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SUMMARY

A sliding-window variable-regularization recursive-least-squares algorithm is derived, and its convergence
properties, computational complexity, and numerical stability are analyzed. The algorithm operates on a
finite data window and allows for time-varying regularization in the weighting and the difference between
estimates. Numerical examples are provided to compare the performance of this technique with the least
mean squares and affine projection algorithms. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recursive-least-squares (RLS) and gradient-based algorithms are widely used in signal processing,
estimation, identification, and control [1–9]. Under ideal conditions, that is, noiseless measurements
and persistency of the data, these techniques are guaranteed to converge to the minimizer of a
quadratic function [2, 5]. In practice, the accuracy of the estimates depends on the level of noise and
the persistency of the data.

The standard RLS algorithm operates on a growing window of data, where new data are added to
the RLS cost function as they become available, and past data are progressively discounted through
the use of a forgetting factor. In contrast, sliding-window RLS algorithms [10–14] require no
forgetting factor because they operate on a finite data window of fixed length, where new data
replace past data in the RLS cost function. Sliding-window least squares techniques are available
in both batch and recursive formulations. As shown in [11], sliding-window RLS algorithms
have enhanced tracking performance compared with standard RLS algorithms in the presence of
time-varying parameters.

In standard RLS, the positive definite initialization of the covariance matrix is the inverse of the
weighting on a regularization term in a quadratic cost function. This regularization term compen-
sates for the potential lack of persistency, ensuring that the cost function has a unique minimizer at
each step. Traditionally, the regularization term is fixed for all steps of the recursion. An optimally
regularized adaptive filtering algorithm with constant regularization is presented in [15]. However,
variants of RLS with time-varying regularization have been developed in the context of adaptive
filtering, echo cancelation, and affine projection [16–21].
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In the present work, we derive a novel sliding-window variable-regularization RLS (SW-VR-
RLS) algorithm, where the weighting on the regularization term can change at each step. An
additional extension presented in this paper also involves the regularization term. Specifically, the
regularization term in standard RLS weights the difference between the next estimate and the ini-
tial estimate, while the regularization term in sliding-window RLS weights the difference between
the next estimate and the estimate at the beginning of the sliding window. In the present paper, the
regularization term weights the difference between the next estimate and an arbitrarily chosen time-
varying vector. As a special case, the time-varying vector can be the current estimate or a recent
estimate. These variable-regularization extensions of sliding-window RLS can facilitate trade-offs
among transient error, rate of convergence, and steady-state error.

We derive the SW-VR-RLS equations and analyze their convergence properties in the absence
of noise. While standard RLS entails the update of the estimate and the covariance matrix, sliding-
window RLS involves the update of an additional symmetric matrix of size n � n, where n is the
dimension of the estimate. Furthermore, SW-VR-RLS requires updating of one more symmetric
matrix of size n � n to account for the time-varying regularization.

A preliminary version of the SW-VR-RLS algorithm appeared in the conference proceedings
[22] without any analysis of convergence or numerical stability. The goal of the present paper is
to provide a more complete development of the SW-VR-RLS algorithm, including an analysis of
convergence and numerical stability.

In this paper, a matrix A 2 Rn�n is positive semidefinite (A > 0) if it is symmetric and has non-
negative eigenvalues, and a matrix A 2 Rn�n is positive definite (A > 0) if it is symmetric and has
positive eigenvalues. Furthermore, if A 2 Rn�n, then jjAjj denotes the maximum singular value of
A, and if x 2 Rn, then jjxjj denotes the Euclidean norm of x.

2. THE NON-RECURSIVE SOLUTION

Let r be a non-negative integer. For all integers i > �r , let bi 2 Rn and Ai 2 Rn�n, where Ai
is positive semidefinite. For all integers i > 0, let ˛i 2 Rn and Ri 2 Rn�n, where Ri is positive
semidefinite. Assume that, for all k > 0,

Pk�1
iDk�r AiCRk is positive definite. In practice, the matrix

Ak and the vector bk depend on data, whereas the regularization weighting Rk and regularization
parameter ˛k are chosen by the user. For all k > 0, the sliding-window, variable-regularization
quadratic cost is defined by

Jk.x/ ,
kX

iDk�r

xTAix C b
T
i x C .x � ˛k/

TRk.x � ˛k/; (1)

where x 2 Rn and x0 D �12

�P0
iD�r Ai CR0

��1 �P0
iD�r bi � 2R0˛0

�
is the minimizer of

J0.x/. Note that the regularization term .x � ˛k/
TRk.x � ˛k/ in (1) contains weighting Rk and

parameter ˛k , which are potentially time varying. For all k > 0, the unique minimizer xk of (1) is

xk D �
1

2

 
kX

iDk�r

Ai CRk

!�1  
kX

iDk�r

bi � 2Rk˛k

!
: (2)

Example 1
Consider the weighted regularized least squares cost function

Jk.x/ ,
kX

iDk�r

�
yi � F

T
i x
�T
Wi
�
yi � F

T
i x
�
C .x � ˛k/

TRk.x � ˛k/;

where x 2 Rn. Let r be a non-negative integer; and, for all i > �r , let yi 2 Rl , ˛i 2 Rn,
Fi 2 Rn�l , Ri 2 Rn�n, and Wi 2 Rl�l , where Wi is positive definite. Furthermore, for all i > �r ,
define Ai , FiWiF

T
i and bi , �2FiWiyi . Then, for all k > 0 and x 2 Rn, Jk.x/ D Jk.x/ C
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Pk
iDk�r y

