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Abstract In this paper, fundamental relationships are established between conver-
gence of solutions, stability of equilibria, and arc length of orbits. More specifically,
it is shown that a system is convergent if all of its orbits have finite arc length, while
an equilibrium is Lyapunov stable if the arc length (considered as a function of the
initial condition) is continuous at the equilibrium, and semistable if the arc length is
continuous in a neighborhood of the equilibrium. Next, arc-length-based Lyapunov
tests are derived for convergence and stability. These tests do not require the Lyapunov
function to be positive definite. Instead, these results involve an inequality relating the
right-hand side of the differential equation and the Lyapunov function derivative. This
inequality makes it possible to deduce properties of the arc length function and thus
leads to sufficient conditions for convergence and stability. Finally, it is shown that
the converses of all the main results hold under additional assumptions. Examples are
included to illustrate how our results are particularly suited for analyzing stability of
systems having a continuum of equilibria.
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156 S. P. Bhat, D. S. Bernstein

1 Introduction

This paper explores fundamental relationships between convergence, semistability,
and arc length of orbits. Convergence is the notion that every trajectory of the sys-
tem converges to a limit point. The limit point, which is necessarily an equilib-
rium, depends in general on the initial conditions. In a convergent system, the limit
points of trajectories may or may not be Lyapunov stable. Semistability is the addi-
tional requirement that trajectories converge to limit points that are Lyapunov sta-
ble. More precisely, an equilibrium is semistable if it is Lyapunov stable and every
trajectory starting in a neighborhood of the equilibrium converges to a (possibly
different) Lyapunov stable equilibrium. For linear systems, semistability was orig-
inally defined in [1] and applied to matrix second-order systems in [2]. Reference [3]
extends the notion of semistability to nonlinear systems and gives Lyapunov-based
sufficient conditions for convergence and semistability using the geometric property
of nontangency.

Semistability, rather than asymptotic stability, is the appropriate notion of stability
in several applications. For instance, an aircraft subject to initial lateral perturbations
from level trimmed flight will recover trimmed flight with an offset in the final heading
angle that depends on the initial perturbation. The concentrations of reacting species
in many chemical reactions converge to limiting values that depend on the initial con-
centrations [4–7]. The limiting values of the feedback controller gains in an adaptive
closed-loop system depend on the initial conditions of the plant states [8–11]. Matrix
dynamical systems such as the double bracket equation [12] are isospectral, that is,
the evolving matrix state has constant spectrum. Under certain conditions, the matrix
trajectories of isospectral matrix dynamical systems such as the double bracket equa-
tion converge such that the limit point of each trajectory is a canonical form of the
initial matrix state [12]. The set of consensus states of a multi-agent system exhib-
iting consensus behavior is usually a continuum, and the limiting consensus state is
determined by the initial state of the multi-agent system (see [13–15] and references
contained therein). The divers dynamics that arise in all the applications mentioned
above have two common features. First, the set of equilibria in all these applications
is a continuum. Second, unlike the trajectories of an asymptotically stable system, the
trajectories in these applications converge to limits that are determined by the initial
conditions. Hence semistability, rather than asymptotic stability, is the appropriate
notion of stability for all these applications. The notions of convergence and semista-
bility are also relevant to the dynamics of neural networks [16,17] as well as gradient
flows and gradient descent algorithms [18].

Convergence as well as semistability imply that, at least locally, the trajectories con-
verge to the set of equilibria. Mere attractivity of the set of equilibria, however, does
not imply convergence of trajectories or semistability of equilibria as examples given
in [3] show. Even when the set of equilibria is attractive, convergence and semista-
bility depend on the local behavior of the dynamical system near the set of equilibria.
Previous sufficient conditions on the local dynamical behavior near an attractive set of
equilibria that guarantee convergence of trajectories include hyperbolic transversality
[19] and nontangency [3]. In this paper, we give alternative sufficient conditions based
on arc length of trajectories. The results that we present complement those of [3,19]
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Arc-length-based Lyapunov tests 157

in the sense that our results may yield conclusions in situations where the results of
[3,19] are not applicable.

In Sect. 3, we introduce the arc length function, which associates with each initial
condition the length of its orbit, and show that the arc length function is lower semi-
continuous. We also show that if a trajectory converges to a limit, then the continuity
properties of the arc length function at every point along the trajectory are determined
by the continuity properties of the arc length function at the limit point of the trajectory.
These results prove useful for the main results of subsequent sections.

In Sect. 4, we relate arc length to convergence. Specifically, we show that the sys-
tem is convergent if every orbit has finite arc length. We use this intuitively expected
result to obtain a Lyapunov-like sufficient condition for convergence. The sufficient
condition requires the Lyapunov function to be only lower semicontinuous, and does
not require it to be sign definite. Instead, the sufficient condition involves an inequal-
ity that relates the norm of the vector field to the Lyapunov function derivative. This
inequality is a sufficient condition for orbits to have a finite arc length. It should be
noted, however, that our sufficient condition for convergence does not imply Lyapunov
stability of the limits of trajectories.

In Sect. 5, we establish fundamental relationships between the continuity properties
of the arc length function and the stability of equilibria. Specifically, we show that if the
arc length function is continuous at an equilibrium, then the equilibrium is Lyapunov
stable, while if the arc length function is continuous in a neighborhood of the equilib-
rium, then the equilibrium is semistable. This fact leads to a novel arc-length-based
Lyapunov test for Lyapunov stability, semistability, and asymptotic stability. This
Lyapunov test requires the Lyapunov function to be continuous and have a local mini-
mum at the equilibrium, that is, the Lyapunov function is required to be locally positive
semidefinite with respect to its value at the equilibrium. However, the Lyapunov func-
tion is not required to be positive definite. Instead, as in the case of the arc-length-
based Lyapunov condition for convergence presented in Sect. 4, the Lyapunov test
for stability involves an inequality relating the vector field and the Lyapunov function
derivative. The inequality is used along with properties of the Lyapunov function to
deduce continuity properties of the arc length function and thus prove stability.

The Lyapunov results of Sects. 4 and 5 are especially suited for analyzing systems
having a continuum of equilibria, because they make it possible to draw stability con-
clusions for a continuum of equilibria using a single Lyapunov function. To illustrate
this feature as well as to indicate possible application areas, we apply our results to
three examples involving systems having continuum of equilibria in Sect. 6. In the
first example, we consider a system introduced in [3] and show how the results of this
paper can be used to conclude stability for a larger range of parameter values than
possible with the results of [3]. In the second example, we use our results to show
that a system of three interacting agents achieves consensus under purely structural
conditions on the information flow. Finally, in the third example, we apply our results
to the kinetics of the Michaelis–Menten chemical reaction.

In general, a trajectory that converges to a limit may have infinite arc length, as an
example in Sect. 7.1 demonstrates. However, it is intuitively clear that such a trajectory
would have to curl up upon itself. In other words, a trajectory that does not curl upon
itself can converge to a limit only if it has finite arc length. To capture this intuitive
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158 S. P. Bhat, D. S. Bernstein

idea, we consider the limiting direction set of a vector field introduced in [3]. The
limiting direction set of the vector field f at a point x is the set of limit points of the
unit vector along f (z) as z approaches x . The condition that a convergent trajectory
should not curl up upon itself is captured in the condition that no connected component
of the limiting direction set at the limit point contains the zero vector in its convex
hull. In Sect. 7.1, we show that if this condition is satisfied at every equilibrium, then
every convergent trajectory has finite arc length. This fact yields a partial converse to
the Lyapunov-based sufficient condition for convergence given in Sect. 4.

In general, converses of the results of Sect. 5 mentioned above may not hold. Thus,
the arc length function may not be continuous, bounded, or even defined in a neighbor-
hood of an equilibrium that is Lyapunov stable or semistable. In Sect. 7.2, we give an
example of a system having a semistable equilibrium such that the arc length function
is defined everywhere but is unbounded in every neighborhood of the equilibrium.
However, we show that in the case where no connected component of the limiting
direction set at the equilibrium contains the zero vector in its convex hull, the arc
length function is continuous at the equilibrium if the equilibrium is Lyapunov stable,
and continuous in a neighborhood of the equilibrium if it is semistable. This fact leads
to a partial converse of the arc-length-based Lyapunov result given in Sect. 5.

At this point, it is appropriate to mention that the idea of deducing convergence and
stability from the arc length of trajectories is not new, and has been used by Łojasiewicz
in [20] as far back as 1984 to show that every trajectory of the gradient flow associated
with a real analytic function has at most one limit point. Subsequently, Łojasiewicz’s
idea and technique were used to study stability and convergence properties of gradient
flows and gradient descent algorithms in [18,21,22]. Later extensions to nongradient
systems and to a nonsmooth setting can be found in [23] and [24,25], respectively.
The result that underlies all this work is the Łojasiewicz inequality between an ana-
lytic function and the norm of its gradient vector. In all the work mentioned above,
the Łojasiewicz inequality is used to construct a Lyapunov function satisfying the
differential inequality that we present in Sects. 4 and 5 below. The required stability
and convergence conclusions are then deduced by combining the same arguments that
we use in this paper. Our treatment clarifies these arguments by explicitly presenting
them in the form of results that relate stability and convergence to properties of the
arc length function, and results that use Lyapunov functions to deduce properties of
the arc length function. Our results do not involve analyticity assumptions and are not
restricted to gradient systems. In addition, we also examine conditions under which
converses of the main results hold and provide examples to indicate how our results
might apply to problems of general interest.

As mentioned earlier, chemical kinetics comprise one of the application areas for
semistability theory. Since the kinetic equation for a system of chemical reactions
governs concentrations of the reacting species, all solutions of physical interest take
values in the nonnegative orthant. For such systems, which evolve on possibly closed,
positively invariant subsets of R

n , it is natural to consider relative stability, that is, sta-
bility with respect to perturbed initial conditions that belong to the positively invariant
subset. Therefore, with applications to nonnegative dynamics in mind, we consider
relative stability of dynamical systems that evolve on not-necessarily-open subsets of
R

n . Relative stability has been considered previously in [26,27].
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Finally, we mention that this paper is a significantly extended version of the confer-
ence paper [28] which itself improves upon the results of [29]. Specifically, this paper
contains several additional counterexamples, examples and proofs, and provides more
elaborate connections between our work and prior literature.

2 Preliminaries

Let G ⊆ R
n and let ‖ · ‖ denote a norm on R

n . A subset U of G is relatively open
in G if U is open in the subspace topology induced on G by the norm ‖ · ‖. Given
K ⊆ G, we let int K and bd K denote the interior and boundary, respectively, of K in
the subspace topology on G. Thus, int K is the largest subset of K that is relatively
open in G, while bd K = (K∩G)\int K, where K denotes the closure of K in R

n . A set
U ⊆ G is relatively bounded in G if U is compact and contained in G. A point x ∈ R

n

is a subsequential limit of a sequence {xi } in R
n if there exists a subsequence of {xi }

that converges to x in the norm ‖ · ‖. Recall that every bounded sequence has at least
one subsequential limit. A divergent sequence is a sequence having no convergent
subsequence. When there is no possibility of confusion, we will use “relatively open
(bounded)” instead of “relatively open (bounded) in G”. Also, in the case G = R

n , we
will use “open (bounded)” instead of “relatively open (bounded)”.

Consider the system of differential equations

ẏ(t) = f (y(t)), (1)

where f : D → R
n is continuous on the open set D ⊆ R

n . We assume that, for
every initial condition y(0) ∈ D, the differential equation (1) possesses a unique
right-maximally defined C1 solution, and this solution is defined on [0,∞). Letting
ψ(·, x) denote the right-maximally defined solution of (1) that satisfies the initial con-
dition y(0) = x , the above assumptions imply that the map ψ : [0,∞) × D → D
is continuous [30, Thm. V.2.1], satisfies ψ(0, x) = x and possesses the semigroup
property, that is, ψ(t, ψ(h, x)) = ψ(t + h, x) for all t, h ≥ 0 and x ∈ D. Given t ≥ 0
and x ∈ D, it will often be convenient to denote the map ψ(t, ·) : D → D by ψt

and the map ψ(·, x) : [0,∞) → D by ψ x . The orbit Ox of a point x ∈ D is the set
ψ x ([0,∞)).

