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1. Introduction

Structural vibration is most commonly modeled as the displacement, velocity, or acceleration response to a force input.
Assuming that the dynamics are linear, lumped models of structural vibration with multiple degrees of freedom typically
have the form of matrix differential equations with inertia, damping, and stiffness coefficients [1]. In the frequency domain,
these force-driven outputs are modeled by compliance, admittance, and inertance transfer functions. Alternatively,
a transfer function can relate displacements at different locations on a structure. The resulting transfer function is called
a motion transmissibility [2,3]. Velocity and acceleration signals can also be considered instead of displacements. These
concepts extend directly to rotational variables, where “torque” replaces “force.”

It is also possible to define a force transmissibility, and the relationship between force and motion transmissibilities is
discussed in [4,5]. In the present paper, force transmissibility is not considered, and the term “transmissibility” refers to
motion transmissibility.

In the most common setup, the transmissibility involves the motion of the point at which the force is prescribed. A more
general notion of transmissibility arises in the case where neither of the displacement measurements coincides with the
location of the applied force. This situation is of interest in applications where the applied force is unknown. Except for the
case where one of the measurements is located at a node of a mode, the resulting transmissibility captures information
about only the zeros (anti-resonances) in the structural response, and thus information about the modal resonances is not
included in the model.
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The potential usefulness of transmissibilities for applications such as damage detection [6-9] has led to increased interest
in their properties. In [10-12], transmissibilities are used to update modal models, while computation and identification of
transmissibilities is discussed in [13-15]. Transmissibilities are used in [16] to analyze the effects of structural coupling.
Multi-input, multi-output (MIMO) transmissibilities are considered in [17], while the effect of distributed forces is analyzed
in [15]. Finally, transmissibilities play a role in “operational modal analysis” [10,18], which assumes stationary excitation.

A common feature of the treatment of transmissibilities in [1-3,5,6,9-13,17] is that these models are expressed in the
frequency-domain. For identification purposes, these transfer functions can be estimated by computing the Fourier
transforms of the measured signals, and thus the effect of nonzero initial conditions is ignored. To account for initial
conditions, the present paper focuses on time-domain transmissibility models [19-22,24]. These models provide the
foundation for time-domain identification methods.

The development of time-domain transmissibility models requires special attention to the cancellation of poles in the
underlying structural model as well as the role of the initial conditions. The resulting model is not an input-output model
in the usual sense, and therefore the notions of free and forced response do not apply. These issues were considered in
[19-21,24] in terms of “pseudo transfer functions.”

Unlike the discrete-time models given in [19-21], the results in the present paper are developed in continuous time.
This setting facilitates the analysis of transmissibilities of structures. Furthermore, the present paper also considers
transmissibilities arising from displacement-driven structures and shows that the force- and displacement-driven
transmissibilities are equal when the locations of the force and prescribed displacement are identical. Together, these
developments provide the foundation for a time-domain framework for transmissibilities that accounts for nonzero initial
conditions.

The contents of the paper are as follows. In Section 2 we show a numerical comparison between time-domain and
frequency-domain identification methods under nonzero initial conditions. In Section 3 and Section 4 we derive SISO and
MIMO time-domain models for transmissibility operators in force-driven structures, respectively. In Section 5 we consider
displacement-driven structures, while in Section 6 and Section 7 we derive SISO and MIMO time-domain models for
transmissibility operators in displacement-driven structures, respectively. In Section 8 we show the equality of transmis-
sibilities of force-driven and displacement-driven structures with identical inputs and outputs when the force and the
prescribed motion are applied to the same location. We introduce examples in Section 9. Finally, we present conclusions and
future research in Section 10.

2. Effects of nonzero initial conditions on estimating frequency response functions

Transmissibility estimates are traditionally obtained using frequency-domain methods [2,3,5,6,9-13,17], which are based
on the assumption that the response of the system consists entirely of the forced response and thus the free response is
zero. For asymptotically stable systems, the free response decays exponentially, which suggests that measurements of the
forced response can be obtained by using only data obtained after the free response is approximately zero. However, as
shown in the following example, at the time at which data collection begins, there is a possibly nonzero initial condition,
which can degrade the accuracy of frequency-domain identification.

Example 1. Consider the discrete-time asymptotically stable system S with the state-space realization

~05 02 4
A:{ 0 0_7}, B:L} C=[125 -3}, D=0. 1)

Let x(k) € R? be the state vector and thus x(0) is the initial state. Let uy € R'*N be a realization of a stationary white random
process with the Gaussian distribution A/(0,1). Define the input u 2 [up ug] € R'?N, that is, u is formed by repeating uj.
Consider zero initial conditions, that is, x(0) = 0, and define y(k) £ Cx(k). If we split y e R'*?N into two halves, then the first
half of y is the response of S due to the input 1o and the zero initial condition x(0), while the second half of y is the response
of S due to the input ug and the possibly nonzero initial condition x(N). Fig. 1 shows a plot of the difference y(k)—y(k+N),
where k=0,...,N—1 and N=500 time steps for a given realization u,. Note that despite the initial condition x(0) = 0, the
difference y(k)—y(k+N) is not zero due to the fact that x(N), which is the initial state when data collection begins at time
k=N, is not zero.

