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has no invariant zeros, without assuming that the initial condition is known, andwithout assuming that at
least oneMarkov parameter has full column rank. Algorithms based on the generalized inverse of a block-
Toeplitz matrix are given for unknown-input state estimation and simultaneous input reconstruction and
state estimation. In both cases, the unknown input is an arbitrary signal. Both algorithms are deadbeat,
whichmeans that exact input reconstruction and state estimation are achieved in a finite number of steps.
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1. Introduction

State estimation uses measurements of the output of a sys-
tem to produce statistically optimal estimates of the states of
the system (Crassidis & Junkins, 2011; Lewis, Xie, & Popa, 2007;
Simon, 2006). These estimates assume that the exogenous input
consists of a known deterministic component, which is replicated
in the estimator, and an unknown stochastic disturbance, which
is assumed to be white and zero mean. If the deterministic input
is unknown, then it cannot be replicated in the observer, and thus
the state estimates may be biased. To remedy this problem, state
estimators have been developed to provide unbiased state esti-
mates in the presence of unknown, deterministic inputs (Darouach
& Zasadzinski, 1997; Glover, 1969; Hou & Patton, 1998a; Kitanidis,
1987; Valcher, 1999).

An alternative approach is to extend state estimation to include
input estimation, where the goal is to estimate the deterministic
component of the exogenous input (Ansari & Bernstein, 2018;
Chakrabarty, Ayoub, Zak, & Sundaram, 2017; Chen & Chen, 2010;
Corless & Tu, 1998; Fang, de Callafon, & Cortes, 2013; Fang, Shi, &
Yi, 2011; Floquet & Barbot, 2006; Gillijns & De Moor, 2007; Ho &
Ma, 2007; Hou & Patton, 1998b; Hsieh, 2000, 2009; Khaloozadeh &
Karsaz, 2009; Kirtikar, Palanthandalam-Madapusi, Zattoni, & Bern-
stein, 2011; Lu, van Kampen, de Visser, & Chu, 2016;Massey & Sain,
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1968; Orjuela, Marx, Ragot, & Maquin, 2009; Palanthandalam-
Madapusi & Bernstein, 2009; Sain & Massey, 1969; Sanchez &
Benaroya, 2014; Willsky, 1974; Xiong & Saif, 2003; Yang, Zhu,
& Sun, 2013; Yong, Zhu, & Frazzoli, 2016). In many applications,
knowledge of the input signal is of independent interest and, in
some cases, may be of greater interest than the estimates of the
states (Rajamani, Wang, Nelson, Madson, & Zemouche, 2017). The
terminology input reconstruction is used in the case of deterministic
analysis, just as an observer is the deterministic analogue of an
estimator.

In light of state estimation, which assumes a known determin-
istic input and an unknown zero-mean stochastic input, it may be
somewhat surprising that it is indeed possible to estimate not only
the states but also, in many cases, the unknown input. The benefit
of state and input estimation is the fact that knowledge of the input
can often vastly improve the accuracy of the state estimates.

The present paper considers input reconstruction within a
discrete-time setting. In particular, novel algorithms are given for
unknown-input state estimation and simultaneous input recon-
struction and state estimation in terms of the generalized inverse
of a block-Toeplitzmatrix. In Gillijns and DeMoor (2007) and Yong
et al. (2016) it is assumed that the first Markov parameter H1 has
full column rank, which implies that the plant has relative degree
1. Likewise, the approach of Kirtikar et al. (2011) is limited to the
case where at least one Markov parameter has full column rank.
The present paper considers a more general case where noMarkov
parameter is required to have full column rank.

The algorithms given in the present paper provide deadbeat
(that is, finite-step) unknown-input state estimation and simulta-
neous input reconstruction and state estimationwithout assuming
that the initial condition is known. In this case, the presence of an
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Table 1
State Estimation and Input Reconstruction with unknown x(0).

Asymptotic Estimation Deadbeat Estimation

Unknown-input state
estimation

(Kitanidis, 1987)
• unbiased minimum variance filter
• assumes that H1 has full column rank
• allows minimum-phase zeros

Theorem 6
• deadbeat FIR filter for state estimation
• the inherent delay is µ

• requires µ + 1 measurements
• allows rank-deficient Markov parameters
• assumes no invariant zeros

State and input
estimation

(Gillijns & De Moor, 2007; Yong et al., 2016)
• unbiased minimum variance filter
• assumes that H1 has full column rank
• allows minimum-phase zeros
(Hsieh, 2017; Yong, Zhu, & Frazzoli, 2015)
• unbiased minimum variance filter with a
delay
• H1 need not have full column rank
• allows minimum-phase zeros
(Sundaram & Hadjicostis, 2007)
• reduced-order state observers
• allows rank-deficient Markov parameters
• allows minimum-phase zeros

Theorem 7
• deadbeat FIR filter for input reconstruction
• the inherent delay is η