T
i Wiyi . Thus, the minimizer of Jk.x/ is also the minimizer of Jk.x/. Moreover, it follows

from (2) that the minimizer of Jk.x/ is given by

xk D

 
kX

iDk�r

FiWiF
T
i CRk

!�1  
kX

iDk�r

FiWiyi CRk˛k

!
:

Example 2
Let n and r be positive integers, for i 2 ¹1; : : : ; nº, let ai , ci 2 R, and, for all i > �r � n, let ui ,
yi 2 R. Furthermore, for all k > 0, let yk satisfy the infinite impulse response model

yk D

nX
iD1

aiyk�i C

nX
iD1

ciuk�i :

Next, for all i > �r , define  i , Œui�1 � � � ui�n yi�1 � � � yi�n�
T, and consider the cost

(1), where Ai ,  i 
T
i and bi , �2yi i . Define x� , Œa1 � � � an c1 � � � cn�

T. The
objective is to choose the regularization parametersRk and ˛k such that the sequence of minimizers
¹xkº

1
kD0

of (1) converges to x�. Note that, for all k > �r , rank Ak 6 1. As shown in Section 4, the
rank of Ak affects the computational complexity of the recursive formulation of (2).

3. THE SW-VR-RLS SOLUTION

Defining

Pk ,
 

kX
iDk�r

Ai CRk

!�1
; (3)

it follows that (2) can be written as

xk D �
1

2
Pk

 
kX

iDk�r

bi � 2Rk˛k

!
: (4)

To express Pk recursively, consider the decomposition

Ak D  k 
T
k ; (5)

where  k 2 Rn�nk and nk , rank Ak . Next, for all k > 1, define

Qk ,
 

k�1X
iDk�r

Ai CRk

!�1
D
�
P�1k � Ak

��1
: (6)

It follows from (5) and (6) that

Pk D
�
Q�1k C  k 

T
k

��1
:

Using the matrix inversion lemma

.X C UCV /�1 D X�1 �X�1U
�
C�1 C VX�1U

��1
VX�1; (7)

with X D Q�1
k

, U D  k , C D Ink , and V D  T
k

, where Ink is the nk � nk identity matrix,
implies that

Pk D Qk �Qk k
�
Ink C  

T
kQk k

��1
 T
kQk :
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To express Qk recursively, for all k > 1, define

Lk ,
 

k�1X
iDk�r�1

Ai CRk

!�1
D
�
Q�1k � Ak�r�1

��1
D
�
Q�1k �  k�r�1 

T
k�r�1

��1
: (8)

Using (7) with X D L�1
k

, U D  k�r�1, C D �Ink�r�1 , and V D  T
k�r�1

, it follows that

Qk D Lk � Lk k�r�1
�
�Ink�r�1 C  

T
k�r�1Lk k�r�1

��1
 T
k�r�1Lk :

To express Lk recursively, we substitute (3) into itself to obtain

P�1k D

kX
iDk�r

Ai CRk D P
�1
k�1 C Ak � Ak�r�1 CRk �Rk�1: (9)

Thus, it follows from (6), (8), and (9) that

Lk D
�
P�1k�1 CRk �Rk�1

��1
: (10)

Next, we factor Rk �Rk�1 as

Rk �Rk�1 D �kSk�
T
k ; (11)

where �k 2 Rn�mk , mk , rank .Rk � Rk�1/; and Sk 2 Rmk�mk has the form Sk ,
diag .˙1; : : : ;˙1/. Using (7) with X D P�1

k�1
, U D �k , C D Sk , and V D �T

k
; it follows from

(10) that

Lk D Pk�1 � Pk�1�k
�
Sk C �

T
kPk�1�k

��1
�T
kPk�1:

We now summarize the SW-VR-RLS algorithm.

Algorithm 1
For each k > 1, the unique minimizer xk of (1) is given by

Lk D Pk�1 � Pk�1�k
�
Sk C �

T
kPk�1�k

��1
�T
kPk�1; (12)

Qk D Lk � Lk k�r�1
�
�Ink�r�1 C  

T
k�r�1Lk k�r�1

��1
 T
k�r�1Lk; (13)

Pk D Qk �Qk k
�
Ink C  

T
kQk k

��1
 T
kQk; (14)

xk D �
1

2
Pk

 
kX

iDk�r

bi � 2Rk˛k

!
; (15)

where P0 D
�P0

iD�r Ai CR0

��1
and x0 D �12P0

�P0
iD�r bi � 2R0˛0

�
.

As an alternative to Algorithm 1, the equation for xk can be expressed using the recursion matrix
Pk . First, it follows from (15) that

k�1X
iDk�r�1

bi D �2P
�1
k�1xk�1 C 2Rk�1˛k�1: (16)
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Using (9) and (16), it follows that (15) can be written as

xk D �
1

2
Pk

 
k�1X

iDk�r�1

bi C bk � bk�r�1 � 2Rk˛k

!

D �
1

2
Pk
�
�2P�1k�1xk�1 C 2Rk�1˛k�1 C bk � bk�r�1 � 2Rk˛k

�
D�

1

2
Pk
�
�2.P�1k �AkCAk�r�1�RkCRk�1/xk�1 C 2Rk�1˛k�1 C bk � bk�r�1 � 2Rk˛k

�
Dxk�1� Pk

�
.Ak � Ak�r�1/xk�1C.Rk �Rk�1/xk�1CRk�1˛k�1C

1

2
.bk�bk�r�1/�Rk˛k

	
:

We now summarize the alternative SW-VR-RLS algorithm.