Next, define Yy 2 [y(N)---y(N+L—1)]e R*L and Uyy 2 [u(N)---u(N+L—1)]e R, and define M; £ 2P, where p is the
smallest integer such that 2° > L. For all j=1,...,M,, let S(e’) be the frequency response of S at frequency 6; where
74 /=1. Moreover, for all j=1,...,M;, let

Sni (3'79j) £ % i SnLi (9‘70f), (2)
iz

where r is the number of runs and SN,L,i(eﬁf) is the estimated value of S(e/) obtained from the ith run using either
frequency-domain or time-domain identification. For frequency-domain identification, SN,L,i(eJHJ‘) is obtained by finding the
ratio of the cross power spectral density of Yy; and Uy, to the power spectral density of Uy, for the ith run. For time-
domain identification, §N,L‘,~(679f) is obtained by finding the frequency response of the estimated model obtained using least
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Fig. 1. Plot of the difference y(k)—y(k+ N) for the system S with the realization Eq. (1), where k=0, ..., 50, N=500, u =[ug uo] is the input, and x(0) =0 is
the initial state. This plot shows that the difference y(k)—y(k+ N) is not zero due to the fact that x(N), which is the initial state of the system when we start
collecting data at time k=N, is not zero.

squares identification with the time-domain data Uy, and Yy;. Define the error

1/2
M, /

eni 2 [ S (1@ 18n@)) (3)

=1

Fig. 2 shows a plot of ey, when using time-domain identification with L=10,000 time steps and N varies from 1 to 1000.
Moreover, Fig. 2 shows a plot of ey when using frequency-domain identification with L=10,000 and L=100,000 time steps
and N varies from 1 to 1000. The initial condition is x(0) = [1000 1000]". Note from Fig. 2 that the FRF estimates obtained
using time-domain identification are much better than the FRF estimates obtained using frequency-domain identification.
Moreover, although we are using noise-free data, Fig. 2 shows that waiting for the free response to decay does not help the
FRF estimates obtained using frequency-domain identification to converge to the true values. This is partly due to the
nonzero initial condition x(N), which occurs at the instant that data collection begins, and thus corrupts the estimates when
using finite data sets. On the other hand, Fig. 2 shows that the FRF estimates obtained using time-domain identification are
not affected by the nonzero initial conditions. It can be seen that the significance of the transients depends on the
magnitude of the initial state relative to the magnitude of the state under stationary conditions.

Another issue with frequency-domain identification techniques is leakage errors, which are unavoidable in the case of
aperiodic random excitations [23]. Theorem 2.6 in [23] shows that leakage errors decrease as the number of samples
increases, but it is not guaranteed that the leakage errors are small for finite data sets. Example 2.7 in [23] shows that
leakage errors can be interpreted as a transient effect, that is, as the effect of a nonzero initial condition. Leakage errors can
be avoided by using periodic excitation and measurements of an integer number of periods, which cannot be achieved if the
excitation signal cannot be specified.

Motivated by the advantages of time-domain identification techniques over frequency-domain identification techniques,
in the following we develop a time-domain framework for SISO and MIMO transmissibilities that accounts for nonzero
initial conditions for both force-driven and displacement-driven structures.

3. SISO transmissibilities in force-driven structures

Consider a lumped force-driven structure (FDS) consisting of masses my, ...,m, connected by springs modeled by
M (6)+Kq(t) = f,(0), (4)

where M 2 diag(my,...,m,) e R™" is the positive-definite mass matrix, K € R"*" is the positive-definite stiffness matrix,
q(t) £ [q(t) - qn(t)]T e R" is the vector of mass displacements, and f,(t) £ bu(t) = [f;(t) -~ f,,(t)}T e R" is the vector of forces,
where b e R" is a nonzero vector, u(t) is a scalar force, and fj(t) is the force applied to the ith mass. Let c € R'*" be nonzero
and consider the scalar output

qc\bu & cq, (5)

where q,, denotes the output cq with the driving force bu. Note that q,r ,, = e],q = q;, where e;, € R" is the ith unit vector.
Next, let w;, w, e R™*" and define '

Vi £ Quypu = Wid, (6)

Yo éqwumu:WoCI- (7)
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Fig. 2. Plot of ey, using time-domain identification with L=10,000 time steps and frequency-domain identification with L=10,000 and L=100,000 time
steps, N varies from 1 to 1000, and r=100 runs. The initial condition is x(0)=[1000 1000]". Note that the FRF estimates obtained using time-domain
identification are much better than the FRF estimates obtained using frequency-domain identification. Moreover, waiting for the free response to decay
does not help the FRF estimates obtained using frequency-domain identification to converge to the true values, whereas the FRF estimates obtained using
time-domain identification are not affected by the nonzero initial conditions.

The goal is to obtain a transmissibility function relating y; and y, that is independent of the initial conditions g(0) and ¢(0) as
well as the input u. As a first attempt at obtaining such a function, transforming Eq. (4) to the Laplace domain yields

(s M +K)§(s) — sMq(0) — Mq(0) = bii(s), (8)
where §(s) and 1i(s) are the Laplace transforms of q(t) and u(t), respectively. Therefore,
4(s) = (s*M+K)~1bii(s)+ (s*M+K) ~ ' M(sq(0)+ G (0)). (9)
It follows from Egs. (6), (7) and (9) that the Laplace transforms of y; and y, are given by
i(s) = wi(s*M+K) " ' bil() + wi(s’ M+ K) " ' M(sq(0)+4(0)), (10)
Vo(8) = Wo(s2M +K) ™' bil(s) +Wo(s*M +K) ~ ' M(sq(0) +G(0)), (11)

respectively, and thus

Vo(8)  Wo(s*M+K)~ Thil(s)+Wo(s2M +K) ~ TM(sq(0) + G (0))
ViS)  wi(s2M+K)~ 'bii(s)+w;i(s2M+K) ~ 'M(sq(0)+¢(0))

Note that, if q(0) and ¢(0) are zero, then i(s) can be cancelled in Eq. (12), and y,(s) and y;(s) are related by a transmissibility
that is independent of the input. However, if either g(0) or q(0) is not zero, then {i(s) cannot be canceled in Eq. (12), and an
input-independent transmissibility cannot be obtained.