• requires max(η, µ) + 1 measurements
• allows rank-deficient Markov parameters
• assumes no invariant zeros

invariant zero makes it impossible to distinguish the zero input
with zero initial condition from a nonzero input with a specific
initial condition that yields zero response. This case is considered
in Hou and Patton (1998b), where an algorithm is given for con-
structing an input-reconstruction filter based on an observability
assumption, which rules out the presence of invariant zeros. For
the case where x(0) is unknown and (A, B, C,D) has no invariant
zeros, Theorem 6 provides a deadbeat unknown-input observer,
that is, an algorithm that exactly estimates the state despite the
presence of an unknown, arbitrary input. Although this perfor-
mance is better than the Kalman filter in the absence of sensor
noise, it has to be kept in mind that the estimates are obtained
with a delay, which means that the estimator is effectively a
smoother. Furthermore, for the case where the system has no
invariant zeros, Theorem7provides deadbeat input reconstruction
and state estimation. In this case, the input-reconstruction delay
is η, and the number of required measurements is max{µ, η} + 1.
The algorithms constructed in Theorems 6 and 7 are finite-impulse
response (FIR) systems. FIR filters for state estimation are given
in Shmaliy, Zhao, and Ahn (2017) and Kim (2010); however, these
results assume that the input is known. Furthermore, FIR filters for
input estimation are given in Park, Kim, Kwon, and Kwon (2000);
however, deadbeat input reconstruction is not considered.

Input reconstruction is related to the problem of system inver-
sion. The inversion techniques of Silverman (1969) and Sain and
Massey (1969) are based on constructive algorithms that entail the
sequential decomposition of variousmatrices until a full-rank con-
dition is attained. In contrast to these constructions, Theorems 6
and 7 are given in terms of the generalized inverse of a single
matrix.

If the initial condition is unknown and the system has at
least one invariant zero, then deadbeat input reconstruction is
not possible. In this case, asymptotic input reconstruction must
be considered, with careful attention paid to the presence of
nonminimum-phase zeros. Table 1 lists various cases that can
occur, the relevant literature in each case, and the contribution of
the present paper.

The assumption invoked in Theorems 6 and 7 that the system
has no invariant zeros is clearly restrictive in the SISO case, since
it is unusual for an nth-order SISO system to have relative degree
n. Furthermore, since the transmission zeros of a square MIMO
transfer function with full normal rank are the roots of the nu-
merator of the determinant, it would be unusual for the system to
have no transmission zeros. The situation is different, however, for
rectangular systems. For example, aMIMO systemwith two inputs
and four outputs and full normal rank possesses a transmission

zero if and only if all six 2× 2 embedded transfer functions possess
a common transmission zero. Consequently, input reconstruction
based on Theorem 7 may be useful for a large class of rectangular
systems.

The contents of the paper are as follows. The Section 2 presents
the input-reconstruction problem for discrete-time linear systems.
Section 3 gives preliminaries on the invertibility of a linear system
with an input reconstruction delay. Next, Section 4 defines the
minimum delay η for input reconstruction, and gives necessary
and sufficient conditions under which η is finite. Finally, Sections 5
and 6 provide Theorems 6 and 7 for µ-delay state estimation and
η-delay input reconstruction, respectively.

2. Problem statement

Let A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m, assume that
(A, B, C,D) is minimal, and consider

x(k+1) = Ax(k) + Bu(k), (1)

y(k) = Cx(k) + Du(k), (2)

where, for all k ≥ 0, x(k) ∈ Rn, u(k) ∈ Rm, and y(k) ∈ Rp. The goal
is to use knowledge of y(k) to estimate the unknown input u(k).

For all l ≥ 0, define the lth Markov parameter

Hl
△
=

{
D, l = 0,

CAl−1B, l ≥ 1. (3)

Let r denote a nonnegative integer, and define

Yr
△
=

⎡⎢⎢⎣
y(0)
y(1)

...

y(r)

⎤⎥⎥⎦ , Ur
△
=

⎡⎢⎢⎣
u(0)
u(1)

...

u(r)

⎤⎥⎥⎦ , Γr
△
=

⎡⎢⎢⎣
C
CA
...

CAr

⎤⎥⎥⎦ , (4)

Mr
△
=

⎡⎢⎢⎢⎢⎣
H0 0 0 · · · 0
H1 H0 0 · · · 0
H2 H1 H0 · · · 0
...

...
. . .

. . .
...

Hr Hr−1 · · · H1 H0

⎤⎥⎥⎥⎥⎦ ∈ R(r+1)p×(r+1)m. (5)

It follows from (1), (2) that

Yr = Γrx(0) + MrUr = Ψr

[
x(0)
Ur

]
, (6)

where

Ψr
△
=
[
Γr Mr

]
∈ R(r+1)p×[n+(r+1)m]. (7)
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Note that, since (A, C) is observable, it follows that

x(0) = Γ +

n (Yn − MnUn), (8)

where Γ +
n is the pseudo inverse of Γn. For r ≥ s ≥ 0, it is

convenient to partitionMr as

Mr =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

H0 0 · · · · · · 0
...

