
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

On the equality between rank and trace of an idempotent matrix

Oskar Maria Baksalary a,⇑, Dennis S. Bernstein b, Götz Trenkler c

a Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, PL 61-614 Poznań, Poland
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a b s t r a c t

The paper was inspired by the question whether it is possible to derive the equality
between the rank and trace of an idempotent matrix by using only the idempotency prop-
erty, without referring to any further features of the matrix. It is shown that such a proof
can be obtained by exploiting a general characteristic of the rank of any matrix. An original
proof of this characteristic is provided, which utilizes a formula for the Moore–Penrose
inverse of a partitioned matrix. Further consequences of the rank property are discussed,
in particular, several additional facts are established with considerably simpler proofs than
those available. Moreover, a collection of new results referring to the coincidence between
rank and trace of an idempotent matrix are derived as well.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

It is known that the rank of an idempotent matrix (also called an oblique projector) coincides with its trace. There are
several alternative proofs of this fact available in the literature, all of which refer to some further property of an idempotent
matrix, and not only to the requirement that the second power of the matrix coincides with itself. This property can deal
with, for example, full rank decomposition [1, Theorem 3.6.4], spectrum or Jordan form [2, Corollary 2.12], and singular value
decomposition [3, Lemma 1]. In the present paper, we derive the equality between the rank and trace of an idempotent ma-
trix without referring to any other feature of the matrix than its idempotency. This aim is achieved by exploiting a general
characteristic of the rank of any matrix, whose original proof, based on a formula for the Moore–Penrose inverse of a parti-
tioned matrix, is provided as well. Moreover, the rank characteristic enables us to derive other facts known in the literature
with considerably simpler proofs than those available. Section 3 of the paper provides some additional results referring to
the coincidence between the rank and trace of an idempotent matrix.

In what follows, the set of m � n complex matrices is denoted by Cm;n. The symbols A�;RðAÞ, and rk(A) stand for conjugate
transpose, column space (range), and rank of A 2 Cm;n, whereas tr(A) denotes trace of A 2 Cn;n. Furthermore, Ay 2 Cn;m is the
Moore–Penrose inverse of A 2 Cm;n, i.e., the unique solution to the equations:

AAyA ¼ A; AyAAy ¼ Ay; ðAAyÞ� ¼ AAy; ðAyAÞ� ¼ AyA:

Finally, In stands for the identity matrix of order n.
Some of the derivations in Section 3 are based on the matrix decomposition, originating from the singular value decom-

position, established in [4, Corollary 6], which is recalled in the lemma below.
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Lemma. Let A 2 Cn;n be of rank r. Then there exists unitary U 2 Cn;n such that

A ¼ U
RK RL
0 0

� �
U�; ð1:1Þ

where R ¼ diagðr1Ir1 ; . . . ;rtIrt Þ is the diagonal matrix of singular values of A, r1 > r2 > � � �>rt > 0, r1 + r2+ � � � +rt = r, and
K 2 Cr;r; L 2 Cr;n�r satisfy KK* + LL* = Ir.

With the representation established in the preceding Lemma, several useful characterizations of the matrix A can be de-
rived. For instance, direct calculations show that A is:

(i) idempotent if and only if RK = Ir,
(ii) EP, i.e., A�A = AA�, or, equivalently RðAÞ ¼ RðA�Þ, if and only if L = 0,

(iii) an orthogonal projector, i.e., A2 = A = A*, if and only if L = 0, R = Ir, K = Ir,
(iv) nilpotent, i.e., A2 = 0, if and only if K = 0.

It is also seen that A is an orthogonal projector if and only if it is simultaneously idempotent and EP; for further facts on
the representation (1.1) see e.g., [5, Section 1].

2. The rank property and its consequences

The theorem below states a fundamental rank property, which is known in the literature; see e.g., [6, Proposition 6.1.6].
We provide a novel proof based on a general formula for the Moore–Penrose inverse of a partitioned matrix.