Algorithm 2
For each k > 1, the unique minimizer xk of (1) is given by

Lk D Pk�1 � Pk�1�k
�
Sk C �

T
kPk�1�k

��1
�T
kPk�1; (17)

Qk D Lk � Lk k�r�1
�
�Ink�r�1 C  

T
k�r�1Lk k�r�1

��1
 T
k�r�1Lk; (18)

Pk D Qk �Qk k
�
Ink C  

T
kQk k

��1
 T
kQk; (19)

xk D xk�1 � Pk

�
.Ak � Ak�r�1/xk�1 C

1

2
.bk � bk�r�1/

	
� Pk Œ.Rk �Rk�1/xk�1 CRk�1˛k�1 �Rk˛k� ;

(20)

where P0 D
�P0

iD�r Ai CR0

��1
and x0 D �12P0

�P0
iD�r bi � 2R0˛0

�
.

The theoretical properties and computational complexity of Algorithms 1 and 2 are identical, but
their numerical properties are different, which will be discussed in Section 7.

If, for all i 2 ¹�r; : : : ; 0º, Ai D 0 and bi D 0, then x0 D ˛0 and P0 D R�10 . Furthermore, if the
regularization weighting Rk is constant, that is, for all k > 0;Rk D R0 > 0, then (11) implies that
�k D 0 and (17) simplifies to Lk D Pk�1, and thus, computation of Lk is not required.

4. COMPUTATIONAL COMPLEXITY

First, consider Algorithm 1. The computational complexity of the matrix products and inverse in
(12) is O

�
n2mk

�
and O

�
m3
k

�
, respectively, where mk D rank .Rk � Rk�1/ 6 n. Hence, (12) is

O
�
n2mk

�
. In particular, if, for all k > 0, mk D 1, then the inverse in (12) is a scalar inverse, and

(12) is O.n2/.
The matrix products and inverse in (14) are O

�
n2nk

�
and O

�
n3
k

�
, respectively, where nk D

rank Ak 6 n. Hence, (14) is O
�
n2nk

�
. Similarly, (13) is O

�
n2nk�r�1

�
. In particular, if, for all

k > 0, nk D 1, then the inverses in (13) and (14) are scalar inverses, and (13) and (14) are O.n2/.
Finally, note that (15) is O.n2/. Therefore, if, for all k > 0, rank.Rk�Rk�1/ D 1 and rank Ak D

1, then the computational complexity of Algorithm 1 is O.n2/.
Now, consider Algorithm 2. Because (17), (18), and (19) are identical to (12), (13), and (14),

respectively, and (20) is O.n2/, it follows that the computational complexity of Algorithm 2 is
identical to the computational complexity of Algorithm 1.
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5. CONVERGENCE ANALYSIS OF SW-VR-RLS

Definition 1 ([23])
Let xeq 2 Rn, and consider the nonlinear time-varying system

xkC1 D f .xk; k/; (21)

where f W Rn � ¹0; 1; 2; : : :º ! Rn is a continuous function such that, for all k > 0, f .xeq; k/ D
xeq. The equilibrium solution xk � xeq of (21) is Lyapunov stable if, for every " > 0 and k0 > 0,
there exists ı."; k0/ > 0 such that jjxk0�xeqjj < ı implies that, for all k > k0, jjxk�xeqjj < ". The
equilibrium solution xk � xeq of (21) is uniformly Lyapunov stable if, for every " > 0, there exists
ı D ı."/ > 0 such that, for all k0 > 0, jjxk0�xeqjj < ı implies that, for all k > k0, jjxk�xeqjj < ".
The equilibrium solution xk � xeq of (21) is globally asymptotically stable if it is Lyapunov stable
and, for all k0 > 0 and xk0 2 Rn, limk!1 xk D xeq.

The following result provides boundedness properties of the SW-VR-RLS algorithm. The proof is
in Appendix A. This result applies to both SW-VR-RLS implementations, specifically, Algorithms 1
and 2.

Theorem 1
For all k > 0, let Tk 2 Rn�n be positive definite, and assume that there exist "1; "2 2 .0;1/ such
that, for all k > 0,

"1In 6 TkC1 6 Tk 6 "2In: (22)

Furthermore, for all k > 0, let �k 2 R; assume that 0 < infk>0 �k 6 supk>0 �k < 1; and define
Rk , �kTk . Then, the following statements hold:

(i) ¹Lkº1kD1, ¹Qkº
1
kD1

, and ¹Pkº1kD0 are bounded.
(ii) Assume that ¹˛kº1kD0 and ¹bkº1kD0 are bounded. Then, ¹xkº1kD0 is bounded.

For all k > 0, define ˆk , Œ k � � �  k�r � 2 Rn�qk , where qk ,
Pr
iD0 nk�i , so thatPk

iDk�r Ai D ˆkˆ
T
k

. Furthermore, using the matrix inversion lemma, it follows from (3) that

Pk D R
�1
k �R

�1
k ˆk

�
Iqk Cˆ

T
kR
�1
k ˆk

��1
ˆT
kR
�1
k : (23)

Next, let � be a positive integer, for all k > �, let ˛k D xk�� , for all k > � � 1, define �k ,�
xT
k

xT
k�1

� � � xT
k��C1

�T
2 Rn� , and, for all i 2 ¹1; : : : ; �º, let �k;i , xk�iC1. Then, it

follows from (15) that, for all k > � � 2,

2
6664
�kC1;1
�kC1;2
:::

�kC1;�

3
7775 D

2
66666664

�PkC1

0
@ kC1X
iDkC1�r

1

2
bi �RkC1�k;�

1
A

�k;1
:::

�k;��1

3
77777775
: (24)

The following result provides stability and convergence properties of the SW-VR-RLS algorithm.
The proof is in the Appendix. This result applies to both SW-VR-RLS implementations.