Alternatively, we consider a time-domain analysis using the differentiation operator p=d/dt instead of the Laplace
variable s. It follows that Eq. (4) can be written as

(12)

(P°M+K)q(t) = bu(t). (13)
Multiplying Eq. (6) by the polynomial §(p) £ det(p?M +K) and using the fact that
S(P)ln = adj(p*M+K)(p>*M +K) (14)

yields the differential equation
S(P)Y;(t) = w;d(P)Inq(t)
=w;adj(p*M +K)(p*M+K)q(t)
= wiadj(p® M+ K)(M{ (t)+Kq(t))
=w;adj(p?M + K)bu(t). (15)
Similarly,
S(P)Y,(t) = woadj(p*M+K)bu(t). (16)
For convenience, we define the notation

Guw, b(P) £ Wi(p?M+K)~'b, (17)
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G, b(P) £ Wo(P*M+K) ™ 'b. (18)

Using Egs. (17) and (18) we can rewrite Eqs. (15) and (16) as
Vi) = G, p(P)ut), (19)
Yo(t) = Gy, s(P)U(?), (20)

respectively. Note that Egs. (19) and (20) are interpreted as the differential equations Egs. (15) and (16), respectively.
Note that Egs. (10), (11), (19), and (20) include the free response due to q(0) and ¢(0) as well as the forced response due to
u. In the subsequent analysis, we omit the argument “t” where no ambiguity can arise.
Define the polynomials

1,(P) £ W, adj(p*M +K)b, (21)

17(p) £ w; adj(p*M +K)b. (22)

If G, and G, , are obtained from minimal state-space realizations, then &(p) is coprime relative to both #;(p) and 7,(p).
Moreover, it follows from Eqgs. (17) to (20) that

Vo= G =100, (23)
Yo =G, p(PU= 'ZS"((pp))u- (24)

Next, it follows from Eqgs. (23) and (24) that
No(PEPY: = 1,1 (PIU,

1i(PSP)Y, = n:(P)1,(P)U,
and thus

1:(P)O(P)Y, = 1,(P)S(P)Y;- (25)

Definition 1. The transmissibility operator from y; to y, is the operator

(P, (P)
TF e 26
w0 P 5 (o) (26)
Hence, Eq. (25) can be written as

Yo = T\ljvu,w,v\b(p)yi- (27)

Note that Eq. (26) is independent of the input 1. Because (26) is expressed in terms of the differentiation operator p and not
the complex number s, it is a time-domain model of the differential equation (25) and thus it accounts for nonzero initial
conditions. However, Eq. (26) is not a transfer function. In the case q(0) =0 and q(0) =0, it follows from Eq. (12) that p in
Eq. (27) can be replaced by s to obtain

Jo(8) = Thy, wip©Ii(S). (28)
where 7' fvmwilb(s) is a possibly improper rational function. However, if q(0) or ¢(0) is not zero, then p cannot be replaced by s
in Eq. (27).

Unlike common factors in the complex number s, common factors in the differentiation operator p cannot always be
cancelled, as shown in the following example.

Example 2. Consider the signals y;(t)=1 and y,(t)=1+e~f Operating on y;(t) and y.(t) with p+1 yields
P+ DY) =Yyi(O+Yi(t) = T=Y,(O)+Y,(t) = (p+1)y,(t). Hence (p+1)y; = (p+1)y,. However, y; # y,.

Despite Example 2, the following theorem shows that the common factor &(p) in (26) can be cancelled without excluding
any solutions of Eq. (25).

Theorem 1. y; and y, satisfy

1,(P)
P, 29
n:(p)”" (29)

Yo

Proof. See [24]. ©
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It follows from Theorem 1 that
Yo =Ty, wp®Wis (30)
where the transmissibility operator in Eq. (26) is redefined as

1,(P) _ Wo adj(p®M +K)b
ni(P)  w; adj(p?M+K)b
Note that 7’ \ljvo,w,\b(p) is not necessarily proper, and the polynomials w, adj(p?M+K)b and w; adj(p?M+K)b are not
necessarily coprime.

Trwp®) 2 (31)

4. MIMO transmissibilities in force-driven structures

Consider the lumped MIMO force-driven structure

Mq(t)+Kq(t) = Fp(t), (32)
where M, K, and q are as defined in Eq. (4), and
F 2 Bu(t), (33)
where
B2([by bl u®)2[ui() - um(®]", (34)

and, for all ie {1,...,m}, b; e R" and u; is a scalar force.
Consider p outputs for Eq. (32). Let W; e R™" W, e R?~™>" and define

Vi & qu,pu = Wiq e R™, (35)

Yo £ dw,pu =Woq e RPT™. (36)

The goal is to obtain a transmissibility function relating y; and y, that is independent of both the initial conditions q(0) and
¢(0), as well as the input u.
Multiplying Egs. (35) and (36) by d(p) and following the procedure used to derive Egs. (15) and (16) yields