Theorem. Let A 2 Cm;n. Then

rkðAÞ ¼ trðAAyÞ: ð2:1Þ

Proof. The proof is based on the mathematical induction on the number of columns n. Subsequently, the letters A and B
stand for matrices, whereas a,b,c, and d denote column vectors.

If n = 1, then A is a column vector and we denote A = a. In this case a� = a*/a*a whenever a – 0, and a� = 0 whenever a = 0.
In both situations rk(a) = tr(aa�).

Assume now that A has n columns and satisfies (2.1). We will show that rk(B) = tr(BB�), where B is the columnwise
partitioned matrix B = (A : a). Applying to this matrix the formula for the Moore–Penrose inverse derived by Greville [7,
Section 4] (alternatively see [6, Fact 6.5.17]) gives

By ¼ Ay � db�

b�

 !
; ð2:2Þ

where

b� ¼
cy if c–0

cd�Ay if c ¼ 0;

8><
>: ð2:3Þ

with

d ¼ Aya; c ¼ ðIm � AAyÞa; and c ¼ ð1þ d�dÞ�1
: ð2:4Þ

Let us determine BB� separately in the two cases characterized by the two specifications of the vector b provided in (2.3).
In the first of them, when c – 0, which is equivalent, by the middle condition in (2.4), to a R RðAÞ, it follows that

BBy ¼ ðA : aÞ Ay � dcy

cy

 !
¼ AAy � Adcy þ acy ¼ AAy � AAyacy þ acy ¼ AAy þ ðIm � AAyÞacy ¼ AAy þ ccy:

Hence, tr(BB�) = tr(AA�) + tr(cc�). Since tr(cc�) = 1 and, by the induction hypothesis, tr(AA�) = rk(A), we thus have tr(BB�)
= rk(A) + 1 = rk(B), where the last equality is a consequence of the assumption a R RðAÞ.

In the second case, when c = 0, or, equivalently, when a 2 RðAÞ, we get

BBy ¼ ðA : aÞ Ay � cdd�Ay

cd�Ay

 !
¼ AAy � cAdd�Ay þ cad�Ay:

Utilizing, on the one hand, the fact that the trace of a product of conformable matrices is invariant with respect to the cyclical
permutations of those matrices, and, on the other hand, the relationships A�Ad = A�a = d, originating from the first condition
in (2.4), gives
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trðBByÞ ¼ trðAAyÞ � cd�AyAdþ cd�Aya ¼ trðAAyÞ � cd�dþ cd�d ¼ trðAAyÞ:

In consequence, by the induction hypothesis, tr(BB�) = rk(A). Noting that a 2 RðAÞ implies rk(B) = rk(A), we arrive at tr(BB�)
= rk(B). h

It is worth mentioning that Theorem can also be established by virtue of the singular value decomposition, or its partic-
ular version given in Lemma.

Observe that as a byproduct of the iterative procedure for calculating the Moore–Penrose inverse based on the relation-
ships (2.2)–(2.4), we obtain a basis of the column space of A 2 Cm;n. Take the first nonzero column of A, seen from the left.
Then, make iterative steps related to the remaining columns of A, in each of them verifying whether the corresponding vec-
tor c calculated by virtue of (2.4) is zero or not. If it is not, the column belongs to the set of rk(A) vectors constituting a basis
of RðAÞ.

In particular, when A is square and nonsingular, the procedure described in the proof of Theorem yields the inverse of A.
The two corollaries below recall some important facts known in the literature. These results are accompanied with simple

proofs based on Theorem.

Corollary 1. Let A 2 Cn;n be idempotent. Then rk(A) = tr(A).

Proof. The property of the trace ensures that tr(A) = tr(AA�A) = tr(A2A�). Since A is idempotent, we, thus, obtain tr(A) =
tr(AA�), whence the assertion follows. h

Below we reestablish known rank characteristics. According to our knowledge, all the proofs of these results available by
now are relatively involved in comparison with those provided below; cf. e.g., [1, Theorem 3.8.2].

Corollary 2. Let A 2 Cm;n. Then rk(A) = rk(A*) = rk(A�) = rk(AA*).