Theorem 2
For all k > 0, let Tk 2 Rn�n be positive definite, and assume that there exist "1; "2 2 .0;1/
such that, for all k > 0, (22) holds. Furthermore, for all k > 0, let �k 2 R; assume that 0 <
infk>0 �k 6 supk>0 �k < 1; and define Rk , �kTk . Let � be a positive integer; let � 2 Rn; for
all 0 6 k 6 � � 1, define ˛k , �; and, for all k > �, define ˛k , xk�� , where xk�� satisfies (4).
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Let P0 D
�P0

iD�r Ai CR0

��1
and x0 D �12P0

�P0
iD�r bi � 2R0�

�
, assume that there exists a

unique x� 2 Rn such that, for all k > 0,

Akx� C
1

2
bk D 0; (25)

and define �� ,
�
xT
� xT

� � � � xT
�

�T
2 Rn� . Then, the following statements hold:

(i) �k � �� is an equilibrium solution of (24).
(ii) The equilibrium solution �k � �� of (24) is uniformly Lyapunov stable, and, for all x0 2 Rn,
¹xkº

1
kD0

is bounded.

(iii)
P1
jD�.xj�� � x�/

Tˆj

h
�j Iqj Cˆ

T
jT
�1
j ˆj

i�1
ˆT
j .xj�� � x�/ and

P1
jD� jjxj � xj�� jj

2

exist.
(iv) Assume that ¹Akº1kD0 is bounded. Then, limk!1  

T
k
.xk�� � x�/ D 0 and

limk!1

�
Akxk C

1
2
bk
�
D 0.

(v) Assume that ¹Akº1kD0 is bounded, and assume that there exists c > 0 and a non-negative
integer l such that, for all k > �l � r , cIn 6

Pl
iD0Ak��i . Then, for all x0 2 Rn,

limk!1 xk D x�, and �k � �� is globally asymptotically stable.

6. SIMULATIONS

In this section, we study the effect of Rk and r on SW-VR-RLS and compare SW-VR-RLS with the
proportionate affine projection algorithm (PAPA) [24] and the proportionate normalized least mean
squares (PNLMS) algorithm [25] for systems, where x� changes abruptly.

Let ` be the number of data points, and, for any sequence ¹pkº
`
kD1, define the root-mean-square

value

�p ,

vuut1

`

X̀
kD1

p2
k
:

Let n be a positive integer, and, for i 2 ¹0; : : : ; n � 1º, let hi 2 R. Define x� ,
Œh0 h1 � � � hn�1�

T. For all k > 1, let uk 2 R, and, for all �r � nC 1 6 k 6 0, let uk D 0 and
yk D 0. Furthermore, for all k > 1, let yk satisfy the finite impulse response

yk D

n�1X
iD0

hiuk�i : (26)

Next, for all k > �r�nC1, define the noisy output Nyk , ykCwk , where, for all�r�nC1 6 k 6 0,
wk D 0, and, for all k > 1, wk 2 R is sampled from a white noise process with a zero-mean
Gaussian distribution with variance �2w . Define the signal-to-noise ratio (SNR) SNR , �y=�w .

Let x 2 Rn, for all k > �r , define  k , Œuk � � � uk�nC1�
T, and, for all k > 0, define

the cost function

Jk.x/ ,
kX

iDk�r

�
Nyk �  

T
kx
�T �
Nyk �  

T
kx
�
C .x � ˛k/

TRk.x � ˛k/: (27)

For all k > �r , define Ak ,  k T
k

and bk , �2 Nyk k . It follows from (27) that

Jk.x/ D
kX

iDk�r

�
xTAkx C bkxk

�
C .x � ˛k/

TRk.x � ˛k/C

kX
iDk�r

NyT
k Nyk : (28)
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Then, for all k > 0, Jk.x/ D Jk.x/C
Pk
iDk�r Ny

T
i Nyi , and thus, the minimizer xk of (28) is given

by the minimizer (2) of the SW-VR-RLS cost function (1).
Next, it follows from (26) that the for all k > 1, yk D �Tx�, where x� , Œh0 h1 � � � hn�1�

T

is a vector of the unknown impulse response coefficients. For all examples, n D 15, and

x� D

²
´1; if 0 6 k 6 999;
´2; if k > 1000; (29)

where ´1 and ´2 are randomly selected. In all examples, they are

´1 ,
�
�1:0667 0:9337 0:3503 �0:0290 0:1825 �1:5651 �0:0845 1:6039

0:0983 0:0414 �0:7342 �0:0308 0:2323 0:4264 �0:3728
�T
2 R15;

´2 ,
�
�0:0835 0:8205 �1:3594 1:4417 0:8726 0:4442 �0:2222 �0:8215

0:5131 �0:6638 0:1265 �0:0155 �0:1581 0:6957 �0:8379
�T
2 R15:

For all examples, we use Algorithm 1, where ˛0 D x0, and for all k > 1, ˛k D xk�1. Define the
performance "k , 20 log10 .kx� � xkk=kx�k/. We compute the ensemble average of "k based on
100 simulations with independent realizations of uk and wk .

6.1. Effect of Rk

First, we examine the effect of Rk on the performance of SW-VR-RLS, where Rk � R is constant
and the coefficients of (26) change abruptly at k D 1000. Let r D 60, for all k > 0, let uk be
sampled from a white noise process with a zero-mean Gaussian distribution with variance 10, and
let x� be given by (29).