. . .
. . .

...
...

Hs
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0  
Nr,s

Hr · · · Hs   
Qr,s

· · · H0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
[   

Nr,s

Cr · · · Cs   
Qr,s

· · · C0
]
, (9)

where Nr,s ∈ R(r+1)p×(r−s+1)m, Qr,s ∈ R(r+1)p×sm, and, for all i ∈

{0, . . . , r}, Ci denotes the (i+1)th block column ofMr labeled right
to left. Furthermore, since, for all r ≥ 0,

Mr =

⎡⎢⎢⎣
H0 0
H1
... Mr−1
Hr

⎤⎥⎥⎦ =

[
Mr−1 0

Hr · · · H1 H0

]
, (10)

it follows that, for all r ≥ 0,

rankMr−1 ≤ rankMr (11)
≤ min{rank Cr , rank Rr}

+ rankMr−1 (12)

≤ m + rankMr−1, (13)

where Rr
△
= [Hr · · · H0] is the last block row of Mr and M−1 is

an empty matrix whose rank is 0 and range is {0}. Finally, note
that, if r > s ≥ 0 and Nr,s has full column rank, then, for all
s′ ∈ {s + 1, . . . , r}, Nr,s′ has full column rank.

3. Preliminaries on d-delay invertibility

Let G ∈ R(z)p×m be the p × m proper rational transfer function
corresponding to (1) and (2).

Definition 1. Let d be a nonnegative integer. Then G is d-delay
invertible if there exists Ĝ ∈ R(z)m×p such that Ĝ(z)G(z) = z−dIm.
Ĝ is a d-delay left inverse of G.

Note that, ifG is d-delay invertible, thenGmust have full normal
column rank, and thus m ≤ p, that is, G must be square or tall.
Furthermore, if G is d-delay invertible, then, for all r > d, G is r-
delay invertible.

It follows from (11) and (13) that rankMr ≤ m + rankMr−1.
The following result shows that equality in either the case r = d or
r = n is necessary and sufficient for invertibility.

Proposition 2. The following conditions are equivalent:

(i) There exists d ≥ 0 such that G is d-delay invertible.
(ii) G has full column normal rank.
(iii) rankN2n,n = (n + 1)m.
(iv) There exists d ≥ 0 such that rankMd − rankMd−1 = m.
(v) rankMn − rankMn−1 = m.

If these conditions hold, then there exists d ≥ 0 such that (1/zd)[G(z)T
G(z)]−1G(z)T is a d-delay inverse of G.

Proof. The equivalence of (i) and (ii) is immediate. The equivalence
of (i) and (iii) is given by Theorem 3 of Sain andMassey (1969). The
equivalence of (i) and (iv) is given by Theorem2 of Sain andMassey
(1969) and Theorem 4 of Massey and Sain (1968). The equivalence
of (i) and (v) is given by Corollary 1 of Sain and Massey (1969). □

4. Input reconstruction delay

The existence of a d-delay left inverse of G implies that, if x(0) =

0, then the output of the cascaded system ĜG is exactly the input
sequence u(0), u(1), . . . delayed by d steps. However, for several
reasons, the d-delay inverse Ĝ(z) = (1/zd)[G(z)TG(z)]−1G(z)T given
by Proposition 2may be deficient. In particular, Ĝmay be unstable;
the cascade ĜGmay entail nonminimum-phase pole-zero cancella-
tion; and theMcMillan degree of Ĝmaynot be the smallest possible
value.

It is desirable to achieve the smallest possible delay d such that
G is d-delay invertible. We thus define

η
△
= min{l ≥ 0 : rankMl = m + rankMl−1}. (14)

Note that G is d-delay invertible if and only if η is finite. Further-
more, the equivalence of (i) and (iv) of Proposition 2 implies that, if
G is d-delay invertible, then η is the smallest delay d such that G is
d-delay invertible. Finally, (v) of Proposition 2 implies that η ≤ n.
A sharper bound is given in Proposition 3.

We now focus on sufficient and necessary conditions under
which η is finite. In the following result, the first three statements
are immediate, and the last statement is given by Corollary 1
of Willsky (1974).

Proposition 3. The following statements hold:

(i) Let q ≥ 0 be the smallest nonnegative integer such that Hq is
nonzero, and assume that Hq has full column rank. Then η = q.

(ii) If p < m, then η is infinite.
(iii) Assume that, for all r ≥ 0, either rank Rr < p or rank Cr < m.

Then η is infinite.
(iv) If η is finite, then η ≤ min{n, n + 1 − m + rankD}.

(i) implies that, ifm = 1, then η is the index of the first nonzero
Markov parameter. Therefore, in the SISO casem = p = 1, η is the
relative degree of G. (ii) shows that η is finite only if G is either
square or tall. (iii) implies that, if η is finite, then there exists a
nonnegative integer r such that either Rr has full row rank or Cr
has full column rank. However, Example 1 shows that the converse
of this statement is not true. The second bound in (iv) is given
in Willsky (1974).