8(p)y; = W; adj(p’M +K)Bu, (37)
8(P)y, = W, adj(p*M+K)Bu. (38)
For convenience, we define
Gw,5(P) 2 Wi(p*M+K) " 'B, (39)
Gw, 5(P) £ Wo(p*M +K)~'B, (40)
and rewrite Eqs. (37) and (38) as
Yi=G6w U, Y,=Cw,sDL, (41)

respectively, which are interpreted as the differential Eqs. (37) and (38), respectively. Note that Eq. (41) includes the free
response due to q(0) and q(0) as well as the forced response due to u.
Defining the polynomial matrices

T'i(p) £ W; adj(p>M+K)B e R™™[p], (42)
T'o(p) 2 W, adj(p’M+K)B e RP~™*M[p], (43)
we can rewrite Egs. (37) and (38) as
sy =Tlipu, (44)
Py, =1 0P, (45)

respectively. Multiplying Eq. (44) by adj I';(p) from the left yields
6(p) adj I'i(p)y; = [adj ()1 i(p)u = detly(p)u. (46)

Next, multiplying Eq. (45) by det I";(p) yields

[det I'y(p)16(P)y, = [detl y(p)) H(P)u. (47)
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Substituting the left hand side of Eq. (46) in Eq. (47) yields
s(pydet I'i(p)y, = S o(p)adj I'i(p)y;. (48)

Definition 2. Assume that det /';(p) is not the zero polynomial. Then, the transmissibility operator from y; to y, is the
operator

6(p)
o(p)

OP) I (pjadj I'i(p)=

S(p)det T(p) T ®). 49
&(p)det I'(p) @7 ) (49)

TEVU,W”B(p) &

Note that Eq. (49) is independent of the input u and the initial condition q(0) and ¢(0). Using Eq. (49), the differential
Eq. (48) can be written as

Yo=Tw,w,s®VY:- (50)

The following theorem shows that the common factor &(p) in Eq. (49) can be cancelled without excluding any solutions
of Eq. (48).

Theorem 2. Assume that det I';(p) is not the zero polynomial. Then, y; and y, satisfy

1 . -
Yo=garrpy! *®[adi Li@yi = Lo@ @)y (51)

Proof. See [24]. ©
It follows from Theorem 2 that
Yo =T, w,p®)i (52)
where the transmissibility operator Eq. (49) is redefined as
Ty, ws® 2 Lo ' (0). (53)

Note that each entry of 7 Evo,WnB(p) is a rational operator that is not necessarily proper and whose numerator and
denominator are not necessarily coprime.

5. Modeling displacement-driven structures

Consider a displacement-driven structure (DDS), where m;, is the driven mass, and thus
qr(t) = qq(®), (54)

where g, 4(t) is the prescribed motion of m;. This prescribed motion requires applying a suitable force as in Eq. (4). Removing
the kth equation from Eq. (4) yields

Mi14 () + K 1q(t) =0, (55)

where My ; € R"~ D" and Ky, ; € R®~D*" are M and K, respectively, with the kth row removed. It follows that Eq. (55) can be
written as

M [k,k]d[k] +Kpe g = — Kik.1€knGrds (56)
where My g € R®~D*=D and K4y € R®~D*@=1D are M and K, respectively, with both the kth row and kth column removed,
and qy is q with the kth row removed. Writing Eq. (56) in terms of the differentiation operator p yields

(P2M[k,k] +K[k,k])CI[k] = — Kk 1€knqra- (57)

Suppose now that d masses are displacement-driven, where 1<d<n-2, and let D£ {ky,....ks} be the set of
displacement-driven masses. Then, using the same procedure used to obtain Eq. (56) we obtain
qk,.d

(P*Mp.p)+Kipp)dipy = —Kipjlex,n = exnl| © |, (58)
Qiyd

where Mip p; € R®~9*"=9 and K p; e R®~ D> =D are M and K with rows kq, ..., kg removed and columns k, ..., k; removed,
Kp, is K with rows ky, ..., kq removed, and dipy is q with rows kq, ..., ks removed.
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6. SISO transmissibilities in displacement-driven structures

Define the output

d cley, &l i

(59)

where I, € R™=1 s the identity matrix I, € R™" with the kth column removed. Thus, Q4 cle,, 1S @ linear combination of all

position states q;,i=1,...,n,i# k, assuming that the kth mass is displacement-driven. Let w;,w, € R'*" and define

Yid & Qawe,, = Wiln,y Gig»

yo,d & qd‘w.,\ek_n = WOIn[.,k] q[k]'
Following the procedure used to derive Egs. (15) and (16) we can show that

84(P)Yia = — Wiln ,,adj (D*Mik i + Kiiky) Kie. 18k n G -

Sa(P)y o0.d = — Wol g adj (PzM [kl + K[k,k])K[k,-] €k n.d-

where Jq(p) £ det(p>Myjq+Kpy). For convenience, we define the notation

-1
Gd,w,-.ek.,, (P) & - WiIn[ . (pzM[k,k] + K[k,k]) K[k,-] ek,n,

-1
Gd,wo,ekvn (p) & _Woln[,k] (pzM[k,k] +K[k./<]) K[k,-]ek.n~
Using Eqgs. (64) and (65) we can rewrite Eqs. (62) and (63) as