A set U ⊆ R
n is positively invariant if ψt (U) ⊆ U for all t ≥ 0. The set U is

invariant if ψt (U) = U for all t ≥ 0.
In the rest of the paper, G ⊆ D will denote a positively invariant set so that Ox ⊆ G

for all x ∈ G.
An equilibrium point of (1) is a point x ∈ D satisfying f (x) = 0 or, equivalently,

ψ(t, x) = x for all t ≥ 0. We let E def= f −1(0) ∩ G, the set of all equilibrium points
of (1) in G. An isolated equilibrium is an isolated point of E .

Definition 2.1 The domain of boundedness of the system (1) is the set B of points
z ∈ G such that Oz is bounded relative to G. The domain of convergence of the system
(1) is the set R of points z ∈ G such that limt→∞ ψ(t, z) exists and is contained in
G. The system (1) is convergent relative to G if G = R, that is, for every x ∈ G,
limt→∞ ψ(t, x) exists and is contained in G.
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160 S. P. Bhat, D. S. Bernstein

Clearly, B and R are positively invariant and E ⊆ R ⊆ B. The dynamics (1) give
rise to a function ψ∞ : R → G defined by ψ∞(x) = limt→∞ ψ(t, x), x ∈ R. It
follows from the continuity and semigroup property of ψ that, for all h ≥ 0 and all
x ∈ R,ψh(ψ∞(x)) = limt→∞ ψ(t +h, x) = ψ∞(x). Thusψ∞(x) ∈ E for all x ∈ G.
Consequently, ψ∞ ◦ψ∞ = ψ∞, ψ∞(R) = ψ∞(E) = E , and ψ∞(x) = x if and only
if x ∈ E
Definition 2.2 An equilibrium point x ∈ E is Lyapunov stable relative to G if, for
every relatively open neighborhood Uε ⊆ G of x , there exists a relatively open neigh-
borhood Uδ ⊆ G of x such that ψt (Uδ) ⊆ Uε for all t ≥ 0.

The following result links the continuity of the function ψ∞ at a point x to the
stability of the equilibrium point ψ∞(x).

Proposition 2.3 Let x ∈ int R. If ψ∞(x) is Lyapunov stable relative to G, then ψ∞
is continuous at x.

Proof Suppose ψ∞(x) is Lyapunov stable relative to G. Let Uε ⊆ G be a relatively
open neighborhood of ψ∞(x). There exist relatively open neighborhoods U ⊆ G and
Uδ ⊆ G of ψ∞(x) such that U ⊂ Uε and ψt (Uδ) ⊆ U for all t ≥ 0. Let {xi } be
a sequence in G converging to x . Since ψ∞(x) ∈ Uδ , there exists h > 0 such that
ψ(h, x) ∈ Uδ . Since ψ(h, xi ) → ψ(h, x) as i → ∞, there exists N such that, for all
i > N ,ψ(h, xi ) ∈ Uδ . Therefore, for all t ≥ 0 and i > N ,ψ(t +h, xi ) ∈ ψt (Uδ) ⊆ U .
Consequently, ψ∞(xi ) ∈ U ⊂ Uε for all i > N . Thus ψ∞(xi ) → ψ∞(x) as i → ∞
and hence ψ∞ is continuous at x . ��
Definition 2.4 An equilibrium point x ∈ G is semistable relative to G if there exists
a relatively open neighborhood U ⊆ G of x such that U ⊆ R and, for every z ∈ U ,
ψ∞(z) is Lyapunov stable relative to G. An equilibrium point x ∈ G is asymptotically
stable relative to G if x is Lyapunov stable relative to G and there exists a relatively
open neighborhood U ⊆ G of x such that U ⊆ R and ψ∞(z) = x for every z ∈ U .

Note that if the equilibrium x ∈ G is semistable relative to G, then every equilib-
rium in some relatively open neighborhood of x is Lyapunov stable relative to G. In
particular, every equilibrium that is semistable relative to G is also Lyapunov stable
relative to G. An equilibrium that is asymptotically stable relative to G is an isolated
equilibrium and is semistable relative to G. Conversely, if x ∈ G is an isolated equilib-
rium and is semistable relative to G, then all solutions in a sufficiently small relatively
open neighborhood of x converge to x , and thus x is asymptotically stable relative
to G.

Given a function V : G → R, a point x ∈ G is a local minimizer of V relative to G
if there exists a relatively open neighborhood U ⊆ G of x such that V (x) ≤ V (z) for
all z ∈ U .

Given a function V : G → R and x ∈ G, we define V̇ (x) to be the upper right

Dini derivative of the composite function V ◦ ψ x at 0. In other words, V̇ (x)
def=

lim suph→0+ 1
h [V (ψ(h, x)) − V (x)]. It is well known that if V is locally Lipschitz

at x ∈ D then [31, §5.1], [32, p. 353], [33, p. 3] V̇ (x) = lim suph→0+ 1
h [V (x +
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Arc-length-based Lyapunov tests 161

h f (x)) − V (x)]. In addition, if V is continuously differentiable on D, then V̇ (x) =
∂V
∂x (x) f (x), x ∈ D.

In the rest of the paper, we will assume that the positively invariant set G is locally
compact, that is, every point in G is contained in a relatively open and relatively
bounded subset of G.

3 Arc length of orbits

Let A denote the set of points in G that have orbits with finite arc length, that is,

A def= {x ∈ G : ∫ ∞
0 ‖ f (ψ(t, x))‖dt < ∞}. We define the arc length function S :

A → [0,∞) by S(x)
def= ∫ ∞

0 ‖ f (ψ(t, x))‖dt for every x ∈ A. It will be convenient
to extend the definition of S to G by letting S(x) = ∞ for every x ∈ G\A. The
semigroup property of ψ implies that, for every x ∈ A and every t ≥ 0, S(ψ(t, x)) is
defined and S(ψ(t, x)) ≤ S(x). Thus A is positively invariant. Moreover, E ⊆ A and
E = S−1(0).

In this section we consider continuity properties of the arc length function S. The
following result shows that the arc length function is lower semicontinuous every-
where:

Proposition 3.1 The arc length function S is lower semicontinuous at every point in
A. Moreover, Ṡ is defined on A and, for every x ∈ A, Ṡ(x) = −‖ f (x)‖.

Proof Consider x ∈ A, and let {xk} be a sequence in G converging to x . If
lim infk→∞ S(xk) = ∞, then clearly lim infk→∞ S(xk)> S(x). Hence suppose
lim infk→∞ S(xk)<∞. There exists a subsequence {xki }∞i=1 of {xk} in A such that
limi→∞ S(xki )= lim infk→∞ S(xk). Let ε > 0. There exists T > 0 such that
S(ψ(T, x))= ∫ ∞

T ‖ f (ψ(τ, x))‖dτ < ε/2. By Theorem II.3.2 in [30], the sequence
of functions {ψ xki }∞i=1 converges to the function ψ x uniformly on [0, T ]. Since
ψ x ([0, T ]) ⊆ G is compact, and since G is locally compact, it follows that there
exists a relatively bounded neighborhood U ⊆ G of the set ψ x ([0, T ]). Since f
is uniformly continuous on the compact set U [34, Thm. 4.47], it follows that the
sequence of functions { f ◦ ψ xki }∞i=1 converges uniformly to the function f ◦ ψ x

on [0, T ]. Next, the triangle inequality implies that the sequence of functions {‖ f ◦
ψ xki (·)‖} converges to the function {‖ f ◦ ψ x (·)‖} uniformly on [0, T ]. It now fol-
lows from standard results on integration [34, Thm. 9.8] that there exists I > 0 such
that, for every i > I ,

∫ T
0 ‖ f (ψ(τ, xki ))‖dτ >

∫ T
0 ‖ f (ψ(τ, x))‖dτ − ε/2. It therefore

follows that lim infk→∞ S(xk) = limi→∞ S(xki ) ≥ limi→∞
∫ T

0 ‖ f (ψ(τ, xki ))‖
dτ >

∫ T
0 ‖ f (ψ(τ, x))‖dτ − ε/2 = S(x)− S(ψ(T, x))− ε/2> S(x)− ε. Since ε was

chosen to be arbitrary, it follows that lim infk→∞ S(xk)≥ S(x).
The arguments above show that lim infk→∞ S(xk) ≥ S(x) for every sequence {xk}

in G converging to x . It follows that S is lower semicontinuous at x . The second part
of the proposition follows by direct computation. ��

To further investigate the continuity properties of the arc length function, let C ⊆ A
denote the set of points where the function S is continuous relative to G. It is easy to
see that C ⊆ int A.
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The following result shows that the continuity properties of the arc length function
at every point along a trajectory in the domain of convergence of (1) are determined by
the continuity properties of the arc length function at the limit point of the trajectory.

Proposition 3.2 Suppose z ∈ R. Then the following statements hold:

(i) If ψ∞(z) ∈ int A, then z ∈ int A.
(ii) If ψ∞(z) ∈ C, then z ∈ C.

(iii) If ψ∞(z) ∈ int C, then z ∈ int C.

Proof (i) Suppose ψ∞(z) ∈ int A. Let U ⊆ G be a relatively open neighborhood of
ψ∞(z) such that U ⊆ int A. Since ψ∞(z) = limt→∞ ψ(t, z), there exists T >

0 such that ψ(t, x) ∈ U for every t ≥ T . By continuity of ψ , V def= ψ−1
T (U)

is a relatively open neighborhood of z. Consider w ∈ V . For every h > 0, we
have

∫ T +h
0 ‖ f (ψ(τ,w))‖dτ = ∫ T

0 ‖ f (ψ(τ,w))‖dτ + ∫ T +h
T ‖ f (ψ(τ,w))‖dτ ≤

∫ T
0 ‖ f (ψ(τ,w))‖dτ + ∫ ∞

0 ‖ f (ψ(T + τ,w))‖dτ. The first integral on the right-hand
side in the last inequality is clearly defined, while the second integral is defined and
equals S(ψ(T, w)), since ψ(T, w) ∈ U ⊆ A. Thus, for every h > 0, it follows that∫ T +h

0 ‖ f (ψ(τ,w))‖dτ ≤ ∫ T
0 ‖ f (ψ(τ,w))‖dτ + S(ψ(T, w)). Taking the limit as

h → ∞, we conclude that S(w) is defined and hence w ∈ A. Thus V is a relatively
open neighborhood of z such that V ⊆ A. Hence it follows that z ∈ int A.