The following example illustrates the range of possible values
of η in the case p = 3 andm = 2.

Example 1. Let p = 3 and m = 2, and consider G(z) = C(zI −

A)−1B + D given by

G(z) =
1
z4

(H4 + H3z + H2z2 + H1z3). (15)

Note that D = H0 = 03×2, and thus rankM0 = 0 < m. If

H1 =

[0 1
1 2
0 1

]
, H2 =

[0 0
0 1
0 0

]
, H3 =

[1 0
1 0
1 0

]
, H4 =

[0 1
0 1
0 2

]
,

(16)

then rankM1 = 2 = m, and thus η = 1. Alternatively, if

H1 =

[1 0
1 0
1 0

]
, H2 =

[1 0
0 1
1 0

]
, H3 =

[0 0
0 1
0 0

]
, H4 =

[0 1
0 1
0 2

]
,

(17)

then rankM1 = 1 < m, and, for all l ≥ 2, rankMl − rankMl−1 =

2 = m, and thus η = 2. Next, if

H1 =

⎡⎣0 0
1 0
0 0

⎤⎦ , H2 =

⎡⎣0 0
0 1
0 0

⎤⎦ , H3 =

⎡⎣1 0
1 0
1 0

⎤⎦ , H4 =

⎡⎣0 1
0 1
0 2

⎤⎦ , (18)
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then, for all l ≤ 3, rankMl − rankMl−1 = 1 < m, and, for all l ≥ 4,
rankMl − rankMl−1 = 2 = m, and thus η = 4. Finally, if

H1 =

[0 0
1 0
0 0

]
, H2 =

[0 0
0 1
0 0

]
, H3 =

[1 0
1 0
1 0

]
, H4 =

[0 1
0 1
0 1

]
,

(19)

then, for all l ≥ 1, rankMl − rankMl−1 = 1 ̸= m, and thus η is
infinite. ⋄

The cases (16)–(18) show that η may be finite whether or not
at least one Markov parameter has full column rank. Furthermore,
the cases (18) and (19) show that, if no Markov parameter has full
column rank, then η may be finite or infinite.

The following result, which assumes that η is finite, is used in
the proof of Theorem 7. The proof depends on Lemmas B and C.
Note that, since, by (iv) of Proposition 3, η ≤ n, it follows that the
first result of Proposition 4 generalizes (i)H⇒ (iii) of Proposition 2.

Proposition 4. Assume that η is finite, and let r ≥ η. Then, Nr,η has
full column rank, and

R(Nr,η) ∩ R(Qr,η) = {0}. (20)

Proof. First, consider the case η = 0. Then M0 = N0 = H0 and
rankM0 = rankN0 = rankH0 = m. Since H0 has full column rank,
it follows that Nr,η has full column rank, and, since Qr,η is an empty
matrix, (20) holds.

Next, let r = η = 1 so that

rankM1 = m + rankM0. (21)

Since

M1 =

[
C1

0
M0

]
=
[

C1 C0
]

=
[

N1,1 Q1,1
]
, (22)

it follows from Lemma B that

rankM1 = rank C1 + rank C0 − dim (R(C1) ∩ R(C0))

= rankN1,1 + rankM0 − dim
(
R(N1,1) ∩ R(Q1,1)

)
. (23)

Combining (21) with (23) yields

0 ≤ dim
(
R(N1,1) ∩ R(Q1,1)

)
= rank N1,1 − m ≤ 0,

which implies that N1,1 has full column rank andR(N1,1)∩R(Q1,1)
= {0}.

Next, let r ≥ 2 and η ∈ {1, . . . , r} so that

rankMη = m + rankMη−1. (24)

Noting

Mη =

[
Cη

0
Mη−1

]
=
[

Cη Cη−1 · · · C0
]
, (25)

it follows from Lemma B that

rankMη = rank Cη + rank [Cη−1 · · · C0]

− dim
(
R(Cη) ∩ R([Cη−1 · · · C0])

)
= rank Cη + rank Mη−1

− dim
(
R(Cη) ∩ R([Cη−1 · · · C0])

)
. (26)

Combining (24) with (26) yields

0 ≤ dim
(
R(Cη) ∩ R([Cη−1 · · · C0])

)
= rank Cη − m ≤ 0,

which implies that Cη has full column rank and

R(Cη) ∩ R([Cη−1 · · · C0]) = {0}. (27)

It thus follows from Lemma C that Nr,η = [Cr · · · Cη] has full
column rank and

R(Nr,η) ∩ R(Qr,η) = R([Cr · · · Cη]) ∩ R([Cη−1 · · · C0])
= {0}. □

5. Deadbeat unknown-input state estimation for systemswith-
out invariant zeros

Define

µ
△
= min{l ≥ 0 : rankΨl = n + rankMl}. (28)

The index µ is the smallest integer such that Γµ has full column
rank and the disjointness condition (29) is valid.