Niq(P)
Yia = Gawer,(P)ia = m‘]k,w

_ _ no,d (p)
Yoa = Gdw,.er, Pia = B Qid

respectively, where

7;.4(P) ! g adj (P2 M jg + K ) Kk 1€xn

”o,d(p) 2 *Woln[ K adj (pzM[k,k] +K[k,k])K[k,-]ek,n,
are polynomials in p. It follows from (66) and (67) that
16.4(P)Sd(P)Yi g =Moa(P; ¢(P)kca>

1N;.a(P)3a(P)Yo.a =i g(P)o4(P)k.a>
and thus
NiaP)Sa(P)Yod =1oaP)Sa(P)Yia-

Definition 3. The transmissibility operator from y; 4 to y, 4 is the operator

64(P).4(P)

7D ES :
W0~Wi‘ek~ﬂ(p) Sa(P; ¢(P)

Hence, Eq. (70) can be written as

Yoi =T, wiee, PVid-

(60)

(61)

(62)

(63)

(70)

(71)

As in Section 3, it can be shown that §4(p) can be cancelled without excluding any solutions of Eq. (70), that is,

TD
Wo,Wjlekn

(p) in Eq. (71) can be redefined as

1,.4(P) _ Woln[ 1 adj (pzM[k,k] +I<[l<,k])K[k,«] €kn

T owiee, @) 2

Note that 70

Wo,Wilen

i 4(P) T wil nyy adj (P> M sg+ Kiijg) Kk 1€n”

(p) is not necessarily proper, and the polynomials 7, 4(p) and 7;4(p) are not necessarily coprime.

(72)
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7. MIMO transmissibilities in displacement-driven structures

Consider a DDS, where my,, ...,my, are the displacement-driven masses, 1 <d <n—2. Define the output ¢, ¢, € RP by
daciep, = Clin oy (73)

where CeRP*", D& {ky, ...k}, and ep, 2[ey, , ... ex,n]. Hence, Eq. (73) is a vector whose components are linear
combinations of all q;,i e {1,...,n\D. Let W; e R¥*", W, e RP~9*" and define

Vid £ ddwijep, = WiI”[-.mq[D]’ (74)
Yod = daw,lep, = Woln pdip)- (75)
Following the procedure used to derive Eqgs. (15) and (16) yields
Ag(P)ia = —Wiln, ,adi(P*Mp.pj+Kip.y) Kip,1€0.nGp.a» (76)
A4(P)oa = —Woln ,adj(P*Mp,pj+Kip.p))Kip,1€0.ndp.a> (77)
where Aq(p) £ det(p*Mp.p+Kp.)) € RIp] and qp 4 2 [q, -+, ]" € R Using the notation
Gawenn 2 — Wil (*Mipoy+Kipp) ~ Kip.jeon, (78)
-1
Gaw,ep, (@) 2 —Woln (P*Mpp; +Kpp)  Kip.epn, (79)
we can rewrite (76) and (77) as
Yia = Gaw,ep, P)p.d> (80)
yo,d = Gd,Wo,eD.,, (p)QD,d: (81 )

which are interpreted as the differential Eqs. (76) and (77), respectively. Note that Eqgs. (80) and (81) include the free
response due to qyp(0) and §p;(0) as well as the forced response due to qp 4. Defining

Ti4(p) 2 — Wiy, adj(p*Mip py +Kip.p))Kip.1€p.n € R*9[p], (82)
Lo4(P) 2 —Woln ,adj(P*Mip.oy+Kip.oy) Kip,jepn € R?~*“[p], (83)
we can rewrite Egs. (76) and (77) as
AqP)ia=Tia(P)pg- (84)
Aq(P)od=T04(P)pa- (85)
Multiplying Eq. (84) by adj I'; 4(p) from the left yields
adj I'ia(P)Aa(P)yia = adj I'ia(P)1a(P)dpa = det I'i4(P)dp a- (86)
Next, multiplying Eq. (85) by det I'; 4(p) yields
[det I'i ()] Ag(P)Yo.q = [det I 4(P)] o 4(P)qp g- (87)
Substituting the left hand side of Eq. (86) into Eq. (87) yields
Ag(p)det I'ia(p)Yo.q = Aa(P) o.a(P)adj Iy g(P)Y;g- (88)

Definition 4. Assume that det I"; 4(p) is not the zero polynomial. The transmissibility operator from y; 4 to y, 4 is the operator

D N Ay(p) e Ag(P) 1
T, Wilen, (P) —mf od(Padili4(p) = Ad(p)r 0.d(® id (P)-

Hence, Eq. (88) can be written as
Yod = Ta/‘,,w,-\eo‘n PVig- (89)

As in Section 4, it can be shown that A;(p) can be cancelled without excluding any solutions of Eq. (88), that is,
T Bvu,Wi\eD,n (p) in Eq. (89) can be redefined as

T wiens® 2 Loa@I 4 (D). (90)
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8. Equality of motion transmissibilities in force-driven and displacement-driven structures
8.1. Equality of SISO motion transmissibilities in force-driven and displacement-driven structures

Define w, and w; to be w, and w;, respectively, with the kth component replaced by zero. The following result shows
that the SISO transmissibilities of force-driven and displacement-driven structures with identical inputs and outputs and
with the force and the prescribed motion applied to the same location are identical. This result is somewhat surprising since
the specified displacement of a mass could be perceived as introducing a node.