(ii) Suppose ψ∞(z) ∈ C. Since C ⊆ int A, it follows from (i) that z ∈ int A.
Thus, there exists a relatively open neighborhood Q ⊆ G of z such that Q ⊆ A.
Since G is locally compact, we may assume that Q is relatively bounded in G. Let
{zk} be a sequence in Q converging to z, and choose ε > 0. Since S is continuous
at ψ∞(z) ∈ E = S−1(0), there exists a relatively open neighborhood Wε ⊆ G of
ψ∞(z) such that S(w) < ε/3 for all w ∈ Wε. Since limt→∞ ψ(t, z) = ψ∞(z) ∈
Wε, there exists T > 0 such that ψ(T, z) ∈ Wε. By Theorem II.3.2 in [30], the
sequence of functions {ψ zk } converges to the function ψ z uniformly on [0, T ]. Since
f is uniformly continuous on the compact set ψ([0, T ] × Q), the sequence of func-
tions { f ◦ ψ zk } converges to the function f ◦ ψ z uniformly on [0, T ]. The triangle
inequality implies that the sequence of functions {‖ f ◦ ψ zk (·)‖} converges to the
function {‖ f ◦ ψ z(·)‖} uniformly on [0, T ]. Hence it follows from standard results
on integration [34, Thm. 9.8] that there exists K1 > 0 such that, for every k > K1,∣
∣
∣
∫ T

0 (‖ f (ψ(τ, zk))‖ − ‖ f (ψ(τ, z))‖)dτ
∣
∣
∣ < ε/3. Also, it follows from continuity of

ψ that there exists K2 such that ψ(T, zk) ∈ Wε for all k > K2. Therefore, for every
k > K1, K2, we have |S(zk) − S(z)| = ∣

∣
∫ ∞

0 (‖ f (ψ(τ, zk))‖ − ‖ f (ψ(τ, z))‖)dτ ∣∣ ≤∣
∣
∣
∫ T

0 (‖ f (ψ(τ, zk))‖ − ‖ f (ψ(τ, z))‖)dτ
∣
∣
∣ + ∣

∣
∫ ∞

T (‖ f (ψ(τ, zk))‖ − ‖ f (ψ(τ, z))‖)dτ ∣∣
<

∫ ∞
T ‖ f (ψ(τ, zk))‖dτ+∫ ∞

T ‖ f (ψ(τ, z))‖dτ+ε/3 ≤ S(ψ(T, zk))+ S(ψ(T, z))+
ε/3 < ε. Thus |S(z)− S(zk)| < ε for every k > K1, K2. It follows that S(zk) → S(z)
as k → ∞. Hence S is continuous at z and z ∈ C.

(iii) Suppose ψ∞(z) ∈ int C. There exists ε > 0 such that the relatively open and

relatively bounded set V def= {x ∈ G : ‖x − ψ∞(z)‖ < ε} satisfies V ⊆ C. Let U ⊆ G
be a relatively open neighborhood ofψ∞(z) such that U ⊆ C and every x ∈ U satisfies
S(x) < ε/2 and ‖x − ψ∞(z)‖ < ε/2. There exists T > 0 such that ψ(T, z) ∈ U .
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Fig. 1 Phase portrait of a convergent system

Let W = ψ−1
T (U). By continuity of ψ , W is a relatively open neighborhood of z.

Consider w ∈ W . For every h > 0, we have ‖ψ(T + h, w) − ψ∞(z)‖ ≤ ‖ψ(T +
h, w) − ψ(T, w)‖ + ‖ψ(T, w) − ψ∞(z)‖ < ‖ ∫ h

0 f (ψ(τ, ψ(T, w)))dτ‖ + ε/2 ≤∫ ∞
0 ‖ f (ψ(τ, ψ(T, w)))‖dτ + ε/2 = S(ψ(T, w))+ ε/2 < ε. Thus, for every h > 0,
ψ(T + h, w) ∈ V . Since V is relatively bounded, it follows that ψ∞(w) exists and is
contained in V ⊆ C. It now follows from (ii) that w ∈ C. W is thus a relatively open
neighborhood of z that is contained in C. It follows that z ∈ int C. ��

The following example illustrates the results of this section, and shows that, in gen-
eral, the assertion of lower semicontinuity in Proposition 3.1 cannot be strengthened,
and the converses of statements in Proposition 3.2 do not hold:

Example 3.3 Figure 1 shows the phase portrait of the system (1) with f : R
2 → R

2

given by

f (x) = |(x1 + 2)(W (x)− 0.25)|
(

|W (x)− 0.25|
[−x1

0

]

+ x2

[
x2

−(x1 + 0.5)

])

,

where W : R
2 → R

2 is the function given by W (x) = (x1 + 0.5)2 + x2
2 . The set of

equilibria is the union of the straight line E1 = {x ∈ R
2 : x1 = −2} and the circle

E2 = {x ∈ R
2 : W (x) = 0.25}. The only Lyapunov stable equilibrium is the origin

x = 0. Since every neighborhood of the origin contains unstable equilibria in E2, the
origin is not semistable.

The phase portrait clearly shows that the system is convergent. Consequently, the
functionψ∞ introduced in Sect. 2 is defined everywhere. It can be seen from the phase
portrait that the function ψ∞ is continuous everywhere except at equilibrium points
such as B and C that are unstable, and nonequilibrium points such as D that lie on the

segment I def= {x ∈ R
2 : −2 < x1 < −1, x2 = 0}. In particular, ψ∞ is continuous at
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164 S. P. Bhat, D. S. Bernstein

every initial condition whose solution converges to the Lyapunov stable equilibrium
0, thus illustrating Proposition 2.3. However, ψ∞ is also continuous at points such
as A, whose limits points are unstable equilibria, thus showing that the converse of
Proposition 2.3 does not hold.

It is clear from the phase portrait that every orbit has finite arc length. Consequently,
the arc length function S is defined everywhere. Moreover, S is continuous everywhere
except at equilibrium points such as B and C that are unstable, and nonequilibrium
points such as D that lie on the segment I. Thus C = {0} ∪ {R2\(E1 ∪ E2 ∪ I)}. This
demonstrates that in general, the assertion of lower semicontinuity in Proposition 3.1
cannot be strengthened to continuity. The interior of C is the set R

2\(E1 ∪ E2 ∪ I).
Thus a point such as A lies in int C, while its limit point C in E1 does not even lie in C.
This shows that in general, the converses of statements (ii) and (iii) in Proposition 3.2
do not hold. In contrast, neither the point D nor its limit point lie in C.

Finally, we note that the origin, which is the only Lyapunov stable equilibrium,
is also the only equilibrium at which the arc length function is continuous. We will
explore the relation between continuity of the arc length function and stability in
Sect. 5.

Before proceeding to the next section, we observe that the arc length function S
depends on our choice of the norm. For example, S(x) may not equal the Euclidean
length of the orbit of x ∈ G unless ‖·‖ is the Euclidean norm. The results that we state,
however, hold for any arbitrary choice of the norm. Theoretically, this is only to be
expected since all norms on R

n are equivalent. However, in applications, the freedom
available in choosing the norm can be usefully exploited as examples that we present
in Sect. 6 demonstrate.

4 Arc length and convergence

In this section, we relate arc length to convergence. Specifically, we show that the
system (1) is convergent if every orbit has finite arc length. This fact leads to a
Lyapunov-based sufficient condition for convergence. The results of this section are
based on the following lemma, which implies that if the image of a function of time
has finite arc length, then the function converges asymptotically to a limit. Though
the result appears to be widely known, we could not find a specific reference. Hence,
we provide a proof in the appendix for the sake of completeness.

Lemma 4.1 Let y : [0,∞) → R
n be continuously differentiable. If ẏ is absolutely

integrable on [0,∞), then limt→∞ y(t) exists.

The following corollary is an application of Lemma 4.1 to the solutions of (1):

Corollary 4.2 Suppose x ∈ A. Then limt→∞ ψ(t, x) exists in D. In addition, if Ox

is bounded relative to G, then x ∈ R, that is, A ∩ B ⊆ R.

Proof Denote y = ψ x . Since x ∈ A, it follows that ẏ is absolutely integrable.
Lemma 4.1 now implies that limt→∞ y(t) = limt→∞ ψ(t, x) exists. Next, suppose
x ∈ B so that Ox is bounded relative to G. Then, limt→∞ ψ(t, x) ∈ Ox ⊆ G, and
hence, by definition, x ∈ R. ��
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Arc-length-based Lyapunov tests 165

The following result provides a Lyapunov-based sufficient condition for conver-
gence. The sufficient condition involves an inequality that guarantees finite arc length
of orbits and hence, by Corollary 4.2, convergence.

Theorem 4.3 Suppose there exists a lower semicontinuous function V : G → R such
that V̇ (z) ≤ 0 for all z ∈ G. Let M be the largest invariant set contained in V̇ −1(0)
and suppose there exists a relatively open set U ⊆ G containing M and c ∈ (0,∞)

such that, for every z ∈ U ,

cV̇ (z)+ ‖ f (z)‖ ≤ 0. (2)

Then, for every x ∈ G such that Ox is bounded relative to G, x ∈ A, and limt→∞
ψ(t, x) exists and is contained in G, that is, B ⊆ A ∩ R. In particular, if B = G, then
the system (1) is convergent relative to G.

Proof Let x ∈ B and denote y = ψ x . Let m be the minimum value of the lower
semicontinuous function V on the compact set Ox . Since V ◦ y is nonincreasing,
m = limt→∞ V (y(t)). Since G is locally compact, the hypotheses on V imply that
every relatively bounded solution converges to M [35, Thm. VIII.6.1, c)], [36, Thm.
1]. Thus, there exists T > 0 such that y(t) ∈ U for all t ≥ T . Consequently,
cV̇ (y(t))+‖ f (y(t))‖ ≤ 0 for every t > T . The last inequality implies that the function
g : [0,∞) → R defined by g(t) = ∫ T +t

T ‖ẏ(τ )‖dτ + c[V (y(T + t))− V (ψ(T, x))]
is nonincreasing (see [31, Lem. 5.6], [32, Thm. 2.1]). Since g(0) = 0, for any
given t ∈ [0,∞), we have

∫ T +t
T ‖ f (y(τ ))‖dτ ≤ c[V (ψ(T, x)) − V (y(T + t))] ≤

c[V (ψ(T, x))− m]. It follows from the last inequality that ẏ is absolutely integrable,
that is, x ∈ A. Since x ∈ B was chosen to be arbitrary, it follows that B ⊆ A. Corol-
lary 4.2 now implies that B = B ∩ A ⊆ R. Thus B ⊆ A ∩ R. In particular, if B = G,
then G = R, that is, the system (1) is convergent relative to G. ��

5 Arc length and stability

In this section, we relate properties of the arc length function to stability. More spe-
cifically, we show that if the arc length function is continuous at an equilibrium, then
the equilibrium is Lyapunov stable, while if the arc length function is continuous
in a neighborhood of the equilibrium, then the equilibrium is semistable. This fact
leads to an arc-length-based Lyapunov result for Lyapunov stability, semistability and
asymptotic stability.

The following result, which relates the stability of an equilibrium to the continuity
properties of the arc length function in a neighborhood of the equilibrium, forms the
basis for subsequent results in this section.

Theorem 5.1 The following statements hold:

(i) Every equilibrium in C is Lyapunov stable relative to G.
(ii) Every equilibrium in int C is semistable relative to G.

(iii) Every isolated equilibrium in int C is asymptotically stable relative to G.
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166 S. P. Bhat, D. S. Bernstein

Proof (i) Let x ∈ C be an equilibrium and letUε ⊆ G be a relatively open neighborhood
of x . Choose ε > 0 such that {z ∈ G : ‖z − x‖ < ε} ⊆ Uε. Since x is an equilib-
rium, S(x) = 0. Since S is continuous at x relative to G, there exists a relatively open
neighborhood V ⊆ G of x such that S(z) < ε/2 for every z ∈ V . Let Uδ = {z ∈
V : ‖z − x‖ < ε/2}. Then Uδ is relatively open in G and, for every z ∈ Uδ and
t ≥ 0, ‖ψ(t, z)− x‖ ≤ ‖ψ(t, z)− z‖ + ‖z − x‖ = ‖ ∫ t

0 f (ψ(τ, z))dτ‖ + ‖z − x‖ ≤∫ ∞
0 ‖ f (ψ(τ, z))‖dτ + ‖z − x‖ = S(z)+ ‖z − x‖ < ε, that is, ψ(t, z) ∈ Uε. Hence,

we conclude that x is Lyapunov stable relative to G.
(ii) Let x be an equilibrium in int C. By (i) above, every equilibrium in int C is

Lyapunov stable relative to G. In particular, x is Lyapunov stable relative to G. Let
Uε ⊆ G be a relatively open and relatively bounded neighborhood of x such that Uε ⊂
C. Let Uδ ⊆ G be a relatively open neighborhood of x such thatψt (Uδ) ⊆ Uε for every
t ≥ 0. For every z ∈ Uδ , Oz ⊆ Uε is bounded relative to G. Thus, Uδ ⊆ C∩B ⊆ A∩B.
Hence, Corollary 4.2 implies that ψ∞ is defined on Uδ . By our construction of Uδ , it
follows that ψ∞(z) ∈ Uε ⊂ C for every z ∈ Uδ . It now follows from (i) that, for every
z ∈ Uδ , ψ∞(z) is Lyapunov stable relative to G. Semistability of x now follows.