We test SW-VR-RLS for three values of Rk and three values of SNR. Specifically, R D 1000In,
R D 10000In, and R D 30000In. Figure 1 shows that, for this example, not only a smaller value of
R yields faster convergence of "k but also a larger asymptotic mean value of "k . Furthermore, for
each R, a larger value of SNR yields a smaller asymptotic mean value of "k .

To understand why a smaller value of R yields a larger asymptotic mean value of "k in the case
of noisy data, first, note that a smaller R makes the regularization term .xk � xk�1/

TR.xk � xk�1/
of (1) smaller. Because the regularization term has the effect of opposing movement of the estimate
xk away from xk�1, smaller R makes xk more sensitive to noise. Furthermore, as k increases,
jjxk � xk�1jj tends to decrease to its asymptotic mean value, and thus, the regularization term

Figure 1. Effect of Rk on convergence of "k to its asymptotic mean value, where Rk � R is a constant. For
this example, a smaller value of R yields faster convergence of "k to its asymptotic mean value but also a
larger asymptotic mean value of "k . Furthermore, for each value ofR, a larger value of SNR yields a smaller

asymptotic mean value of "k .
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.xk � xk�1/
TR.xk � xk�1/ decreases. Thus, a larger value of R means that the regularization term

contributes more asymptotically to the cost function (1). Thus, more regularization (i.e., larger R)
can make the estimate xk asymptotically less sensitive to noise in yk , which in turn can yield smaller
asymptotic mean values of "k .

Next, we consider a time-varyingRk . First, define the residual vk , jj Nyk� T
k
xkjj and the filtered

residual Nvk D 	 Nvk�1 C .1 � 	/vk , where 	 2 .0; 1/ is a smoothing factor. Furthermore, let

Rk D

²
RminIn; Nvk 6 
;
RmaxIn; Nvk > 
:

(30)

For this example, 	 D 0:05, Rmin D 10000, Rmax D 50000, 
 D 2:5, and SNR D 20. Note that
we allow only rank 1 modifications in Rk so that the computational complexity of SW-VR-RLS is
O.n2/. Therefore, in order to modify Rk from RminIn to RmaxIn, we modify the first diagonal entry
of Rk at the current time step and change the next diagonal entry at the next time step and so on.
Figure 2 shows that (30) yields a smaller asymptotic mean value of "k than Rk � 10000In and
faster convergence of "k to its asymptotic mean value than Rk � 50000In.

6.2. Effect of window size

For all k > 0, let uk be sampled from a zero-mean Gaussian white noise process with variance
10, let SNRD 20, let x� be given by (29), and, for all k > 0, let Rk D 1000In. We test SW-VR-

Figure 2. Effect of Rk on convergence of "k to its asymptotic mean value when Rk is time-varying. The
solid line, dashed line, and dotted line indicate SW-VR-RLS with Rk � 10000In, Rk � 50000In, and Rk
given by (30), respectively. For this example,Rk given by (30) yields a smaller asymptotic mean value of "k
than Rk � 10000In and yields faster convergence of "k to its asymptotic mean value than Rk � 50000In.

Figure 3. Effect of r on convergence of "k to its asymptotic mean value. This plot shows that, as r is
increased from 0, the asymptotic mean value of "k and the speed of convergence of "k to its asymptotic

mean value first increase and then decrease.
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Figure 4. Effect of constant R on convergence of "k to its asymptotic mean value when r D 200. This plot
shows that decreasing the value of R from 1000In to In does not increase either the speed of convergence

or the asymptotic mean value of "k .

RLS with r D 0, r D 50, r D 100, and r D 200. Figure 3 shows that, as r is increased from 0,
the asymptotic mean value of "k and the speed of convergence of "k to its asymptotic mean value
initially increase and then decrease.

To gain further insight into how to choose r , we fix r D 200 and test SW-VR-RLS whenRk � R
is constant. We test five different values of R, specifically, R D In, R D 10In, R D 100In,
R D 1000In, and R D 10000In. For this simulation, Figure 4 shows that decreasing the value
of R from 1000In to In does not increase the speed of convergence of "k to its asymptotic mean
value. This suggests that, as R is decreased beyond a certain value, it no longer affects the speed of
convergence or asymptotic mean value of "k , and r must be decreased in order to increase the speed
of convergence of "k .

6.3. Comparison with PAPA and PNLMS

In this section, we compare SW-VR-RLS with PAPA [24] and PNLMS [25], which are widely used
and hence chosen for comparison. PAPA and PNLMS include regularization terms that weight the
difference between the current estimate xk and previous estimate xk�1. This aspect of PAPA and
PNLMS is similar to SW-VR-RLS, where ˛k D xk�1.

For all k > 0, let uk be sampled from a white noise process with a zero-mean Gaussian distribu-
tion with variance 10, let x� be given by (29), and let SNR D 20. For SW-VR-RLS, we use r D 60
and Rk specified by (30) with Rmin D 6000, Rmax D 25 000, 
 D 2:5, and 	 D 0:1. For PNLMS
[25], we set ı.PNLMS/ D 0:01, 
.PNLMS/ D 15=.nC 1/, �.PNLMS/ D 0:2; and for the PAPA
[24], we set ı�(PAPA)D 0:01, 
(PAPA)D 15=n, �.PAPA/ D 0:2, and ı(PAPA)D 100=n. Note
that for these parameters, all three algorithms have approximately the same mean steady-state error.
Figure 5 shows that, for k 6 999, SW-VR-RLS yields faster convergence of "k to its asymptotic
mean value than PNLMS and PAPA. Furthermore, at k D 1000, x� ¤ ´1; and SW-VR-RLS yields
faster convergence of "k to its new asymptotic mean value than PNLMS and PAPA.