The following result is used in the proofs of Theorems 6 and 7.

Proposition 5. Assume that (A, B, C,D) has no invariant zeros. Then
µ is finite, and, for all r ≥ µ, Γr has full column rank and

R(Γr ) ∩ R(Mr ) = {0}. (29)

Proof. Since (A, B, C,D) has no invariant zeros, TheoremA.1 of Kir-
tikar et al. (2011) implies that there exists l ≥ n such that

R(Γl) ∩ R(Ml) = {0}. (30)

Since (A, C) is observable, it follows that

rankΓl = n. (31)

Noting Ψl = [Γl Ml] and using (30), (31), and Lemma B, it follows
that

rankΨl = rankΓl + rankMl − dim(R(Γl) ∩ R(Ml))

= n + rankMl. (32)

It thus follows from (32) that µ is finite and satisfies 0 ≤ µ ≤ l.
Next, note that

rankΨµ = n + rankMµ. (33)

Furthermore, noting Ψµ = [Γµ Mµ] and using Lemma B yields

rankΨµ = rankΓµ + rankMµ − dim(R(Γµ) ∩ R(Mµ)). (34)

Combining (33) with (34) yields

0 ≤ dim
(
R(Γµ) ∩ R(Mµ)

)
= rank Γµ − n ≤ 0,

which implies that Γµ has full column rank and

R(Γµ) ∩ R(Mµ) = {0}. (35)

Since Γµ has full column rank, it thus follows from (4) that, for all
r ≥ µ, Γr has full column rank. Finally, note that

R(Γµ+1) ∩ R(Mµ+1) = R
([

Γµ

CAµ+1

])
∩

R
([

Mµ 0
Hµ+1 · · · H1 H0

])
. (36)

Since Γµ has full column rank andR(Γµ)∩R(Mµ) = {0}, it follows
from (36) and Lemma A that

R(Γµ+1) ∩ R(Mµ+1) = {0}.

By similar arguments, it follows that, for all r ≥ µ,R(Γr )∩R(Mr ) =

{0}. □

The following example compares µ and η for a system that has
no invariant zeros.
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Example 2. Since (15) has no invariant zeros for (16)–(18), Propo-
sition 5 implies that µ is finite for each of these cases. For (16),
n = 7, rankΨ0 − rankM0 = 3 < n, rankΨ1 − rankM1 = 4 < n,
rankΨ2 − rankM2 = 5 < n, rankΨ3 − rankM3 = 6 < n, and, for
all l ≥ 4, rankΨl − rankMl = 7 = n. Hence, µ = 4 > η = 1.

For (17),n = 6, rankΨ0−rankM0 = 3 < n, rankΨ1−rankM1 =

5 < n, and, for all l ≥ 2, rankΨl − rankMl = 6 = n. Hence,
µ = η = 2.

For (18), n = 7, rankΨ0 − rankM0 = 3 < n, rankΨ1 −

rankM1 = 5 < n, rankΨ2 − rankM2 = 6 < n, and, for all l ≥ 3,
rankΨl − rankMl = 7 = n. Hence, µ = 3 < η = 4.

Finally, for (19), (A, B, C,D) has an invariant zero at 0, and thus
Proposition 5 is not applicable. ⋄

The following result shows that, if (A, B, C,D) has no invariant
zeros, then deadbeat state estimation is possible with a delay of µ
steps without knowledge of u. The proof depends on Proposition 5
and Lemma D.

Theorem 6. Assume that (A, B, C,D) has no invariant zeros. Then,
for all k ≥ 0 and r ≥ µ,

x(k) =
[

In 0n×(r+1)m
]
Ψ +

r

⎡⎢⎢⎣
y(k)

y(k + 1)
...

y(k + r)

⎤⎥⎥⎦ . (37)

Proof. Let k ≥ 0. Since (A, B, C,D) has no invariant zeros, it follows
from Proposition 5 that, for all r ≥ µ, Γr has full column rank, and

R(Γr ) ∩ R(Mr ) = {0}. (38)

Using (38), it follows from Lemma D that, for all r ≥ µ,

Ψ +

r Ψr =

[
Γ +
r Γr 0
0 M+

r Mr

]
=

[
In 0
0 M+

r Mr

]
. (39)

Next, multiplying (39) by [xT(k) uT(k) · · · uT(k+r)]T implies that,
for all r ≥ µ,

[
In 0
0 M+

r Mr

]⎡⎢⎢⎣
x(k)
u(k)

...

u(k+r)

⎤⎥⎥⎦ = Ψ +

r

⎡⎢⎢⎣
y(k)

y(k+1)
...

y(k+r)

⎤⎥⎥⎦ . (40)

Finally, multiplying (40) by [In 0n×(r+1)m] implies that, for all r ≥ µ,
(37) holds. □

Example 3. Consider themass–spring–damper systemwithmasses
m1,m2 and unknown input force u applied tom1, as shown in Fig. 1.
The dynamics are given by