(iii) The result follows from (ii) above by noting that every isolated equilibrium
that is semistable relative to G is also asymptotically stable relative to G. ��

We note that the proof of (i) of Theorem 5.1 above is a concise version of the argu-
ment used in the proof of Theorem 3 of [22]. Our next result gives arc-length-based
sufficient Lyapunov conditions for Lyapunov stability, semistability, and asymptotic
stability of an equilibrium.

Theorem 5.2 Let x ∈ G, and suppose there exists a continuous function V : V → R

defined on a relatively open neighborhood V ⊆ G of x, and c ∈ (0,∞) such that (2)
is satisfied for every z ∈ V . Then the following statements hold:

(i) If x is a local minimizer of V relative to G, then x ∈ C, and x is a Lyapunov
stable equilibrium relative to G.

(ii) If x and every equilibrium in V is a local minimizer of V relative to G, then
x ∈ int C and x is a semistable equilibrium relative to G.

(iii) If x is a local minimizer of V relative to G and an isolated equilibrium, then
x ∈ int C and x is asymptotically stable relative to G.

Proof (i) Suppose x is a local minimizer of V relative to G. Let U ⊆ V be a rela-
tively open and relatively bounded neighborhood of x such that V (x) ≤ V (z) for all

z ∈ U . Let r
def= minz∈bd U ‖z − x‖, and note that r > 0. Choose a relatively open

neighborhood Uδ ⊆ U such that |V (z)− V (x)| < r/4c and ‖z − x‖ < r/4 for every
z ∈ Uδ .

Consider z ∈ Uδ . Inequality (2) implies that the function g : [0,∞) → R defined

by g(t)
def= ∫ t

0 ‖ f (ψ(τ, z))‖dτ + c[V (ψ(t, z))− V (z)] has a nonpositive upper right
Dini derivative, and hence nonincreasing (see [31, Lem. 5.6], [32, Thm. 2.1]), at every
t ∈ [0,∞) such thatψ(t, z) ∈ U . We claim thatψ(t, z) ∈ U for every t ≥ 0. To arrive
at a contradiction, suppose there exists t ≥ 0 such that ψ(t, z) /∈ U . Then, by the con-
tinuity of ψ , there exists T > 0 such that ψ(T, z) ∈ bd U , and ψ(t, x) ∈ U for every
t ∈ [0, T ). Since g(0) = 0, we have

∫ T
0 ‖ f (ψ(t, z))‖dt ≤ c[V (z)− V (ψ(T, z))] ≤
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Arc-length-based Lyapunov tests 167

c[V (z)− V (x)] < r
4 . Therefore, r ≤ ‖ψ(T, z)− x‖ ≤ ‖ψ(T, z)− z‖ + ‖z − x‖ <

‖ ∫ T
0 f (ψ(t, z))dt‖ + r

4 ≤ ∫ T
0 ‖ f (ψ(t, z))‖dt + r

4 <
r
2 , which is a contradiction.

The contradiction proves that ψ(t, z) ∈ U for every t ≥ 0. It now follows that g
is nonincreasing on [0,∞). Hence, for every t ≥ 0, we have

∫ t
0 ‖ f (ψ(τ, z))‖dτ ≤

c[V (z) − V (ψ(t, z))] ≤ c[V (z) − V (x)]. On letting t → ∞, the last inequality
implies that z ∈ A and S(z) ≤ c[V (z)− V (x)].

Since z ∈ Uδ was chosen arbitrarily, it follows that Uδ ⊆ A, and

0 ≤ S(z) ≤ c[V (z)− V (x)] (3)

for every z ∈ Uδ . In particular, setting z = x in (3) yields S(x) = 0, so that x is an
equilibrium. Also, the inequality (3) implies that limz→x S(z) = 0 = S(x). Thus, S is
continuous at x and x ∈ C. It now follows from (i) of Theorem 5.1 that x is Lyapunov
stable relative to G.

(ii) Suppose x and every equilibrium in V is a local minimizer of V relative to G,
and let Uε be a relatively open neighborhood of x such that Uε ⊆ V . Since G is locally
compact, we may assume that Uε is relatively bounded in G. By (i) x is a Lyapunov
stable equilibrium and contained in C ⊆ int A. Hence, there exists a relatively open
neighborhood Uδ ⊆ G of x such that Uδ ⊆ A and ψt (Uδ) ⊆ Uε for every t ≥ 0.

We claim that Uδ ∈ C. To prove this, consider z ∈ Uδ . Then Oz ⊂ Uε is relatively
bounded in G, while z ∈ A. Hence, by Corollary 4.2, z ∈ R and ψ∞(z) is defined.
By construction, ψ∞(z) is an equilibrium contained in Uε, and hence ψ∞(z) is a local
minimizer of V . By (i), ψ∞(z) ∈ C. By (ii) of Proposition 3.2, z ∈ C. Since z ∈ Uδ
was chosen arbitrarily, it follows that Uδ ⊆ C.

We have shown that Uδ is a relatively open neighborhood of x that is contained in
C. It follows that x ∈ int C. The result now follows from (ii) of Theorem 5.1.

(iii) Suppose x is a local minimizer of V relative to G and an isolated equilibrium.
Semistability follows from (ii) above. The result then follows by noting that an isolated
semistable equilibrium is asymptotically stable. ��

The arc-length-based results of this section and the previous section depend on
integrability of ‖ f (·)‖ along the trajectories and the continuity properties of the cor-
responding integral, namely, arc length. We briefly mention previous work in which
stability is related to properties of integrals computed along the solution.

Reference [37] explores connections between integrability, asymptotic behavior,
and stability in a more general situation in which (1) is equipped with an output func-
tion h : R

n → R. The main result of [37] is the integral invariance principle (Theorem
1.2 in [37]) which states that if x ∈ R

n has a bounded orbit and the function h ◦ ψ x

is in L p for some p > 0, then the positive limit set of x is contained in the largest
invariant subset of the zero-level set of h. Reference [37] further shows that, under
the additional assumption of zero-state observability, the continuous dependence of
the p-norm of h ◦ψ x on x implies local asymptotic stability of the zero state. Letting
h(x) = ‖ f (x)‖ and p = 1, the integral-invariance principle implies that if the orbit
of x ∈ R

n has finite arc length (and is thus bounded), then the positive limit set of x
is contained in the set of equilibria E . For this special choice of the output function h,
zero-state observability implies that the zero state is the unique equilibrium.
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168 S. P. Bhat, D. S. Bernstein

Reference [38] gives integral characterizations for uniform asymptotic stability of
a set. We believe that an integral version of (2) along with the results of [38] yields
asymptotic stability of the set of equilibrium E , in the case where E is compact.

The results of [37,38] thus yield conclusions on the attractivity and stability of
the set of equilibria. On the other hand, our results yield conclusions on convergence
of trajectories and semistability of individual equilibria that are not necessarily iso-
lated. As illustrated in [3], stability of the set of equilibria implies neither convergence
of individual trajectories to limit points, nor stability of individual equilibria. Thus,
in spite of the connections outlined in the paragraphs above, we emphasize that our
results are independent of the results of [37,38].

Finally, it is interesting to compare (i) and (iii) of Theorem 5.2 with the theorems
of Lyapunov for Lyapunov stability and asymptotic stability, respectively. Lyapunov’s
theorems require the Lyapunov function to be positive definite at the equilibrium, that
is, the Lyapunov function is required to have a local strict minimizer at the equilibrium.
On the other hand, (i) and (iii) of Theorem 5.2 require the Lyapunov function to have a
local nonstrict minimizer at the equilibrium and satisfy the inequality (2). This feature
makes it possible to apply the same Lyapunov function to analyze the stability of more
than one equilibrium and makes our results especially suited for stability analysis of
systems having a continuum of equilibria, as we illustrate in the next section.

6 Application examples

In this section, we present three examples to illustrate possible applications of our
results. The first example involves a system considered in [3], the second involves a
system of three interacting agents, while the third example considers a chemical reac-
tion network. All three examples involve systems having a continuum of equilibria.

6.1 An example from [3]

Consider the system ẏ(t) = f (y(t)), where f : R
2 → R

2 is the continuous vector
field given by

f (x) = sign(x2
1 + x2

2 − 1)|x2
1 + x2

2 − 1|α fr (x)

+ sign(x2
1 + x2

2 − 1)|x2
1 + x2

2 − 1|β fθ (x), (4)

with α, β ≥ 1 and the vector fields fr and fθ given by

fr (x) =
[−x1

−x2

]

, fθ (x) =
[

x2
−x1

]

. (5)

The vector fields fr and fθ point in the radial and circumferential directions, respec-
tively, and thus the parameters α and β determine the rates at which solutions move in
these directions, respectively. This can be seen more clearly by rewriting (4) in terms

of polar coordinates r =
√

x2
1 + x2

2 and θ = tan−1(x2/x1) as
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ṙ = −rsign(r2 − 1)|r2 − 1|α, (6)

θ̇ = −sign(r2 − 1)|r2 − 1|β. (7)

It can be seen from Eqs. (6) and (7) that the set of equilibria E = f −1(0) consists of
the origin x = 0 and the unit circle S1 = {x ∈ R

2 : x2
1 + x2

2 = 1}. As phase portraits
given in [3] show, all solutions of the system starting from nonzero initial conditions
y(0) that are not on the unit circle approach the unit circle. Solutions starting outside
the unit circle spiral in clockwise toward the unit circle while solutions starting inside
the unit circle spiral out counterclockwise. Consequently, all solutions are bounded
and, for every choice of α and β, all solutions converge to the set of equilibria. How-
ever, it has been shown in [3] that in the case where α ≥ β + 1, the trajectories that
converge to the unit circle spiral around an infinite number of times, and the system
is not convergent.

It was shown in [3] that the system is convergent and all nonzero equilibria are
semistable in the case α ≤ β. However, the results of [3] were not applicable in the
case β < α < β+1. In this example, we use Theorem 4.3 to show that the conclusions
of [3] hold for the larger parameter range α < β + 1.

Supposeα < β+1. Let γ = min{α, β} and δ = max{α, β}. Consider the Lyapunov

function V (x) = (γ +1−α)−1|
√

x2
1 + x2

2 −1|γ+1−α . Since α−β < 1, it follows that
γ + 1 − α > 0, and hence V is continuous. With a slight abuse of notation, we write
V (x) = (γ+1−α)−1|r−1|γ+1−α and compute the derivative of V along the solutions
of (6)–(7) as V̇ (x) = −r(r + 1)α|r − 1|γ , which is seen to take nonpositive values
everywhere. Moreover, the set V̇ −1(0) consists solely of equilibrium points and is thus
invariant. We next compute ‖ f (x)‖ =

√
ṙ2 + r2θ̇2 = r

√|r2 − 1|2α + |r2 − 1|2β =
r |r2 − 1|γ√

1 + |r2 − 1|2(δ−γ ) = r(r + 1)γ |r − 1|γ√
1 + |r2 − 1|2(δ−γ ). Consider

the open neighborhood U def= {x ∈ R
2 : x2

1 + x2
2 < 2} of V̇ −1(0). For every x ∈ U ,

we have V̇ (x) ≤ −r |r − 1|γ , while ‖ f (x)‖ ≤ √
2(1 + √

2)γ r |r − 1|γ . Thus every
x ∈ U satisfies (2) for c = √

2(1 + √
2)γ . Since it was shown in [3] that all orbits

of the system are bounded, Theorem 4.3 implies that the system is convergent with
respect to G = R

2 in the case α < β+1. Every nonzero equilibrium of the system lies
on the unit circle and is easily seen to be a local minimizer of the function V . Since
the open set U contains all nonzero equilibria, (ii) of Theorem 5.2 implies that every
nonzero equilibrium of the system is semistable in the case α < β + 1.