Next, we consider the case where uk is colored. Because convergence of SW-VR-RLS, PAPA,
and PNLMS is slower in the presence of colored inputs as compared with white inputs, we consider

x� D

²
´1; if 0 6 k 6 3999;
´2; if k > 4000:

Let SNR D 20, Nuk be sampled from a white noise process with a zero-mean Gaussian distribution
with variance 10, and let

uk D 0:9uk�1 C Nuk :

For SW-VR-RLS, we use r D 800 and Rk specified by (30) with Rmin D 5 � 104, Rmax D
35 � 104, 
 D 3:5, and 	 D 0:01. For PNLMS [25], we set ı.PNLMS/ D 0:05, 
.PNLMS/ D
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Figure 5. This plot compares SW-VR-RLS with PAPA and PNLMS when the input signal is white. For
k 6 1000, SW-VR-RLS yields faster convergence of "k to its asymptotic mean value than PNLMS and
PAPA. Furthermore, at k D 1000, x� ¤ ´1; and SW-VR-RLS yields faster convergence of "k to its new

asymptotic mean value than PNLMS and PAPA.

Figure 6. This plot compares SW-VR-RLS with PAPA and PNLMS when the input signal uk is colored.
For k 6 4000, SW-VR-RLS yields faster convergence of "k to its asymptotic mean value than PNLMS and
PAPA. Furthermore, at k D 4000, x� ¤ ´1; and SW-VR-RLS yields faster convergence of "k to its new

asymptotic mean value than PNLMS and PAPA.

15=.nC 1/, and �.PNLMS/ D 0:085; and, for PAPA [24], we set ı�.PAPA/ D 0:01, 
.PAPA/ D
15=n, �.PAPA/ D 0:02, and ı.PAPA/ D 5=n. Note that we have chosen these parameters
such that all three algorithms have approximately the steady-state mean error. Figure 6 shows
that, for this example, and for k 6 3999, SW-VR-RLS yields faster convergence of "k to
its asymptotic mean value than PNLMS and PAPA. Furthermore, at k D 4000, x� ¤ ´1;
and SW-VR-RLS yields faster convergence of "k to its asymptotic mean value than PNLMS
and PAPA.

7. NUMERICAL STABILITY

In this section, we investigate the numerical stability of SW-VR-RLS to account for the effects of
round-off and quantization errors in xk and Pk . Throughout this section, we assume that, for all
0 6 k 6 � � 1, ˛k , x0, and, for all k > �, ˛k , xk�� , where � is a positive integer.
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7.1. Numerical errors in xk

To examine the numerical stability of Algorithms 1 and 2, we perturb xk0 at step k0 by the amount
	 2 Rn and analyze the propagation of this error, assuming that all subsequent calculations are
performed with infinite-precision arithmetic.

We first analyze the numerical stability of Algorithm 1, that is, we analyze the propagation of
a perturbation in xk0 at step k0 assuming that, for all k > k0, xk is updated using (15). For all
k > k0, let Nxk denote the SW-VR-RLS minimizer given by Algorithm 1, where the initial condition
is Nxk0 , xk0 C 	 , where xk0 is the SW-VR-RLS minimizer given by Algorithm 1 at step k0. Thus,
it follows from (15) that, for all k > k0, Nxk satisfies

Nxk D �
1

2
Pk

 
kX

iDk�r

bi � 2Rk N̨k

!
; (31)

where, for all k0 6 k 6 k0 C � � 1, N̨k , ˛k and, for all k > k0 C �, N̨k , Nxk�� . For all k > k0,
define ık , Nxk � xk and note that ık0 D 	 . It follows from (31) and (15) that, for all k > k0,

ık D PkRk . N̨k � ˛k/ D PkRkık�� ; (32)

where, for all k0 � � C 1 6 k 6 k0 � 1, we define ık , 0. For all k > k0 C � � 1, define
�k ,

�
ıT
k

ıT
k�1

� � � ıT
k��C1

�T
2 Rn� and, for all i 2 ¹1; : : : ; �º, let �k;i , ık�iC1. Then, it

follows from (32) that, for all k > k0 C � � 2,2
6664
�kC1;1
�kC1;2
:::

�kC1;�

3
7775 D

2
6664
PkC1RkC1�k;�

�k;1
:::

�k;��1

3
7775 : (33)

Note that �k � 0 is an equilibrium solution of (33). The following result shows that, under the
assumptions of Theorem 1, the equilibrium solution �k � 0 of (33) is globally asymptotically
stable. The proof is in the Appendix.

Theorem 3
Consider the error systems (17), (18), (19), and (32). For all k > k0, let Tk 2 Rn�n be positive def-
inite, and assume that there exist "1; "2 2 .0;1/ such that, for all k > k0, (22) holds. Furthermore,
for all k > k0, let �k 2 R; assume that 0 < infk>k0 �k 6 supk>k0 �k <1; and define Rk , �kTk .
Then, the following statements hold:

(i) ¹Lkº1kDk0C1, ¹Qkº
1
kDk0C1

, and ¹Pkº1kDk0 are bounded.
(ii) The equilibrium solution�k � 0 of (33) is uniformly Lyapunov stable, and, for all ık0 2 Rn,
¹ıkº

1
kDk0

is bounded.
(iii) Assume that ¹Akº1kDk0 is bounded, and assume that there exists c > 0 and a non-negative

integer l such that, for all k > k0 C �l � r , cIn 6
Pl
iD0Ak��i . Then, for all ık0 2 Rn,

limk!1 ık D 0, and �k � 0 is globally asymptotically stable.