ẋ = Acx + Bcu, (41)

where

Ac
△
=

[
02×2 I2×2
Ω1 Ω2

]
, Bc

△
=

[
02×1
Ω3

]
, Ω1

△
=

[
−

k1+k2
m1

k2
m1

k2
m2

−
k2
m2

]
,

Ω2
△
=

[
−

c1+c2
m1

c2
m1c2

m2
−

c2
m2

]
, Ω3

△
=

[ 1
m1
0

]
,

x1 and x2 are the displacements and x3 and x4 are the velocities of
m1 and m2, respectively. Letting m1 = m2 = 1 kg, k1 = k2 =

10N/m, and c1 = c2 = 5 kg/sec, we discretize (41) as

A = eAcTs , B = A−1
c (A − I)Bc, (42)

where Ts = 1 sec is the sampling time. Letting

C =

[
1 0 0 0
0 0 1 0

]
, D =

[
0
0

]
,

Fig. 1. Mass–spring–damper system,where the disturbance force u is the unknown
input.

Fig. 2. Application of Theorem 6 to Example 3. For all 0 ≤ k ≤ 40 − µ = 38, the
estimated state is equal to the actual state despite the presence of the unknown
input, which confirms (37).

the measurements are the position x1 and velocity x3 of m1. The
system (A, B, C,D) has no invariant zeros, and thus we use The-
orem 6 to estimate the position and velocity of m2. Furthermore,
µ = 2. Let the unknown initial condition be x(0) = [−6 1 4 −1]T,
and let the unknown input be u(k) = 1+w(k)+ sin(kTs), where w
is zero-meanGaussianwhite noisewith variance 0.1. Furthermore,
let the available measurement be [yT(0) · · · yT(40)]T.

To apply (37), we choose r = µ = 2. Fig. 2 shows that, for all
0 ≤ k ≤ 40 − µ = 38, the estimated state is equal to the actual
state, which confirms (37). ⋄

6. Deadbeat input reconstruction for systems without invari-
ant zeros

The following result shows that, if (A, B, C,D) has no invariant
zeros and η is finite, then deadbeat input reconstruction is possible
with a delay of η steps, whether or not x(0) is known. The proof
depends on Propositions 4, 5, Lemmas B and D.

Theorem 7. Assume that (A, B, C,D) has no invariant zeros and η is
finite. Then, for all k ≥ 0 and r ≥ max{µ, η},⎡⎢⎢⎣

x(k)
u(k)

...

u(k+r−η)

⎤⎥⎥⎦ =
[

In+(r−η+1)m 0[n+(r−η+1)m]×ηm
]

· Ψ +

r

⎡⎢⎢⎣
y(k)

y(k + 1)
...

y(k + r)

⎤⎥⎥⎦ . (43)
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Proof. Let k ≥ 0. Since, η exists, it follows from Proposition 4 that,
for all r ≥ η,

R(Nr,η) ∩ R(Qr,η) = {0}. (44)

Noting Mr = [Nr,η Qr,η] and using (44) and Lemma B, it follows
that, for all r ≥ η,

rankMr = rankNr,η + rankQr,η. (45)

Since (A, B, C,D) has no invariant zeros, it follows from Proposi-
tion 5 that, for all r ≥ µ,

R(Γr ) ∩ R(Mr ) = {0}. (46)

Noting Ψr = [Γr Mr ] and using (46) and Lemma B, it follows that,
for all r ≥ µ,

rankΨr = rankΓr + rankMr . (47)

Substituting (45) into (47) yields, for all r ≥ max{µ, η},

rankΨr = rankΓr + rankNr,η + rankQr,η. (48)

Next, notingΨr = [Γr Nr,η Qr,η] and using Lemma B, it follows that,
for all r ≥ 0,

rankΨr = rank [Γr Nr,η] + rankQr,η

− dim[R([Γr Nr,η]) ∩ R(Qr,η)]
= rankΓr + rankNr,η + rankQr,η

− dim[R(Γr ) ∩ R(Nr,η)]

− dim[R([Γr Nr,η]) ∩ R(Qr,η)]. (49)

Subtracting (49) from (48) yields, for all r ≥ max{µ, η},

dim[R(Γr ) ∩ R(Nr,η)] + dim[R([Γr Nr,η]) ∩ R(Qr,η)] = 0. (50)

Since both terms in (50) are nonnegative, it follows that, for all
r ≥ max{µ, η},

R(Γr ) ∩ R(Nr,η) = {0}, (51)

R([Γr Nr,η]) ∩ R(Qr,η) = {0}. (52)

Using (52), it follows from Lemma D that, for all r ≥ max{µ, η},

Ψ +

r Ψr =

[
[Γr Nr,η]

+
[Γr Nr,η] 0

0 Q+
r,ηQr,η

]
. (53)