6.2 A consensus example

Consider the system on R
3 described by the equations

ẋ1 = c21σ(x2 − x1)+ c31σ(x3 − x1), (8)

ẋ2 = c32σ(x3 − x2)+ c12σ(x1 − x2), (9)

ẋ3 = c13σ(x1 − x3)+ c23σ(x2 − x3), (10)

where σ : R → R is a continuous function.
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Equations (8)–(10) represent the collective dynamics of a group of three agents
which interact by exchanging information. The states of the agents are described by
the scalar variables x1, x2 and x3. The coefficients {ci j : i, j ∈ {1, 2, 3}, i �= j}
appearing in (8)–(10) represent the topology of the information exchange between the
agents. More specifically, given distinct i, j ∈ {1, 2, 3}, the coefficient ci j is 1 if the
agent j receives information from the agent i , and zero otherwise. The communica-
tion topology between the agents can be represented by a graph G having three nodes
such that G has a directed edge from node i to node j if and only if the agent j can
receive information from agent i . It is clear that the coefficients ci j are elements of
the adjacency matrix of the graph G. We assume the communication topology to be
fixed, so that the coefficients ci j are constant.

In this example, we will use results from the previous sections to analyze the col-
lective behavior represented by (8)–(10). More specifically, we are interested in the
consensus behavior of the agents. For this purpose, we make the assumption that the
function σ is strictly increasing and satisfies σ(−a) = −σ(a) for all a ∈ R.

Recall that the directed communication graph G is weakly connected if the underly-
ing undirected graph is connected. In the case of three agents, the weak connectedness
of G is equivalent to the assumption that every agent receives information from, or
delivers information to, at least one other agent. The graph G is said to have a directed
spanning tree if there exists a node i such that, for every other node j �= i , there exists
a directed path from i to j . We will use the results of this paper to show that, under
our assumptions on σ , the following statements hold:

Claim 1: If the communication graph G is weakly connected, then every trajectory
of the system (8)–(10) converges to an equilibrium.

Claim 2: If the communication graph G has a directed spanning tree, then every
trajectory of the system (8)–(10) converges to a semistable consensus state.

First, we claim that every orbit of (8)–(10) is bounded, that is, B = R
3. To prove our

claim, consider the function U : R
3 → R defined by U (x)

def= max{|x1|, |x2|, |x3|}.
The function U is clearly proper and positive definite. Consider x ∈ R

3. Without
loss of generality, assume U (x) = |x1|. Then, either x1 ≥ max{0, x2, x3} or x1 ≤
min{0, x2, x3}. In the first case, (8) implies that ẋ1 ≤ 0, while in the second case
(8) implies that ẋ1 ≥ 0. Using similar arguments for the cases U (x) = |x2| and
U (x) = |x3|, we conclude that U decreases along the trajectories of (8)–(10). Since
U is proper, it follows that B = R

3.
To apply our results, define the Lipschitz function V : R

3 → R by

V (x) = max
i, j

|xi − x j | + max{|xi − x j | : i �= j, ci j + c ji > 0}, (11)

and let f : R
3 → R

3 denote the right-hand side of (8)–(10). The first term on the
right-hand side of (11) is the maximum pairwise separation between the agents, while
the second term is the maximum pairwise separation between communicating pairs
of agents, where the communication may be uni-directional or bidirectional.

To prove Claim 1, assume that the graph G is weakly connected. We claim that
V̇ (x) + ‖ f (x)‖∞ ≤ 0 for every x ∈ R

3, where ‖ · ‖∞ denotes the ∞-norm on R
3
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defined by ‖u‖∞ = max{|u1|, |u2|, |u3|}. Since V −1(0) = {x : x1 = x2 = x3} =
f −1(0), our claim holds for all x ∈ R

3 satisfying x1 = x2 = x3.
Next, consider x ∈ R

3 having all distinct components. By relabeling if necessary,
we may assume that x1 < x2 < x3, so that f1(x) ≥ 0 while f3(x) ≤ 0. In addition,
assume that x2 − x1 �= x3 − x2. There exists a connected open neighborhood U of x
such that z1 < z2 < z3 and z2 − z1 �= z3 − z2 for all z ∈ U .

First, consider the case c13 + c31 > 0. Then V (z) = 2(z3 − z1) for all z ∈ U . Con-
sequently, V is differentiable on U . This allows us to compute the upper right Dini
derivative of V at x along f as V̇ (x) = 2( f3(x)− f1(x)). Hence, V̇ (x)+ | f1(x)| =
2 f3(x)− f1(x) ≤ 0, and V̇ (x)+ | f3(x)| = f3(x)− 2 f1(x) ≤ 0. Our assumptions on
σ and x imply that | f2(x)| ≤ c12σ(x2 − x1)+c32σ(x3 − x2) ≤ (c12 +c32)σ (x3 − x1),
so that V̇ (x) + | f2(x)| ≤ 2 f3(x) − 2 f1(x) + (c12 + c32)σ (x3 − x1) = [−2(c13 +
c31)+ c12 + c32]σ(x3 − x1)+ 2c23σ(x2 − x3)− 2c21σ(x2 − x1), which is nonpos-
itive since c13 + c31 ≥ 1. Thus we conclude that, in the case where c13 + c31 > 0,
V̇ (x)+ ‖ f (x)‖∞ ≤ 0.

Next, consider the case c13 +c31 = 0. The assumption of weak connectedness on G
implies that c12 + c21 ≥ 1 and c23 + c32 ≥ 1. First, assume x2 − x1 > x3 − x2. Then,
as a consequence of our assumptions on σ , we have f2(x) − f1(x) = c12σ(x1 −
x2) + c32σ(x3 − x2) − c21σ(x2 − x1) ≤ (c32 − c12 − c21)σ (x2 − x1), which is
nonpositive since c12 + c21 ≥ 1. Also, z2 − z1 > z3 − z2 for every z ∈ U . Hence
V (z) = (z3 − z1)+ (z2 − z1) for every z ∈ U . The function V is thus differentiable
on U , and we can easily compute V̇ (x) = f3(x) + f2(x) − 2 f1(x). We compute
V̇ (x) − f2(x) = f3(x) − 2 f1(x) ≤ 0. Next, V̇ (x) + f2(x) = f3(x) + 2 f2(x) −
2 f1(x) ≤ 0 by our computation above. We have thus shown that V̇ (x)+ | f2(x)| ≤ 0.
Next, V̇ (x) + | f1(x)| = f3(x) + f2(x) − f1(x) ≤ 0. Finally, V̇ (x) + | f3(x)| =
f2(x) − 2 f1(x) ≤ f2(x) − f1(x) ≤ 0. We conclude that V̇ (x) + ‖ f (x)‖∞ ≤ 0.
Analogous arguments can be used to show that V̇ (x) + ‖ f (x)‖∞ ≤ 0 also holds if
x2 − x1 < x3 − x2.

We have thus far shown that the inequality V̇ (x) + ‖ f (x)‖∞ ≤ 0 holds for every
x in the set Q = {x : maxi xi > mini xi , x j − mini xi �= maxi xi − x j , j = 1, 2, 3}
which is open and dense in R

3. Note that the function V is the pointwise maxi-
mum of a finite collection {V1, . . . , Vr } of distinct functions, where each Vm is a
linear functions of the form x �→ (xi − x j ) + (xk − xl). For each x ∈ R

3, denote
I(x) = {i : Vi (x) = V (x)}, and note that I(x) is a singleton for each x ∈ Q.
Then, for each x ∈ R

3, V̇ (x) = maxk∈I(x) V̇k(x) (see page 38 of [39]). Consider
x ∈ R

3\Q, and choose ε > 0. Suppose k ∈ I(x) is such that V̇ (x) = V̇k(x).
Since Vk is continuously differentiable and Q is dense, there exists z ∈ Q such that∣
∣[V̇k(z)+ ‖ f (z)‖∞] − [V̇k(x)+ ‖ f (x)‖∞]∣∣ < ε. We may further choose z such that
I(z) = {k}. Then V̇ (z) = V̇k(z). We therefore conclude that V̇ (x) + ‖ f (x)‖∞ =
V̇k(x)+‖ f (x)‖∞ ≤ V̇k(z)+‖ f (z)‖∞ + ε = V̇ (z)+‖ f (z)‖∞ + ε ≤ ε. Since ε > 0
was chosen arbitrarily, we conclude that V̇ (x)+‖ f (x)‖∞ ≤ 0 also holds for all x /∈ Q.

Since the inequality (2) is satisfied everywhere with c = 1 and ‖ · ‖ = ‖ · ‖∞,
it follows that V̇ −1(0) = f −1(0) = E . Since B = R

3, Theorem 4.3 implies that
R = A = R

3, that is, the system (8)–(10) is convergent relative to R
3 and all orbits

have finite arc length. This proves Claim 1.
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To prove Claim 2, assume that the graph G has a directed spanning tree. We claim
that the set of equilibria E of the system (8)–(10) is the set of consensus states {x ∈
R

3 : x1 = x2 = x3}. Our assumptions on σ readily imply that if x ∈ R
3 satis-

fies x1 = x2 = x3, then x ∈ E . To complete the proof of our claim, let x ∈ E .
By relabeling the components if necessary, we may assume that x1 = mini xi and
x3 = maxi xi , so that x1 ≤ x2 ≤ x3. To arrive at a contradiction, suppose x1 < x2.
Then, σ(x3 − x1) ≥ σ(x2 − x1) > 0. Since x ∈ E , we conclude from (8) that
c31 = c21 = 0. Since both terms on the right-hand side of (10) are nonpositive
and σ(x1 − x3) < 0, x ∈ E implies that c13 = 0. Since the existence of a span-
ning tree implies weak connectedness of the graph G, it follows that c12 = 1. How-
ever, the right-hand side of (9) has to be zero. Hence, it follows that c32 = 1 and
σ(x3 − x2) = −σ(x1 − x2) �= 0. Now x ∈ E immediately implies that, in (10),
c23 = 0. Our conclusions thus far on the coefficients ci j contradict our assumption
that the communication graph has a directed spanning tree. The contradiction implies
that x1 = x2. Using similar arguments starting from the assumption x2 < x3 shows
that x2 = x3. Thus, E = {x ∈ R

3 : x1 = x2 = x3}.
Since E = V −1(0) and V takes only nonnegative values, it follows that every equi-

librium point of (8)–(10) is a local minimizer of V . Hence, (ii) of Theorem 5.2 implies
that every equilibrium point of (8)–(10) is semistable. In summary, every trajectory of
(8)–(10) converges to a consensus state, and every consensus state is semistable. This
proves Claim 2.

Before proceeding to the next example, we remark that our proof of convergence
in this example required us to show that the inequality (2) was satisfied. A simpler
alternative would be to check the sufficient condition for convergence provided by
Theorem 2.3 of [19], which requires us to verify that the Jacobian of the right-hand
side of (8)–(10) has two eigenvalues with nonzero real parts at every equilibrium.
Note, however, that the results of [19] may not always be applicable to this example

under our assumptions on the function σ . For instance, if σ(a − b) = (a − b)
1
3 , then

the Jacobian of the right-hand side of (8)–(10) is undefined at all equilibrium points,
while if σ(a − b) = (a − b)3, then the Jacobian is zero at all equilibrium points. In
both cases, the results of [19] do not apply.