Theorem 3. The SISO force-driven and displacement-driven transmissibilities are equal, that is,

T‘E’O,/ﬁwi.k‘ekn = T‘E‘)/o.kswiﬂek,n @) (91 )

Proof. It follows from Eq. (72) that
Woln, ,, adj (P2 Mg iq +Kiiegg ) Kik.1€xn

0 = - : 92
Wo-Wilein ®) Wiln, adj (PzM[k,k] +K[k,k1)K[k,-]€k,n (92)
From Eq. (A.1) in Appendix A we have
Wo,kln[ K adj (pzM[k,k] +K[k,k])K[k,-]ek,n = - Wo,kadj (p2M+K) ek,m (93)
Wikdn, ,adj (D*Myecg +Kips) Kk 18n = — Wikadj (p?M +K) ey . (94)
Using Eqgs. (93) and (94), Eq. (92) yields
Wokadj(p*M +K)ey
TD _ 0,k ,n.
Wo k:Wik|€kn ®) Wi adj (pz M+ K) €xn (95)
Replacing w,, w;, and b in Eq. (31) with wo, Wiy, and ey, respectively, yields
F _ Wo,kadj(pzM"‘K)ek,n
Tonsnsiees ® =, adi@2M + Kyen (96)

Hence, Egs. (95) and (96) yield Eq. (91). o©
8.2. Equality of MIMO motion transmissibilities in force-driven and displacement-driven structures

Define W, and W;p to be W, and Wj, respectively, with the kﬁh, A.A,kz,h columns replaced by zero. The following result
shows that the MIMO transmissibilities of force-driven and displacement-driven structures with identical inputs and
outputs and with the forces and prescribed motions applied to the same locations are identical.

Theorem 4. The MIMO force-driven and displacement driven transmissibilities are equal, that is,

Ta/u.Dvwi,D‘eD,n P = Tevu.DvWi,D‘eD,n ) (97)

Proof. It follows from Egs. (82), (83) and (90) that
T Wipien ) = Lo ig' ()
= Woln ,adj (P*Mip.0 +Kp.0y) Kip.1p.n(Wiln, 5, adi(®*Mip.0y + Kip.oKip.jepn) (98)
Using Eq. (A.2) in Appendix A, we have
Woln, ,adj(p*Mp by +Kip.py) Kip.1€p.n(Wiln, ,adj (0*Mp.py +Kip.py ) Kip.1€pn) !
= W, padj(p*M +K)epn(Wipadj(’M+Kjepy) . (99)
Therefore, Eq. (98) becomes
TDy. o wipjenn ) = Wopadj(p*M+K)ep n(Wipadj(p*M+K)ep,) . (100)
Next, replacing W,, W;, and B in Eqs. (42) and (43) with W, p, W;p, and ep,, respectively, Eq. (53) becomes
Ty Winteon® = Lo®I7 ' (D)
= Wopadj(p*M+K)epn(Wipadj(p*M+Kep) . (101)
Comparing Eq. (100) with Eq. (101) yields Eq. (97). ©
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Fig. 3. Mass-spring system for Example 3, where m; =m; =ms3 =my =ms =mg=1Kkg and ko; = k12 = k14 = k15 = ka3 = k3g = kas = kag = 1 N/m. m; is
either force-driven by the force f or displacement-driven with the prescribed motion gq,.

9. Numerical examples

In this section we present three examples to illustrate the equality of transmissibilities in force-driven and displacement-
driven structures.

Example 3. Consider the mass-spring system shown in Fig. 3, where my=my=m3=my=ms=mg=1 kg and
ko1 = K12 = K14 = k15 = ko3 = k3g = k45 = k46 = 1 N/m. We force-driven m, and consider the transmissibility from q; to ge.
Then we displacement-driven m, and consider the transmissibility from ¢, to ge. Note that M =1Is, M5 =I5,
41 _21 01 _01 _01 g 4 0 -1 =10
0 1 2 0 0 1 0 2 0 0 -1
k=11 o o 3 L _1ls Kea=|-1 0 3 -1 -1} (102)
B o -1 0 -1 2 0
-1 0 o -1 2 0
o -1 -1 0 2
0 o -1 -1 0 2

It follows that

p®+9p®+27p*+32p2+14
p'9+13p3 +61p°®+124p* +102p% +25
p®+11p®+40p* +54p? + 22
p®+8p*+21p>+16
p®+8p*+19p? +15
p®+10p*+28p?+19

adj(p*M +K)ey = , (103)

pé+9pb+27p*+32p*+14
p®+11p®+40p* +54p? +22
adj(p*Mp2+Kp2)) K j€26 = — p®+8p*+21p?+16 . (104)
p®+8p*+19p%+15
p°+10p*+28p?+19
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Next, it follows from Eq. (31) with w, = el w; =e] ¢, and b= e, that

6 4 2
F _ p°+10p*+28p~+19
Teg.sve{s‘ez.e(p) T pS+9pb+27pt+32p2+14° (105)
Similarly, it follows from Eq. (72) with w, = e s, w; =e] 5, and b=e,¢ that
6 4 2
D _ p°+10p*+28p~+19
et et yens P = 58 o061 27pd 1 32p2 1 14° (106)
Hence,
ng‘gse{g. le26 = TEDE.G,E;GWZ_S (p)-

Example 4. Consider a simply supported beam with a uniform density p per unit length, modulus of elasticity E, moment of
inertia I, length L, and rectangular cross section with area A. We consider first the force-driven case by applying a
concentrated transverse force at the location x,, where 0 < x, < L. Let y(t,x) denote the displacement of the beam from its
equilibrium shape, and let 6(x—x,)f(t) denote the external force. The beam is modeled by

ot pA &
(G X)+ﬁﬁy(t,><) =0(x—xa)f (t). (107)
Let
YEX) =D qitvix), (108)

i=1
where g; is the modal coordinate corresponding to the mode shape v;(x) = sin (izx/L). Substituting Eq. (108) in Eq. (107) and
taking the inner product of both sides of the resulting equation with v;(x,) yields