Next, Proposition 5 implies that, for all r ≥ µ, Γr has full column
rank. Furthermore, Proposition 4 implies that, for all r ≥ η, Nr,η
has full column rank. Therefore, using (51) it follows that

rank [Γr Nr,η] = rankΓr + rankNr,η − dim[R(Γr ) ∩ R(Nr,η)]

= rankΓr + rankNr,η. (54)

Therefore, for all r ≥ max{µ, η}, [Γr Nr,η] has full column rank,
and thus [Γr Nr,η]

+ is a left inverse of [Γr Nr,η]. Hence, for all
r ≥ max{µ, η},

Ψ +

r Ψr =

[
In+(r−η+1)m 0

0 Q+
r,ηQr,η

]
. (55)

Next, multiplying (55) by [xT(k) uT(k) · · · uT(k+r)]T implies that,
for all r ≥ max{µ, η},

[
In+(r−η+1)m 0

0 Q+
r,ηQr,η

]⎡⎢⎢⎣
x(k)
u(k)

...

u(k+r)

⎤⎥⎥⎦ = Ψ +

r

⎡⎢⎢⎣
y(k)

y(k+1)
...

y(k+r)

⎤⎥⎥⎦ . (56)

Finally, multiplying (56) by

[In+(r−η+1)m 0[n+(r−η+1)m]×ηm]

implies that, for all r ≥ max{µ, η}, (43) holds. □

Fig. 3. Application of Theorem 7 to Example 4. For all 0 ≤ k ≤ r − η = 15, the
reconstructed input is equal to the actual input, which confirms (43).

The following example illustrates Theorem 7 for a system with
rank-deficient Markov parameters and with no invariant zeros.

Example 4. Consider G(z) = C(zI − A)−1B + D given by

G(z) =
1
z5

(H5 + H4z + H3z2 + H2z3 + H1z4), (57)

where

H1 = H2 = H3 =

[1 1
0 0
0 0

]
, H4 =

[1 2
0 0
1 1

]
, H5 =

[1 2
1 0
1 1

]
. (58)

Note that H0 is zero, (A, B, C,D) has no invariant zeros, µ = 4,
and η = 5. To apply Theorem 7 using (43), we choose k = 0
and r = 20 ≥ max{µ, η} = 5. For all k ≥ 0, let the unknown
input u(k) = [u(1)(k) u(2)(k)]T, where u(1)(k) and u(2)(k) are sampled
Gaussian white noise with variance 1. Fig. 3 shows that, for all
0 ≤ k ≤ r − η = 15, the reconstructed input is equal to the actual
input, which confirms (43). Furthermore, the reconstructed initial
state (not shown in Fig. 3) is equal to x(0). ⋄

Example 5. Reconsider Example 3 but now with the objective of
reconstructing the unknown input u. Note that η = 1. To apply
(43), we choose k = 0 and r = 40 ≥ max{µ, η} = 2. Fig. 4 shows
that, for all 0 ≤ k ≤ 40 − η = 39, the reconstructed input is equal
to the actual input, which confirms (43). ⋄

7. Conclusions and future research

Using the generalized inverse of a block-Toeplitz matrix, this
paper presented unified algorithms for deadbeat unknown-input
state estimation and simultaneous input reconstruction and state
estimation for MIMO systems that are d-delay invertible, that is,
invertible with a delay of d steps. These algorithms do not assume
the existence of a full-column-rank Markov parameter.

The assumption that the system is d-delay invertible is equiv-
alent to the finiteness of the index η, which is the smallest delay
d such that the system is d-delay invertible. Numerical examples
suggest that the existence of at least one Markov parameter with
full column rank implies that η is finite; however, (18) shows that
this condition is not necessary.

Extensions for future research include a stochastic treatment of
input estimation that accounts for sensor noise as well as distur-
bances whose presence violates the requirementm ≤ p.
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Fig. 4. Application of Theorem 7 to Example 5. For all 0 ≤ k ≤ 40 − η = 39, the
reconstructed input is equal to the actual input, which confirms (43).
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Appendix. Partitioned matrices

The following result is used in the proofs of Lemma C and
Proposition 5.

Lemma A. Let A ∈ Rn×m, B ∈ Rl×m, C ∈ Rn×p, D ∈ Rl×p, and
E ∈ Rl×q. Assume that A has full column rank, andR(A)∩R(C) = {0}.
Then

R
([

A
B

])
∩ R

([
C 0
D E

])
= {0}. (59)

Proof. Let[
x
y

]
∈ R

([
A
B

])
∩ R

([
C 0
D E

])
.

Therefore, x ∈ R(A) ∩ R(C) = {0}, and thus x = 0. Furthermore,
there exists z ∈ Rm such that

[
0
y
]

=
[
A
B

]
z, and thus Az = 0 and

y = Bz. Since A has full column rank, it follows that z = 0, and thus
y = 0. □

Lemma B. Let A ∈ Rn×m and B ∈ Rn×l. Then,

rank [A B] = rank A + rank B − dim(R(A) ∩ R(B)).