6.3 An example from chemical kinetics

In the Michaelis–Menten chemical reaction, a substrate S is converted into a product
P through an intermediate complex C in the presence of an enzyme E. The reaction is
depicted as

S + E
k1�
k2

C
k3→ P + E,

where ki > 0, i = 1, 2, 3, are chemical rate constants. In this example, we use
Theorems 4.3 and 5.2 to show that the concentrations of species S, P, C, and E in this
chemical reaction converge to equilibrium values.

Letting y1(t), y2(t), y3(t), and y4(t) denote the instantaneous nonnegative concen-
trations of the species S, C, E, and P, respectively, the law of mass action kinetics
yields [4,7]
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ẏ(t) = y2(t)v1 + y1(t)y3(t)v2, (12)

where v1 = [
k2 −(k2 + k3) k2 + k3 k3

]T and v2 = [−k1 k1 −k1 0
]T. Equation (12)

is of the form (1), where f : R
4 → R

4 is given by f (x) = x2v1 + x1x3v2.
The nonnegative orthant G = {x ∈ R

4 : xi ≥ 0, i = 1, . . . , 4} is positively invari-
ant under the dynamics (12) [7]. Since the vectors v1 and v2 are linearly independent,
it is easy to see that the set of equilibrium concentrations in G is E = E1 ∪ E2, where
E1 = {x ∈ G : x1 = 0, x2 = 0, x3 > 0} and E2 = {x ∈ G : x1 ≥ 0, x2 = 0, x3 = 0}.

It is easy to verify that the function U : G → R given by U (x) = x1 +2x2 +x3 +x4
is proper and satisfies U̇ ≡ 0. It follows that every orbit in G is relatively bounded in
G (see, for instance, [3, Cor. 3.1]).

Choose α ∈ (1, 1 + (k3/k2)), and define V : G → R by V (x) = αx1 + x2. Then,
V (x) ≥ 0 for every x ∈ G and V −1(0) = E1. Thus, every point in E1 is a local
minimizer of V relative to G. Since V̇ : G → R is given by V̇ (x) = [αk2 − (k2 +
k3)]x2 + k1(1 − α)x1x3, it follows that V̇ −1(0) = E and V̇ (x) ≤ 0 for every x ∈ G.

Let P ∈ R
4×4 be given by P

def= [v1 v2 e3 e4], where e3 and e4 are the third and
fourth columns, respectively, of the 4 × 4 identity matrix. Note that P is invertible.

Next, define D ∈ R
4×4 to be the diagonal matrix D

def= diag(k2 + k3 − αk2, (α −
1)k1, 1, 1). Finally, define a norm on R

4 by ‖x‖ = ‖D P−1x‖1, x ∈ R
4, where ‖ · ‖1

denotes the 1-norm on R
4. It is easy to check that ‖ f (x)‖ = (k2 + k3 − αk2)x2 +

(α − 1)k1x1x3 for all x ∈ G. Consequently, V̇ (x)+ ‖ f (x)‖ = 0 for all x ∈ G. Thus,
(2) is satisfied with c = 1. It now follows from Theorem 4.3 that every orbit of the
system (12) has finite arc length, and the system (12) is convergent relative to the
nonnegative orthant. Next, every equilibrium in E1 is a local minimizer of V relative
to the nonnegative orthant. Moreover, every x ∈ E1 has a neighborhood V such that
V ∩ E ⊆ E1, so that every equilibrium in V is a local minimizer of V relative to the
nonnegative orthant. Hence, it follows from (i) and (ii) of Theorem 5.2 that every
equilibrium in E1 is Lyapunov stable relative to the nonnegative orthant while every
equilibrium in E1 is semistable relative to the nonnegative orthant.

7 Converse arc length results

In this section, we explore to what extent the converses of the arc-length-based results
presented in the previous two sections hold.

7.1 Converse results for convergence

In this subsection, we present a partial converse to Theorem 4.3. Recall that Theo-
rem 4.3 depends on Corollary 4.2, which in turn is based on Lemma 4.1. In general,
the converse of Lemma 4.1 does not hold. Consequently, the converse of Corollary 4.2
does not hold in general as the following counterexample shows.

Example 7.1 Consider the system (1) with f : R
2 → R

2 given by f (x) =√
x2

1 + x2
2 fr (x) + fθ (x), where the vector fields fr and fθ are given by (5). In this
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Fig. 2 Convergent trajectories
with infinite arc length

case, the system (1) has a unique equilibrium at x = 0. By considering the Lyapunov
function V (x) = x2

1 +x2
2 and computing V̇ (x) = −2(x2

1 +x2
2 )

3/2, it can be easily ver-
ified that the equilibrium x = 0 is globally asymptotically stable. Hence, the system

(1) is convergent relative to G def= R
2.

It is convenient to introduce the function r : R
2 → R given by r(x) =

√
x2

1 + x2
2 .

Then, for every x ∈ R
2, ṙ(x) = −(r(x))2. This differential equation for r can be

easily integrated to yield r(ψ(t, x)) = r(x)/(1 + r(x)t) for every x ∈ R
2 and t ≥ 0.

It is easy to verify that, for every x ∈ R
2, ‖ f (x)‖2 = r(x)

√
1 + (r(x))2 ≥ r(x),

where ‖ · ‖2 is the Euclidean norm on R
2. Hence, for every t ≥ 0 and x ∈ R

2, we
have

∫ t
0 ‖ f (ψ(τ, x))‖2dτ ≥ ∫ t

0 r(ψ(τ, x))dτ = ln(1 + r(x)t). Clearly, the integral
∫ t

0 ‖ f (ψ(τ, x)‖dτ is unbounded in t for every x ∈ R
2. Thus, the system considered

in this example is convergent, yet the orbit of every nonequilibrium point has infinite
arc length. Figure 2 depicts the phase portrait of this system.

Intuitively, we expect that a convergent trajectory that does not curl up upon itself
like the trajectories depicted in Fig. 2, will necessarily have finite arc length. Our
next result provides a partial converse to Lemma 4.1 by formalizing this idea. The
condition that a trajectory should not curl up upon itself is formalized in terms of
the set of limit points of the unit tangent vector to the trajectory as time diverges to
infinity. The proof requires a result which is stated and proved as Lemma A.1 in the
appendix. Before stating the next result, we recall relevant definitions and introduce
the necessary notation.

We recall that a set K ⊆ G is connected if and only if every pair of relatively open
sets Ui ⊆ G, i = 1, 2, satisfying K ⊆ U1 ∪ U2 and Ui ∩ K �= ∅, i = 1, 2, have a
nonempty intersection. Also, a connected component of the set K ⊆ G is a connected
subset of K that is not properly contained in any connected subset of K.

Given a set K ⊆ R
n , let co K denote the union of the convex hulls of the connected

components of K. Given K ⊆ R
n and x ∈ R

n , we denote dist(x,K) = inf y∈K ‖x−y‖.
Finally, let Sn−1 = {x ∈ R

n : ‖x‖ = 1} denote the unit sphere in R
n .
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Lemma 7.2 Let y : [0,∞) → R
n be a continuously differentiable function such that

ẏ(t) �= 0 for all t ≥ 0. Let L denote the set of all subsequential limits of sequences

of the form
{

1
‖ẏ(ti )‖ ẏ(ti )

}
, where {ti } is a divergent sequence in [0,∞). Suppose

0 /∈ co L. If y([0,∞)) is bounded, then ẏ is absolutely integrable and limt→∞ y(t)
exists.

Proof By Lemma A.1 of the appendix, L is connected and compact. Hence, co L is the

convex hull of L and, by compactness of L, is closed. Therefore, r
def= dist(0, co L) >

0. Let U def= {v ∈ R
n : dist(v, co L) < r/2}. It is easy to verify that U is convex

and does not contain 0. The Hahn–Banach separation theorem [40, Thm. 4.6.3] now
implies that there exists p ∈ R

n and δ > 0 such that ‖p‖ = 1 and, for every u ∈ U ,
pTu ≥ δ. Let M = max{pTu : u ∈ R

n, ‖u‖ = 1},1 so that pTu ≤ M‖u‖ for every
u ∈ R

n .
For every t ∈ [0,∞), denote g(t) = 1

‖ẏ(t)‖ ẏ(t). Since U is an open neighborhood
of L, by Lemma A.1, there exists T1 > 0 such that g(t) ∈ U for every t > T1.
It follows that pTg(t) ≥ δ for every t > T1. Now, suppose y([0,∞)) is bounded,
and let N > 0 be such that ‖y(t) − y(0)‖ < N for every t ≥ 0. Then, for every
t ≥ T1, it follows that M N > M‖y(t)− y(0)‖ ≥ pT[y(t)− y(0)] = ∫ t

0 pT ẏ(τ )dτ =
∫ T1

0 pT ẏ(τ )+ ∫ t
T1

pTg(τ )‖ẏ(τ )‖dτ ≥ ∫ T1
0 pT ẏ(τ )+ δ

∫ t
T1

‖ẏ(τ )‖dτ .

The arguments above show that the increasing function t �→ ∫ t
0 ‖ẏ(τ )‖dτ is

bounded above. It follows that ẏ is absolutely integrable. Lemma 4.1 now implies
that limt→∞ y(t) exists. ��

The next result follows as a corollary of Lemma 7.2, and is a partial converse to
Corollary 4.2. To state the result, we will need to consider the limiting direction set of
a vector field introduced in [3].

Let x ∈ G\int E . Then, a vector v ∈ Sn−1 is a limiting direction of f at x relative to G
if there exists a sequence {xi } in G\E such that xi → x and limi→∞ 1

‖ f (xi )‖ f (xi ) = v.
The limiting direction set Lx of f at x relative to G is the set of all limiting directions
of f at x relative to G. Clearly, Lx is nonempty and compact. Moreover, for every
ε > 0, there exists a relatively open neighborhood Uε ⊆ G of x such that, for every

z ∈ Uε\E , dist
(

1
‖ f (z)‖ f (z),Lx

)
< ε.

Corollary 7.3 Suppose 0 �∈ co Lz for every z ∈ E\int E . Then, R = A ∩ B, that is,
a trajectory of (1) converges to a limit in G if and only if its orbit is bounded relative
to G and has finite arc length.

Proof Consider x ∈ R, and let y = ψ x .
First suppose there exists t ≥ 0 such that ẏ(t) = 0. Then, y(t) is an equilibrium

and hence ẏ(t + h) = 0 for every h > 0. Consequently, S(x) is defined and hence
x ∈ A.

Next suppose that ẏ(t) �= 0 for every t ≥ 0, and let L denote the set of all sub-

sequential limits of sequences of the form
{

1
‖ẏ(ti )‖ ẏ(ti )

}
, where {ti } is a divergent

1 Note that M = ‖p‖ if ‖ · ‖ is the Euclidean norm.
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sequence in [0,∞). Let z = ψ∞(x), so that z ∈ E . Since ẏ(t) �= 0 for all t ≥ 0, it
follows that z /∈ int E , and hence 0 �∈ co Lz . Since y satisfies (1), L is contained in
Lz , so that co L ⊆ co Lz . We conclude that 0 /∈ co L. It now follows from Lemma 7.2
that S(x) = ∫ ∞

0 ‖ẏ(τ )‖dτ exists and x ∈ A. Since x ∈ R was chosen to be arbitrary,
it follows that R, which is contained in B, is also contained in A, that is, R ⊆ A ∩ B.
The reverse inclusion follows from Corollary 4.2. ��

It is interesting to revisit Example 7.1 in light of Corollary 7.3.
Example 7.1 revisited. All trajectories of the system considered in Example 7.1

converge to the origin. However, every nontrivial orbit of the system has infinite arc
length. In this case, Corollary 7.3 implies that at least one connected component of
the limiting direction set at the origin contains 0 in its convex hull. We will next verify
that this is indeed the case.