GiO+oi gty =bif(t), i=1,2.3,.., (109)
where w; =i*72 /L*\/EI/pA is the modal frequency corresponding to vi(x) and b; £ v;(x,). Defining
a0 21[q (O - q O, b&[by - by, (110)
it follows from Eq. (109) that
d(6)+2%q(t) = bf (v), (111)

where Q? 2 diag(w?, s @),
In the displacement-driven case we assume that the interior point x, moves with the specified displacement
qa(t,Xq) = I _ 1 qi(t)Vi(xq). We define the coordinates

GIGENERT()) (112)
where
I 4 O — 1yx1 !
S& R 113
Vi (Xa) Vr(xa)~ ( )

where to ensure nonsingularity we assume that v.(x,) # 0. Then, the resulting coordinates are
4O =1a1(®O - g1 Ga(t.xa)]". (114)
Using Eqs. (112) and (111) yields
M(t)+Kq(t) = Bf(t), (115)

where M 2SST, K 25Q°S", B=Sh 2 e,,.
Driving x, with a prescribed motion requires applying a suitable force as in Eq. (107). As in Section 5 we remove the rth
equation of Eq. (115) and manipulate the remaining equations to make q,(t,X,) the input. Therefore, Eq. (115) becomes

M[f,f]d[r] +IA<[r,r]Q[r] = - k[r,~]el<,nQd(t, Xq). (116)
Suppose that E=200 GPa, L =100 mm, h =10 mm, w =1 mm, X, = 83.3 mm, and x; = 21.1 mm. The transmissibility from
X, to x; for the force-driven beam is given by
VI(xs, )adj(p*M + K)v(xa)
VI(Xq, N)adj(p2M + K)v(Xa)
_ p°+156.4p* —1.814 x 10%p? +3.454 x 10°
63.38pS +1.426 x 10*p*+8.057 x 10°p2+9.591 x 10%

/Z-F

VT (Xs.).VT (Xa.1) | V(Xa) =

(117)
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where vI(xs, 1) and vT(xq, 1) denote vT(xs) and vT(x,), respectively, after setting the rth component of vI(xs,) and vT (x4, 1) to
zero as suggested by Theorem 3. Next, with a prescribed motion at x,, the transmissibility from x, to x;s is given by
VI (xs, Dlir,1adj(P* My + K )K€l
VI(xa, Dy 1adj(p2 My g+ Kpr.)Kpr €8,
p®+156.4p* —1.814 x 10%*p? +3.454 x 10°
" 63.38p6+1.426 x 107p4+8.057 x 10°p2+9.591 x 10°’

TD

VT (%5, VT (Xa PV (X, 1) =

which is equivalent to Eq. (117).

Example 5. Consider the mass-spring system shown in Fig. 3, where m;=m;=m3=my=ms=mg=1kg and
ko1 = k12 = k14 = k15 = ko3 = k3 = kas = kag =1 N/m. We force-drive m, and ms; and consider the transmissibility from
[q; 941" to [qs qs]". Then we displacement-drive m, and m3 and consider the transmissibility from [q; q4]" to [q5 gs]". Note
that D= (2,3}, M =1Is, Mipp; =ls, Wo =[es5 €s6]", and W; =[e; s es6]". Hence, we have

4 -1 0 -1 -1 O

-1 2 -1 0 0 0 4 -1 -1 0
c_| 0 -1 2 0 0o —1f L -1 3 -1 -1 (118)
/-1 0 0 3 -1 -1 P71 _ 91 1 2 o0
-1 0 0o -1 2 0 0O -1 0 2
0 o -1 -1 0 2
It follows that
p3+9p®+27p*+32p* +14 p®+8p*+19p? +14
p'9+13p8 +61p°+124p*+102p? +25 p®+11p®+40p* +54p? +22
. p®+11p® 4 40p* +54p? +22 plO+13p3+61p®+126p*+111p2+30
2 —
ad.](p M+K)[€2,6 63,5]— p6+8p4+21p2+16 p6+9p4+23p2+18 . (119)
p®+8p*+19p?+15 2p*+13p?+16
p°+10p*+28p?+19 p®+11p®+40p* +55p2 +24
Using Egs. (42) and (43) we have
) p%+9p®+27p*+32p> +14 pb+8p*+19p?+14
(D) — W, 2 _
F'ip) = Wiadj(p*M+K)lez 63'6]_{ PS+8pt421p2+16  po+9p*+23p2+18 | (120)
) p®+8p*+19p? +15 2p*+13p?+16
_ 2 _
Fo)=Woadj(p"M+K)leas €561= | 16\ 10p4. 28p2 119 pb+411p6 +40p*+55p2 +24 | (121)
Moreover,
p®+7p*+14p®+8 p’>+3
. p*+5p°+6 p*+6p*+7
2 —_
adj(p*Mp,p;+Kip,pj)Kip. €26 €36]= P4 +6p7+7 p2+5 (122)
p*+3 p®+9p*+23p? +13
It follows from Egs. (82) and (83) that
. p®+7p*+14p%+8 p>+3
I'ig = — Wil pjadj(p*Mp,py +Kip.p)) Kip. 26 €36] = p*+5p> 46 p+6p?+7 | (123)
) p*+6p2+7 p’+5
Ioq = —Wolppiadj(p*Mp.oy+Kipp)Kip,[e26 €36]= p>+3  pS+9pi+23p2+13 | (124)
Therefore,
det I'; 4(p)o(p)adj I'y(p) = (p'° +13p® +62p° +133p* + 125p> +38)
p°+8p*+19p?+15 2p*+13p%+16 p®+9p*+23p?+18 —p®—8p*—19p?2—14
p®+10p*+28p?+19 p3+11p°+40p*+55p>+24 | | —p®—8p*—21p>—16 p&+9p®+27p*+32p%+14

