

A�

⎡
⎢⎢⎢⎢⎣

1−�−� � 0 0 · · · 0
� 1−�−2� � 0 · · · 0
0 � 1−�−2� � · · · 0
...

. . .
. . .

...

0 · · · · · · 0 � 1−�−�

⎤
⎥⎥⎥⎥⎦ .

(4.4)

Since A is tridiagonal, �(A)=1. We choose n=20 and evaluate
P using (3.5) with Q = In for (�, �) = (0.1, 0.8). The spectral
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radius of A, and the chosen value of � are shown in Table 1.
We choose ‖ · ‖ to be the Frobenius norm ‖ · ‖F.

Note that for (�, �)= (0.1, 0.8), sprad(A) < 1 and hence, �A

defined in (3.18) exists and is determined numerically. Next, for
i = 0, . . . , 9, we plot (�2L(i)/(1 − �2))�2

A‖Q‖F and ‖P − Pi‖F

with (�, �) = (0.1, 0.8) in Fig. 1. Note that ‖Q‖F = √
20. The

magnitudes of the entries of the steady-state covariance P for
(�, �) = (0.1, 0.8) are plotted in Fig. 2. It can be seen that
the magnitude of the entries of the covariance decrease as the
distance from the diagonal increases.
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