Writing x1 = r cos θ and x2 = r sin θ yields

‖ f (x)‖−1 f (x) = − r√
1 + r2

[
cos θ
sin θ

]

+ 1√
1 + r2

[
sin θ

− cos θ

]

for the system considered in Example 7.1. It follows that every limit point of
‖ f (x)‖−1 f (x) as x → 0 is of the form [sin α,− cosα]T, where α ∈ R. Conversely,
for every α ∈ R, the sequence {xk} given by xk = [k−1 cosα, k−1 sin α]T is such that
xk → 0 and ‖ f (xk)‖−1 f (xk) → [sin α,− cosα]T as k → ∞. It follows that the
limiting direction set L0 at the origin is the unit circle S1. Since S1 is connected, co L0
is simply the convex hull of S1, which contains 0.

The following theorem provides a partial converse to Theorem 4.3:

Theorem 7.4 Suppose 0 �∈ co Lz for every z ∈ E . If (1) is convergent relative to
G, then there exists a lower semicontinuous function V : G → [0,∞) such that the
inequality (2) holds on G with c = 1.

Proof Suppose (1) is convergent relative to G, that is, G = R. By Corollary 7.3,
G = R ⊆ A ⊆ G, that is, G = A. Letting V : G → [0,∞) be given by V (x) = S(x),
it follows from Proposition 3.1 that V is lower semicontinuous on G and V̇ (x) =
−‖ f (x)‖ for every x ∈ G. Thus, the inequality (2) is satisfied on G with c = 1. ��

7.2 Converse results for stability

In general, the converses of the statements (i), (ii) and (iii) in Theorem 5.1 do not hold.
For instance, the system considered in Example 7.1 had an asymptotically stable equi-
librium such that the arc length function was undefined at every point other than the
equilibrium. The following example demonstrates a semistable equilibrium such that
the arc length function is defined everywhere on a neighborhood of the equilibrium
and yet unbounded on every neighborhood of the equilibrium:
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Example 7.5 Let g : [0,∞)× R → [0,∞) be the continuous function given by

g(a, b) = b2, a ≤ b,

= 1 + (b2 − 1)(b − a + 1), b ≤ a < b + 1,

= 1, a ≥ b + 1.

For each b ∈ R, the function a �→ g(a, b) is globally bounded and piecewise linear.
Hence, for each b ∈ R, the function a �→ [g(a, b)]−1 is integrable on every com-
pact interval of [0,∞) and the function a �→ ∫ a

0 [g(τ, b)]−1dτ is continuous. Also,
g(a, b) ≥ 0 for every (a, b) ∈ [0,∞)×R, with equality if and only if (a, b) = (0, 0).

Let r : R
3 → [0,∞) be the function defined by r(x) =

√
x2

1 + x2
2 . By the Urysohn

lemma [41, Thm. 4.3.1], there exists a continuous function h : R
3 → [0, 1] such that

h(x) = 0 for every x ∈ R
3 satisfying r(x) ≥ x3 + 1, and h(x) = 1 for every x ∈ R

3

satisfying r(x) ≤ x3. Consider the system (1), where f : R
3 → R

3 is given by

f (x) = g(r(x), x3)

⎡

⎣
−x1
−x2

0

⎤

⎦ − h(x)

⎡

⎣
x2

−x1
0

⎤

⎦ . (13)

Letting ‖ · ‖ denote the Euclidean norm on R
3, it follows that

‖ f (x)‖ = r(x)
√
(g(r(x), x3))2 + (h(x))2,

which implies that the set of equilibria is E = {x ∈ R
3 : r(x) = 0}.

For every x ∈ R
3, let Gx denote the set {z ∈ R

3 : z3 = x3}. It is easy to show that,
for every x ∈ R

3, Gx is positively invariant. Since the function r is proper relative
to Gx and ṙ(x) = −r(x)g(r(x), x3) ≤ 0 for every x ∈ R

3, it follows that, for every
x ∈ R

3, every orbit in Gx is bounded relative to Gx .
We claim that Gx ⊆ A for every x ∈ R

3. To prove this, consider the continuous
function V : R

3 → R given by V (x) = ∫ r(x)
0 [g(τ, x3)]−1dτ . The derivative of V

along the solutions of (1) is given by V̇ (x) = −r(x), so that V̇ −1(0) = E . Consider
x ∈ R

3, and let M = max{1, x2
3 }. Then, g(r(z), z3) ≤ M for every z ∈ Gx . Hence,

for every z ∈ Gx , ‖ f (z)‖ = r(z)
√
(g(r(z), x3))2 + (h(z))2 ≤ −V̇ (z)

√
M2 + 1. The-

orem 4.3 now applies with c = √
M2 + 1 and G = U = Gx . Hence, Theorem 4.3

implies that Gx ⊆ A.
Since Gx ⊆ A ∩ B for every x ∈ R

3 and since R
3 = ∪x∈R3Gx , it follows from

Corollary 4.2 that R
3 = R, that is, the system (1) is convergent relative to R

3.
Next we claim that every equilibrium of the system (1) is Lyapunov stable rel-

ative to R
3. To see this, consider x ∈ E , and let Vx : R

3 → R be the function
Vx (z) = (r(z))2 + (z3 − x3)

2. Then, Vx is positive definite at x while V̇x (z) =
−2(r(z))2g(r(z), z3) is negative semidefinite at x . Hence it follows that x is Lyapu-
nov stable. Thus, every solution of (1) converges to a Lyapunov stable equilibrium
and the system (1) is semistable. In particular, 0 is semistable relative to R

3.
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Next consider x ∈ R
3 satisfying r(x) ≤ x3 and x3 > 0. Since every z ∈ R

3

satisfying r(z) ≤ z3 satisfies h(z) = 1, g(r(z), z3) = z2
3 and ṙ(z) = −z2

3r(z) ≤ 0,
it follows that ψ(t, x) ∈ {z ∈ R

3 : r(z) ≤ z3} for every t ≥ 0. In addition, (13)
implies that ψ(t, x) ∈ {z ∈ R

3 : z3 = x3} for all t ≥ 0. Hence, for every t ≥ 0,
ṙ(ψ(t, x)) = −r(ψ(t, x))x2

3 , so that r(ψ(t, x)) = e−x2
3 t r(x) for every t ≥ 0. There-

fore, for every t ≥ 0, ‖ f (ψ(t, x))‖ = e−x2
3 t r(x)

√
1 + x4

3 . It is easy to evaluate

S(x) = r(x)
√

1 + x4
3/x2

3 .

Now consider the sequence {xk}, where, for each k =1, 2, . . . , xk = [k−1, 0, k−1]T.
For each k, xk ∈ {z ∈ R

3 : r(z) ≤ z3}. Hence, S(xk) = k
√

1 + k−4. It is easy to
see that xk → 0 while S(xk) → ∞ as k → ∞. Thus, the origin is a semistable
equilibrium contained in the interior of the set A, and a point of discontinuity of the
arc length function. This demonstrates that the converse of Theorem 5.1 does not hold
in general.

While Example 7.5 demonstrates that the converse of Theorem 5.1 does not hold
in general, the following result shows that the converse does hold in the case where
no connected component of the limiting direction set at the equilibrium contains 0 in
its convex hull.

Theorem 7.6 Let x ∈ E\int E and suppose 0 /∈ co Lx . Then the following hold:

(i) If x is Lyapunov stable relative to G, then x ∈ C.
(ii) If x is semistable relative to G, then x ∈ int C.

Proof (i) Suppose x is Lyapunov stable relative to G. By Lemma A.2 from the appen-
dix, there exists a bounded open neighborhood U ⊆ R

n of Lx such that 0 /∈ co U .
Denote r1 = inf{‖w‖ : w ∈ co U} so that r1 > 0.

Choose ε > 0 and let Vε ⊆ G be a relatively open neighborhood of x such that
‖ f (z)‖−1 f (z) ∈ U for every z ∈ Vε\E and ‖z − x‖ < r1ε/2 for every z ∈ Vε. By
Lyapunov stability, there exists a relatively open neighborhood Vδ ⊆ G of x such that
ψt (Vδ) ⊆ Vε for all t ≥ 0.

First, consider z ∈ Vδ ∩ E . Then, z satisfies |S(z)− S(x)| = S(z) = 0 < ε.
Next, consider z ∈ Vδ\E and let T = sup{t > 0 : f (ψ(t, z)) �= 0}. Define

g : [0, T ) → R
n by g(t) = ‖ f (ψ(t, z))‖−1 f (ψ(t, z)). The function g is continuous

and hence g([0, T )) is a connected subset of U . Let W denote the connected compo-
nent of U containing g([0, T )). Since W is connected and bounded, co W is convex
and compact. Since W ⊆ U , it follows that 0 /∈ co W . Let r2 = inf z∈co W ‖z‖, so
that r2 ≥ r1. On applying Theorem 4.6.3 of [40], it follows that there exists p ∈ R

n

such that ‖p‖i = 1 and pTw ≥ r2 for all w ∈ co W , where ‖p‖i
def= max{|pTw| :

w ∈ R
n, ‖w‖ = 1} denotes the induced norm of the linear function2 w �→ pTw.

Therefore, for every t ∈ [0, T ),

2 If ‖ · ‖ is the Euclidean norm, then ‖p‖i = ‖p‖.
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r1ε > ‖ψ(t, z)− x‖ + ‖x − z‖
≥ ‖p‖i‖ψ(t, z)− z‖
≥ pT(ψ(t, z)− z)

=
t∫

0

pTg(τ )‖ f (ψ(τ, z))‖dτ

≥ r2

t∫

0

‖ f (ψ(τ, z))‖dτ.

Letting t → T , it follows that z ∈ A and S(z) < r1ε/r2 ≤ ε.
Thus we have shown that, for every ε > 0, there exists a relatively open neigh-

borhood Vδ ⊆ G such that Vδ ⊆ A and |S(z) − S(x)| = S(z) < ε for all z ∈ Vδ . It
follows that x ∈ C.

(ii) Suppose x is semistable relative to G. By Lemma A.2, there exists an open
neighborhood U ⊆ R

n of Lx such that 0 /∈ co U . Let V be an open neighborhood of
Lx such that V ⊆ U . There exists a relatively open neighborhood V1 ⊆ G of x such
that every solution in V1 converges to a Lyapunov stable equilibrium and, for every
z ∈ V1\E , ‖ f (z)‖−1 f (z) ∈ V . It follows that Lz ⊆ V ⊆ U for every z ∈ V1\int E .
Since 0 /∈ co U , it follows that 0 /∈ co Lz for every z ∈ V1\int E . By (i) above, it
follows that every equilibrium in V1\int E is contained in C ⊆ int A. Since every
equilibrium in int E is clearly in C, it follows that every equilibrium in V1 is contained
in C ⊆ int A. Let V2 ⊂ G be a relatively open neighborhood of x such that V2 ⊆ V1.
By Lyapunov stability of x , there exists a relatively open neighborhood V3 ⊆ G of
x such that ψt (V3) ⊆ V2 for every t ≥ 0. It follows that ψ∞(V3) ⊆ V2 ⊆ V1. Now
consider z ∈ V3. Then,ψ∞(z) is an equilibrium in V1 and hence contained in C. It now
follows from (ii) of Proposition 3.2 that z ∈ C. Since z ∈ V3 was chosen arbitrarily,
we conclude that V3 ⊆ C. Thus, V3 is a relatively open neighborhood of x that is
contained in C, and hence x ∈ int C. ��

The following result yields a partial converse to Theorem 5.2:

Theorem 7.7 Let x ∈ E\int E and suppose 0 /∈ co Lx . Then the following hold:

(i) If x is Lyapunov stable relative to G, then there exists a relatively open neigh-
borhood V ⊆ G of x and a lower semicontinuous function V : V → R

n such
that x is a local minimizer of V relative to G, V is continuous at x, and V̇ is
continuous on V and satisfies the inequality (2) on V with c = 1.