Proof. See Fact 3.14.15 in Bernstein (2018, p. 322). □

The following result is used in the proof of Proposition 4.

Lemma C. Let r ≥ 2, for all i ∈ {0, 1, . . . , r}, let Hi ∈ Rn×m, and
define the block-Toeplitz matrix

Tr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0 0 · · · 0 0

H1 H0
. . . 0 0

...
. . .

. . .
. . .

...

Hr−1 Hr−2
. . . H0 0

Hr Hr−1 · · · H1 H0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[
Cr Cr−1 · · · C1 C0

]
,

(60)

where, for all i ∈ {0, . . . , r}, Ci denotes the (i+1)th block column of Tr
labeled from right to left. Furthermore, let l ∈ {1, . . . , r}, and assume
that Cl has full column rank and

R(Cl) ∩ R([Cl−1 · · · C0]) = {0}. (61)

Then, [Cr · · · Cl] has full column rank, and

R([Cr · · · Cl]) ∩ R([Cl−1 · · · C0]) = {0}. (62)

Proof. Noting

Tl =

[
Cl

0
Tl−1

]
=

[
Tl−1 0

Hl · · · H1 H0

]
(63)

and using rank Cl = m, (61), and Lemma B, it follows that

rank Tl = rank Cl + rank
[ 0
Tl−1

]
− dim(R(Cl) ∩ R(

[ 0
Tl−1

]
))

= m + rank Tl−1 − dim(R(Cl) ∩ R([Cl−1 · · · C0]))

= m + rank Tl−1. (64)

Similarly, since

Tl+1 =

[
Cl+1

0
Tl

]
=

[
Cl

0 0Tl−1
Hl+1 Hl · · · H1 H0

]
, (65)

it follows from rank Cl+1 = m, (64), and (65) that

rank Tl+1 = rank Cl+1 + rank Tl

− dim
(
R(Cl+1) ∩ R

([
0
Tl

]))
= 2m + rank Tl−1

−dim

(
R
([

Cl
Hl+1

])
∩ R

([ 0 0
Tl−1 0

Hl · · · H1 H0

]))
. (66)

SinceR(Cl)∩R(
[ 0
Tl−1

]
) = {0} and Cl has full column rank, it follows

from Lemma A that

R
([

Cl
Hl+1

])
∩ R

([ 0 0
Tl−1 0

Hl · · · H1 H0

])
= {0}. (67)

Combining (67) with (66) yields

rank Tl+1 = 2m + rank Tl−1. (68)

Similarly, since

Tl+2 =

[
Cl+2

0
Tl+1

]
=

[
Cl+1

0 0Tl
Hl+2 Hl+1 · · · H1 H0

]
, (69)

it follows from rank Cl+2 = m and (68) that

rank Tl+2 = rank Cl+2 + rank Tl+1

− dim
(
R(Cl+2) ∩ R

([
0

Tl+1

]))
= 3m + rank Tl−1

− dim

(
R
([

Cl+1
Hl+2

])
∩ R

([ 0 0
Tl 0

Hl+1 · · · H1 H0

]))
. (70)
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It follows from (65) and (67) that R(Cl+1) ∩ R(
[ 0
Tl

]
) = {0}, and,

since Cl+1 has full column rank, it follows from Lemma A that

R
([

Cl+1
Hl

])
∩ R

([ 0 0
Tl 0

Hl+1 · · · H1 H0

])
= {0}. (71)

Combining (71) with (70) yields

rank Tl+2 = 3m + rank Tl−1. (72)

By similar arguments, it follows that, for all k ≥ 1,

rank Tl+k = (k + 1)m + rank Tl−1, (73)

which, with k = r − l, yields

rank Tr = (r − l + 1)m + rank Tl−1. (74)

Noting

Tr =

[
Cr · · · Cl

0
Tl−1

]
=
[

Cr · · · Cl Cl−1 · · · C0
]
,

(75)

it follows that

rank Tr = rank [Cr · · · Cl] + rank Tl−1

− dim (R([Cr · · · Cl]) ∩ R([Cl−1 · · · C0])) . (76)

Combining (76) with (74) yields

0 ≤ dim (R([Cr · · · Cl]) ∩ R([Cl−1 · · · C0])) =

rank [Cr · · · Cl] − (r − l + 1)m ≤ 0,

which implies that [Cr · · · Cl] has full column rank and (62)
holds. □

The following result is used in the proofs of Theorem 6 and
Theorem 7.

Lemma D. Let A ∈ Rn×m and B ∈ Rn×l, define C
△
= (I − AA+)B and

D
△
= (I −BB+)A, and assume thatR(A)∩R(B) = {0}. Then, C+A = 0,

D+B = 0, C+B = B+B, D+A = A+A,

[A B]+ =

[
D+

C+

]
, [A B]+[A B] =

[
A+A 0
0 B+B

]
. (77)

Proof. The result follows from Theorem 1, line 6 on page 21, and
line 7 on page 22 of Baksalary and Baksalary (2007). □
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