Proof. First note that

rkðAÞ ¼ trðAAyÞ ¼ trðAyAÞ ¼ tr½ðAyAÞ�� ¼ tr½A�ðAyÞ��:

Hence, in light of (A�)* = (A*)�, we arrive at rk(A) = tr[A*(A*)�] = rk(A*). Furthermore, since (A�)� = A, it is seen that

rkðAÞ ¼ trðAAyÞ ¼ tr½AyðAyÞy� ¼ rkðAyÞ:

Finally, by A� = A*(AA*)� (see e.g., [6, Proposition 6.1.6]), we have

rkðAÞ ¼ trðAAyÞ ¼ tr½AA�ðAA�Þy� ¼ rkðAA�Þ;

which completes the proof. h

3. Further characterizations

In the context of Corollary 1, it is of interest to inquire what additional property, besides rk(A) = tr(A), should be possessed
by A in order to imply A2 = A. Two such properties are identified in the proposition below, which provides three character-
izations known in the literature. The characterizations given in the points (i) and (iii) therein, published as problem [8] and
[9, Theorem 2.4], respectively, are not easily accessible (and, thus, not widely known), whence we provide their complete
proofs. The proof referring to the point (ii) can be found in [10, Theorem 2], where, however, only sufficiency is shown.

Proposition 1. Let A 2 Cn;n. Then A is idempotent if and only if any of the following conjunctions holds:

(i) rk(A) = tr(A) and rk(In � A) = tr(In � A),
(ii) rk(A) = tr(A) and As = At for some s; t 2 N; s–t,

(iii) rk(A) 6 tr(A) and rk(In � A) 6 tr(In � A).

Proof. For the proof concerning the conjunction (i), first recall that the idempotency of A is equivalent to the idempotency of
In � A. Thus, the necessity of (i) is directly seen. To show sufficiency, note that the equalities given in (i) entail

rkðIn � AÞ ¼ trðIn � AÞ ¼ n� trðAÞ ¼ n� rkðAÞ:

Since the relationship rk(In � A) = n � rk(A) is a known necessary and sufficient condition for A2 = A (see e.g., [11, Theo-
rem 2]), the present part of the proof is completed.

In view of the above, only the sufficiency of the conditions given in point (iii) of the proposition is to be shown. Its proof was
inspired by [9, Theorem 2.4], and utilizes the decomposition established in Lemma. Note that the inequality rk(A) 6 tr(A)
yields r 6 tr(RK), whereas rk(In � A) 6 tr(In � A) implies rk(Ir � RK) + n � r 6 n � tr(RK). Hence, rk(Ir � R K) 6 r � tr(RK),
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and, since the right-hand side of this inequality is either negative or zero, we have rk(Ir � RK) = 0. In consequence, RK = Ir,
which means that A is idempotent. h

Two further relevant characterizations, both of which appear to be new, are given in the proposition below. Statement (ii)
therein generalizes Note 5 in [12], according to which Hermitian A 2 Cn;n satisfies A2A�A* = A2, and if rk(A) = tr(A) then
rk(A) 6 tr(A2), and the equality holds if and only if A2 = A.

Proposition 2. Let A 2 Cn;n. Then:

(i) A is idempotent if and only if rk(A) + tr(A2A�A*) = 2Re[tr(A)],
(ii) A is an orthogonal projector if and only if A is EP and rk(A) + tr(A*A) = 2 Re[tr(A)],

where Re[tr(A)] denotes the real part of tr(A).