We now examine the numerical stability of Algorithm 2, that is, we analyze the propagation of
a perturbation in xk0 at step k0 assuming that, for all k > k0, xk is updated using (20). For all
k > k0, let Nxk denote the SW-VR-RLS minimizer given by Algorithm 2, where the initial condition
is Nxk0 , xk0 C 	 , where xk0 is the SW-VR-RLS minimizer given by Algorithm 2 at step k0. Thus,
it follows from (20) that, for all k > k0, Nxk satisfies

Nxk D ŒIn � Pk.Ak � Ak�r�1 CRk �Rk�1/� Nxk�1 �
1

2
Pk.bk � bk�r�1/

C PkRk N̨k � PkRk�1 N̨k�1;
(34)
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where, for all k0 6 k 6 k0 C � � 1, N̨k , ˛k , and, for all k > k0 C �, N̨k , Nxk�� . For all k > k0,
define ık , Nxk � xk and note that ık0 D 	 . Subtracting (20) from (34), and using (9), it follows
that, for all k > k0,

ık D ŒIn � Pk.Ak � Ak�r�1 CRk �Rk�1/� . Nxk�1 � xk�1/

C PkRk . N̨k � ˛k/ � PkRk�1 . N̨k�1 � ˛k�1/

D
�
In � Pk

�
P�1k � P

�1
k�1

��
. Nxk�1 � xk�1/C PkRk . N̨k � ˛k/ � PkRk�1 . N̨k�1 � ˛k�1/

D PkP
�1
k�1ık�1 C PkRkık�� � PkRk�1ık���1;

(35)

where, for all k0 � � 6 k 6 k0 � 1, we define ık , 0. Note that the error dynamics (35) for
Algorithm 2 are different from the error dynamics (32) for Algorithm 1. We show numerically that
there exists ık0 2 Rn such that ık for Algorithm 2 given by (35) does not decay to zero. In contrast,
Theorem 3 implies that ık for Algorithm 1 given by (32) does decay to zero.

We now numerically test the stability of the single error propagation dynamics for xk given by
(35) and (32). Let n D 10, r D 5, and � D 1; and, for all k > �r , let the entries of  k be
generated from a zero-mean Gaussian distribution with unit variance. Furthermore, for all k > �r ,
let Ak D  k 

T
k

, and, for all k > 0, let Rk D In. Moreover, let ı�1 D 0, and let ı0 be generated
from a zero-mean Gaussian distribution with unit variance. Finally, for all k > 0, let Pk be given by
(3). Figure 7 shows ık for (35) and (32) and shows that, for this example, ık given by (35) does not
decay to zero, whereas ık given by (32) decays to zero.

Next, we test Algorithms 1 and 2 using the same setup as in Section 6.1 but with no noise,
x� D ´1, and a perturbation in xk at step k D 500. Figure 8 shows "k for Algorithms 1 and 2 with
perturbation (dashed line) and without perturbation (solid line) in xk and shows that, after k D 500,
for Algorithm 1 with perturbation, "k converges to the unperturbed value of "k , but for Algorithm 2
with perturbation, "k does not converge the unperturbed value of "k .

Since the xk update for Algorithm 2 is derived from the xk update for Algorithm 1, Figure 8
suggests that the derivation of the xk update for Algorithm 2 introduces the equivalent of a pole on
the unit circle at 1 of a linear time-invariant discrete-time system, due to which a perturbation in xk
does not decay. To illustrate this, let  2 R, for all k > 0, let ak 2 R be sampled from a white noise
process with a zero-mean Gaussian distribution and variance 0.0025, let bk D ak C 0:5 sin.0:01k/,
and, for all k > 0, define the asymptotically stable linear system

Figure 7. This plot shows the solution ık of the error-propagation systems for xk given by (35) and (32).
The solid line indicates the solution to (35), whereas the dashed line indicates the solution to (32). This plot

shows that ık given by (35) does not decay to zero, whereas ık given by (32) decays to zero.
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Figure 8. This plot shows "k for Algorithms 1 and 2 with perturbation (dashed line) and without perturbation
(solid line) in xk and shows that, after k D 500, for Algorithm 1 with perturbation, "k converges to the
unperturbed value of "k , but for Algorithm 2 with perturbation, "k does not converge the unperturbed value

of "k .

xkC1 D 0:5xk C bkC1 C bk; (36)

with the initial condition x0 D . It follows from (36) that xk D 0:5xk�1 C bk C bk�1, and thus,

bk D xk � 0:5xk�1 � bk�1: (37)

Using (37) in (36) yields, for all k > 0,

xkC2 D 1:5xkC1 � 0:5xk C bkC2 � bk; (38)

with the initial conditions x0 D  and x1 D 0:5 C b1 C b0. Note that (38) has a pole at 1. Note
that using (37) in (36) is similar to using (9) and (16) in (15) to obtain

xk D �
1

2
Pk

 
k�1X

iDk�r�1

bi C bk � bk�r�1 � 2Rk˛k

!