(ii) If x is semistable relative to G, then there exists a relatively open neighborhood
V ⊆ G of x and a continuous function V : V → G such that every equilibrium in
V is a local minimizer of V , and V̇ is continuous on V and satisfies the inequality
(2) on V with c = 1.

Proof (i) Suppose x is Lyapunov stable relative to G. It follows from (i) of Theo-
rem 7.6 that x ∈ C, that is, the arc length function S is defined on a relatively open
neighborhood V ⊆ G of x and continuous at x . Define V : V → R by V (z) = S(z)
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for every z ∈ V . Then, V (z) ≥ 0 for every z ∈ V while V (x) = 0. Thus, x is a local
minimizer of V relative to G. By Proposition 3.1, V is lower semicontinuous on V ,
while V̇ is given by V̇ (z) = −‖ f (z)‖, z ∈ V , and is clearly continuous. Inequality
(2) is thus satisfied on V with c = 1.

(ii) Suppose x is semistable relative to G. By (ii) of Theorem 7.6, x ∈ int C, that is,
the arc length function S is defined and continuous on a relatively open neighborhood
V ⊆ G of x . Define V : V → R by V (z) = S(z) for every z ∈ V . Then, V (z) ≥ 0 for
every z ∈ V while V (z) = 0 for every z ∈ V ∩ E . Thus, every equilibrium in V is a
local minimizer of V relative to G. By Proposition 3.1, V̇ is given by V̇ (z) = −‖ f (z)‖,
z ∈ V , which is clearly continuous. Inequality (2) is thus satisfied on V with c = 1.

��

Remark 7.8 It is easy to see that any equilibrium in the relative interior of E is semista-
ble relative to G. Also, the arc length function is identically zero, and hence continuous,
in a neighborhood of an equilibrium in int E . Hence, Theorems 7.6 and 7.7 are stated
only for equilibria that are not in the relative interior of E .

Remark 7.9 Theorems 7.6 and 7.7 state that the converses of statements (i) and (ii) of
Theorems 5.1 and 5.2, respectively, hold under the assumption that no connected com-
ponent of the limiting direction set contains 0 in its convex hull. Statements (i) and (ii)
of Theorems 5.1 and 5.2 deal with Lyapunov stability and semistability, respectively,
while statement (iii) in each of these theorems deals with asymptotic stability. It is
natural to ask if the converses of statements (iii) in Theorems 5.1 and 5.2 hold under
the assumption mentioned above. However, a well-known result from [42] states that
in the case where G = R

n , the image of every open neighborhood of an asymptotically
equilibrium under the vector field f contains 0 in its interior. This implies that if x is
an asymptotically stable equilibrium of (1), then Lx = Sn−1, so that 0 ∈ co Lx . Thus,
the assumption made in Theorems 7.6 and 7.7 on the limiting direction set does not
apply in the case of asymptotically stable equilibria.

8 Conclusion

We have shown that properties of the arc length function can be used to deduce con-
vergence of trajectories and stability of equilibria. It is possible to infer properties
of the arc length function by using Lyapunov functions. This leads to arc-length-
based Lyapunov tests for convergence and stability. These tests do not require the
Lyapunov function to be positive definite, and can yield stability conclusions for a
continuum of equilibria using a single Lyapunov function. This makes our results
especially well suited to applications that naturally involve a continuum of equilib-
ria, as our examples illustrate. The converses of our results hold under the condition,
captured in terms of the limiting direction set, that trajectories do not curl up upon
themselves.

Acknowledgments The authors thank three anonymous reviewers for bringing to the authors’ attention
a significant body of recent literature involving the use of arc length for studying convergence and stability.
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A Appendix

Proof of Lemma 4.1 First we note that limt→∞ y(t) exists if and only if, for every
ε > 0, there exists Tε > 0 such that ‖y(t + h) − y(t)‖ < ε for every h ≥ 0 and
t > Tε.

For every t, h ≥ 0, we have

‖y(t + h)− y(t)‖ ≤
t+h∫

t

‖ẏ(τ )‖dτ ≤
∞∫

t

‖ẏ(τ )‖dτ. (14)

Suppose ẏ is absolutely integrable. Then, for every ε > 0, there exists Tε > 0 such
that the second integral in Eq. (14) is less than ε for all t > Tε. Hence, we conclude
that limt→∞ y(t) exists. ��

The assertions of the following lemma are stated without proof on page 129 of [43]:

Lemma A.1 Let y : [0,∞) → R
n be continuously differentiable and suppose that

ẏ(t) �= 0 for all t ≥ 0. Let L denote the set of all subsequential limits of sequences of

the form
{

1
‖ẏ(ti )‖ ẏ(ti )

}
, where {ti } is a increasing divergent sequence in [0,∞). Then

L is nonempty, compact and connected, and, for every open neighborhood U ⊆ R
n

of L, there exists T > 0 such that 1
‖ẏ(t)‖ ẏ(t) ∈ U for all t > T .

Proof Define g : [0,∞) → Sn−1 by g(t) = ‖ẏ(t)‖−1 ẏ(t). Our hypotheses on y
imply that g is continuous. It is easy to show that L = ∩t≥0Bt , where, for every

t ∈ [0,∞), Bt
def= g([t,∞)). For every t ∈ [0,∞), Bt is a closed subset of the com-

pact set Sn−1. Hence, for every t ∈ [0,∞), Bt is compact. Also, the family of sets
{Bt }t≥0 is nested in the sense Bt ⊆ Bh for every t ≥ h ≥ 0. Hence, Theorem 3.5.9 in
[41] implies that L is nonempty and compact.

For each t ∈ [0,∞), Bt is the closure of the continuous image of a connected set,
and hence connected. To show that L is connected, consider two disjoint open sets
U ,V ⊂ R

n such that L ∩ U �= ∅ and L ∩ V �= ∅. Since L = ∩t≥0Bt , for each t ,

Bt ∩ U �= ∅ and Bt ∩ V �= ∅. For each t , let Mt
def= Bt\(U ∪ V). Then, for each

t ∈ [0,∞), Mt is a closed subset of the compact set Bt and hence compact. Since Bt is
connected for each t , it follows thatMt �= ∅. Also, the family of sets {Mt }t≥0 is nested
in the sense Mt ⊆ Mh for every t ≥ h ≥ 0. Hence, Theorem 3.5.9 in [41] implies
that ∩t≥0Mt �= ∅. Also, ∩t≥0Mt ⊆ (∩t≥0Bt )\(U ∪V) = L\(U ∪V). It follows that
L �⊆ U ∪ V . Since U and V were chosen arbitrarily, it follows that L is connected.

Next, let U ⊆ R
n be an open neighborhood of L, and, for every t ∈ [0,∞),

define Nt
def= Bt\U . Then, for every t ∈ [0,∞), Nt is a closed subset of the compact

set Bt , and hence compact. Moreover, {Nt }t≥0 is a nested family of sets. Suppose
Nt is nonempty for every t ≥ 0. Then Theorem 3.5.9 in [41] implies that ∩t≥0Nt

is nonempty. However, by construction, ∩t≥0Nt = ∩t≥0(Bt\U) = (∩t≥0Bt )\U =
L\U = ∅. This contradiction implies that there exists T ≥ 0 such that NT = ∅,
that is, BT ⊆ U . Since g(t) ∈ BT for every t ≥ T , it follows that ‖ẏ(t)‖−1 ẏ(t) ∈ U
for every t ≥ T . ��
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For the next result, it will be useful to recall some basic facts on set convergence.
The limit superior of a sequence {Wk} of subsets of R

n denoted lim supk→∞ Wk , is the
set of all subsequential limits of sequences {wk} in R

n such thatwk ∈ Wk for every k,
while the limit inferior of the sequence, denoted by lim infk→∞ Wk , is the set of limits
of convergent sequences {wk} in R

n such that wk ∈ Wk for every k. The sequence
{Wk} converges to the set W ⊆ R

n if W = lim infk→∞ Wk = lim supk→∞ Wk .
It follows from [44, Thm. 1.1.7], [45, Thm. 4.18] that every sequence of nonempty
subsets of a bounded subset of R

n has a subsequence that converges to a nonempty
set. The limit of a convergent sequence of connected subsets of a bounded set is also
connected. See, for instance, Lemma A.1 in [3].

Lemma A.2 Suppose x ∈ G\int E and 0 /∈ co Lx . Then, for every ε > 1, there exists
an open neighborhood U ⊆ R

n of Lx such that 0 /∈ co U and everyw ∈ co U satisfies
‖w‖ ≤ ε.

Proof For each k = 1, 2, . . . , let Uk = {w ∈ R
n : dist(z,Lx ) < 1/k}. For every k,

Uk is a bounded open set containing Lx , Uk is compact, Uk+1 ⊂ Uk and ∩kUk = Lx .
We claim that there exists k such that 0 /∈ co Uk .

To prove our claim by contradiction, suppose that 0 ∈ co Uk for every k. Then, for
each k, there exist a connected component of Wk of Uk and a vector vk contained in
the convex hull of Wk such that the sequence {vk} converges to 0. Each Wk is a subset
of the bounded set U1. Hence, there exists an increasing sequence {k j }∞j=1 of integers
such that the subsequence {Wk j }∞j=1 converges. Let W = lim j→∞ Wk j . Then, W
is the limit of a sequence of connected subsets of the bounded set U1, and is hence
connected [3, Lem. A.1].

Next, consider w ∈ W . There exists a sequence {w j } such that w j ∈ Wk j ⊆ Uk j

for every j , and lim j→∞w j = w. Since {Uk} is a decreasing sequence of sets, for
every k, the sequence {w j } is eventually contained in Uk . Hence, w ∈ Uk for every k,
that is w ∈ ∩kUk = Lx . Since w ∈ W was arbitrary, it follows that W ⊆ Lx . Hence,
the connected set W is contained in a connected component of Lx .

Carathéodory’s theorem [46, Thm. 17.1] implies that, for every j , there exist vec-
tors wi

j ∈ Wk j , i = 1, . . . , n, and scalars λi
j ∈ [0, 1], i = 1, . . . , n, such that

λ1
j +· · ·+λn

j = 1 and λ1
jw

1
j +· · ·+λn

jw
n
j = vk j . For each i = 1, . . . , n, let λi ∈ [0, 1]

andwi be subsequential limits of the bounded sequences {λi
j }∞j=1 and {wi

j }∞j=1, respec-

tively. Then, for every i , wi ∈ lim j→∞ Wk j = W , while λ1 + · · · + λn = 1 and
λ1w1 + · · · + λnwn = lim j→∞ vk j = 0. Thus, 0 ∈ co W ⊆ co Lx , which is a

contradiction. Hence, we conclude that there exists k such that 0 /∈ co Uk .
Next let ε > 1, and choose an integer i such that i > max{k, (ε − 1)−1}. Finally,

let U = Ui . Then, every w ∈ U satisfies dist(w,Lx ) < i−1 < (ε − 1), while co U ⊆
co Uk , so that 0 /∈ co U . Considerw ∈ U . Since Lx is compact, there exists z ∈ Lx such
that ‖w− z‖ = dist(w,Lx ) < ε−1. Then, ‖w‖ ≤ ‖w− z‖+‖z‖ < (ε−1)+1 = ε.
Sincew ∈ U was chosen to be arbitrary, it follows that everyw ∈ U satisfies ‖w‖ < ε.
Since the open ball {w ∈ R

n : ‖w‖ < ε} is convex and contains U , it follows that
co U ⊆ {w ∈ R

n : ‖w‖ ≤ ε}. Thus, U is an open neighborhood of Lx such that
0 /∈ co U and every w ∈ co U satisfies ‖w‖ ≤ ε. ��
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