Proof. The proof is based on the representation established in Lemma. As can be verified, it follows from (1.1) that

A� ¼ U
K�R 0
L�R 0

� �
U� and Ay ¼ U

K�R�1 0
L�R�1 0

 !
U�;

whence

A�A ¼ U
K�R2K K�R2L
L�R2K L�R2L

 !
U� and AAy ¼ U

Ir 0
0 0

� �
U�:

Utilizing the properties of the trace, we arrive at tr(A2A�A*) = tr(AA�A*A) = tr(K*R2K). Thus, the equality on the right-hand
side of the equivalence (i) is satisfied if and only if

r þ trðK�R2KÞ ¼ 2Re½trðRKÞ�: ð3:1Þ

By observing that (3.1) can be equivalently expressed as:

tr½ðIr � RKÞðIr � RKÞ�� ¼ 0;

which holds if and only if RK = Ir, we conclude that (3.1) is equivalent to A2 = A.
In view of the characterization of EP matrices given in the proof of Proposition 1, it can be easily verified that the

conjunction on the right-hand side of the equivalence (ii) is satisfied if and only if L = 0 holds along with (3.1). By virtue of
point (i) of the proposition, this means that A is both EP and idempotent, or, in other words, that A is an orthogonal
projector. h

Note that 2Re[tr(A)], which appears in both statements of Proposition 2, satisfies 2Re[tr(A)] = tr(A + A*).
Theorem 2 in [12] states that when A 2 Cn;n is such that rk(A) = tr(A), then rk(A) 6 tr(A2A�A*), and equality holds if and

only if A2 = A. This result is in [12] accompanied by a relatively complicated proof. From point (i) of Proposition 2 we straight-
forwardly obtain the following more general result.

Corollary 3. Let A 2 Cn;n. Then A is idempotent if and only if rk(A) = tr(A) and rk(A) = tr(A2A�A*).

The paper is concluded with some relevant remarks concerning Hermitian idempotent matrices, or, in other words,
orthogonal projectors. The first observation is that when A is idempotent, then each of the equalities rk(A) = tr(A�) and
tr(AA*) = tr(A), which can be looked at as modified versions of the condition rk(A) = tr(A), is equivalent to the requirement
that A is an orthogonal projector; see e.g., [9, Theorem 3.5].

Let now P;Q 2 Cn;n be orthogonal projectors. It is known that tr(PQ) 6 rk(PQ), with equality if and only if PQ is an orthog-
onal projector, or, equivalently, PQ = QP; see e.g., [13, Corollary 1]. Whence, if one of the projectors, say Q, is nonsingular
(what means that Q = In), it follows that rk(P) = tr(P). Another upper bound for tr(PQ) was given in [14, Theorem 1.24]
and reads

trðPQ Þ 6 minftrðPÞ; trðQ Þg: ð3:2Þ

Equality holds in (3.2) if and only if either P � Q or Q � P is an orthogonal projector; see [15, Section 3].
Further useful characterizations of a similar type are possible. For example, by exploiting representation (1.1) we obtain

the two characterizations given in the proposition below, which, to the best of our knowledge, are not available in the lit-
erature. The condition rk(A) = tr(PQ), given in the equivalence (i) therein, was inspired by statement 16 in [16, Theorem 8.1],
which reads tr[(A*A)2] = tr[(A*)2A2] and proves to be equivalent to the requirement that A is normal. The equality given in
the equivalence (i) was obtained from statement 16 in [16, Theorem 8.1] by replacing A* with A�.
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Proposition 3. Let A 2 Cn;n. Then:

(i) A is EP if and only if rk(A) = tr(PQ),
(ii) A is nilpotent if and only if tr(PQ) = 0,

where P = AA� and Q = A�A.

The final comments provide further characterizations of known classes of matrices. Let A 2 Cn;n. From tr[(A*� A�)(A*� A�)*] P 0,
we obtain

2rkðAÞ 6 trðA�AÞ þ tr½ðA�AÞy�; ð3:3Þ

which provides a new upper bound for the rank of A. Equality holds in (3.3) if and only if A is a partial isometry, i.e., A* = A�.
Similarly, by exploiting tr[(PQ � QP)(PQ � QP)*] P 0, where Q and P are orthogonal projectors, we arrive at tr(PQPQ) 6
tr(PQ), with equality holding if and only if PQ = QP. Finally, we note that when P = AA� and Q = A�A, then PQ = QP corre-
sponds to the property of A known as bi-EPness or weak-EPness [5, p. 2799].
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