(125)

B AP A12(P)
T A1) AP |
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where

A11(p) = p** +28p*° +342p'® +2394p'®+10,611p"* +31,052p "% +60, 672p'° + 78, 167p°®
+63,850p° +30,491p* +7184p? +532, (126)

A12(p) = A1.1(P), (127)

Az1(p) = —p** —31p?% —426p?° —3420p'® —17793p'® — 62,885p'* — 153, 828p'% — 260, 183p°
—298,351p® —222,041p® — 98, 657p* — 22, 084p? — 1596, (128)

Az2(p) = p*°+33p?* + 487p?% +4244p?° +-24,291p'® +96,077p 6 +268,987p'* + 536, 787p'% 4 758, 045p1°

+740,576p® +478,889p° + 188, 907p* + 38, 580p? +2660. (129)
Moreover,
det Ii(p) o a(@adj I (p) = (p'* +17p'% + 115p'° +-396p°® + 735p° + 709p* +300p? +28)
p*+6p?+7 p?+5 p*+6p2+7 —p*-3 ~ [Aw1a®) Ad12@) (130)
p’+3 pt+9p*+23p2 +13 | | —p*—5p> -6 pS+7p*+14p>+8 | |Ad21(P) Ad22P) |’
where
Ag11(P) = p? +28p*° +342p'8 1 2394p' +-10,611p' +31,052p'? +60,672p'° + 78, 167p®
+63,850p° +30,491p* + 7184p? +532, (131)
Ad12P) =Ad11(P)s (132)
Ag21(p) = —p?* —31p?? —426p?° —3420p'® —17,793p'® - 62,885p'* — 153, 828p'? — 260, 183p°
—298,351p® —222,041p® — 98, 657p* — 22, 084p* — 1596, (133)
Ad22(P) = p*® +33p** +-487p?% +4244p?° 1-24,291p'® +96,077p'° +-268,987p'* +536, 787p'? + 758, 045p1°
+740,576p® +478, 889p° + 188, 907p* + 38, 580p? + 2660. (134)
Comparing Eqgs. (126), (127), (128), and (129) with Eqgs. (131), (132), (133), and (134), respectively, yields,
A1 =Adq11, Aip=Ad12, Axi1=Ad21, Axx=Ad2>. (135)
Therefore, it follows from Eqs. (125) and (130) that
det I' (p)1 o(p)adj I'i(p) = det I'i(p)] o g(P)adj I'; 4(P). (136)
That is,
T&/o,wi\en.n (p) = T‘[/)chWi\ED.n (p)’ (137)

which confirms Theorem 4.
10. Conclusions and future research

Transmissibility estimates are traditionally obtained using only frequency-domain methods, which are based on the
assumption that the input and output signals are stationary, and thus initial conditions and transient effects are either
assumed to be absent or are ignored. We showed that ignoring the initial conditions and transient effects can degrade the
transmissibility estimates in the frequency-domain. Moreover, we showed that frequency-domain identification techniques
cannot give exact estimates with finite data sets. Therefore, we developed a time-domain framework for SISO and MIMO
transmissibilities that accounts for nonzero initial conditions for both force-driven and displacement-driven structures.
It was shown that if the locations of the forces and prescribed displacements are identical, then the SISO and MIMO force-
and displacement-driven transmissibilities are equal. Numerical examples for a mass—spring system and a simply supported
beam were presented to illustrate the equality of transmissibilities in force-driven and displacement-driven structures.

The time-domain transmissibility models developed in this paper are intended to facilitate the use of time-domain
identification methods. Preliminary results in this direction are given in [19-21].
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Appendix A. Adjugate identities

Let Ae C™", let A eC™" denote the adjugate of A, and let Agj € C denote the (ij) entry of A. Let D2 {ky,...,kq}
where 1<d<n-2 and ke{1,...,n} for all i=1,...,d. Let Ap e C"~P*" denote A with rows ki, ...,k; removed and let
App e CP~ =D denote A with rows ki,...,k; removed and columns ki,...k; removed. Finally, Let
epn 2 [ekn .- eunl € c™4 where e, € C" denotes the ith unit vector.

Adjugate identity 1: For allie{1,...,n},
[(AA)[,',.] + (A[i,i])AA[i,l]} €in=0mn_1)x1- (A1)

Proof. See [25]. ©

Adjugate identity 2: Let CeC%" and define R2 Afep, e C™? and S2 (Ajpp)*Ap,.jepn e C*~ <4, Let CReC¥*? and
Cp.pS € C%*¢ be nonsingular where C;.p e C*®™~ denotes C with columns kj, ..., k; removed. Then,

Inp RCR) ™" =S(C.pyS) ', (A.2)

where I, e C™" is the identity matrix and I, p | € cn=9xn denotes I, with rows ky, ..., k; removed.
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