D �
1

2
Pk
�
�2P�1k�1xk�1 C 2Rk�1˛k�1 C bk � bk�r�1 � 2Rk˛k

�
;

which is one of the steps in deriving Algorithm 2 from Algorithm 1.
Figure 9 shows xk given by (36) and (38) with a perturbation at step k D 200 (dashed line)

and without perturbation (solid line). After k D 200, for (36) with perturbation, xk converges to
the unperturbed value of xk , but for (38) with perturbation, xk does not converge the unperturbed
value of xk .

7.2. Numerical errors in Pk

We now consider the effect of round-off and quantization errors in Pk . As in the case of xk , we
perturb Pk0 at step k0, and analyze the propagation of this error, assuming that all subsequent
calculations are performed with infinite-precision arithmetic. Let � 2 Rn�n. For all k > k0, let
NPk be given by Algorithm 1, where the initial conditions are NPk0 D Pk0 C � , NQk0 D Qk0 , and
NLk0 D Lk0 , where Pk0 ,Qk0 , and Lk0 are given by Algorithm 1 at step k0. Thus, it follows that, for
all k > k0, NPk , NQk , and NLk satisfy

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2016; 30:715–735
DOI: 10.1002/acs



SLIDING-WINDOW VARIABLE-REGULARIZATION RECURSIVE LEAST SQUARES 729

Figure 9. This plot shows xk given by (36) and (38) with perturbation at step k D 200 (dashed line)
and without perturbation (solid line). After k D 200, for (36) with perturbation, xk converges to the
unperturbed value of xk , but for (38) with perturbation, xk does not converge the unperturbed value

of xk .

Figure 10. This figure shows jjPk jj for SW-VR-RLS with Pk perturbed at k D 400 (solid line) and SW-
VR-RLS with unperturbed Pk (dashed line). This figure shows that, after Pk is perturbed at k D 400, the

error between SW-VR-RLS with perturbed Pk and SW-VR-RLS with unperturbed Pk does not decay.

NLk D NPk�1 � NPk�1�k
�
Sk C �

T
k
NPk�1�k

��1
�T
k
NPk�1;

NQk D NLk � NLk k�r�1
�
�Ink�r�1 C  

T
k�r�1

NLk k�r�1
��1

 T
k�r�1

NLk;

NPk D NQk � NQk k
�
Ink C  

T
k
NQk k

��1
 T
k
NQk :

For all k > k0, define ıPk , NPk �Pk and note that ıPk0 D � . We now show numerically that ıPk
does not decay to zero. In this paper, we mitigate this by resetting SW-VR-RLS at regular intervals.

We consider the same setup as in Example 6.3, where the input is white except, for all k > 0,
Rk D 3000In and wk D 0. We compare SW-VR-RLS with P400 perturbed by a positive definite
matrix � D ıP400 and SW-VR-RLS with no perturbation. Figure 10 shows that the error ıPk does
not decay.
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Figure 11. Effect of resetting on SW-VR-RLS for ks D 60 (dashed line), ks D 120 (dash-dotted line),
ks D 300 (dotted line), and no resetting (solid line). This plot shows that, after "k reaches its asymptotic
value and Rk D Rmax, then "k for SW-VR-RLS with covariance resetting does not deviate significantly

from SW-VR-RLS without resetting.

We now numerically investigate the effect of resetting Algorithm 2 at regular intervals. The
following procedure resets SW-VR-RLS at time step k.

1. xk is unchanged.
2. For all i < k, set xi D 0.
3. Set ˛k D xk .
4. For all i 6 k, set Ai D 0 and bi D 0.
5. Set Pk D R�1k .

Note that the resetting procedure is the same for Algorithms 1 and 2 as the Qk , Lk , and Pk update
equations are identical for both algorithms. Furthermore, note that if Rk is a diagonal matrix, then
the inverse in step 5 is O.n/. We now investigate the effect of periodically resetting SW-VR-RLS
after ks steps. For this example, we consider the same setup as in Example 6.3, where the input
is white. We compare SW-VR-RLS without resetting and SW-VR-RLS with ks D 60, ks D 120
steps, and ks D 300 steps. We show "k for a single trial. Figure 11 shows that if "k reaches its
asymptotic value and Rk D Rmax, then "k for SW-VR-RLS with covariance resetting does not
deviate significantly from SW-VR-RLS without resetting. However, resetting SW-VR-RLS when
Rk D Rmin and "k is adapting quickly yields slower convergence of "k to its asymptotic value as
compared with SW-VR-RLS without resetting. Note that in all cases, resetting SW-VR-RLS does
not introduce large transients in "k .

8. CONCLUSIONS

A sliding-window variable-regularization recursive-least-squares algorithm has been presented.
This algorithm allows for a cost function that has a time-varying regularization term, which provides
the ability to vary the weighting in the regularization as well as what is being weighted. The con-
vergence properties of the algorithm in the absence of noise were proved, and the effects of window
size and regularization were investigated numerically. Furthermore, SW-VR-RLS was numerically
compared with PAPA and PNLMS for white and colored input noises. Numerical examples demon-
strated that time-varying regularization can have a positive impact on the convergence properties.
Numerical and experimental comparisons to other algorithms, such as those in [16–21], are areas
for further investigation. The numerical stability of the algorithm was analyzed analytically and
numerically, and it was proved that numerical errors in xk decay to zero. Furthermore, the numerical
errors in Pk were mitigated using resetting, and the effect of resetting on SW-VR-RLS was
investigated numerically.
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APPENDIX A: PROOFS OF THEOREMS 1, 2, AND 3

Proof of Theorem 1
To show (i), it follows from the first inequality in (22) that, for all k > 0, Rk > c1In, where
c1 , "1 infk>0 �k > 0. Because, for all k > 0, Ak is positive semidefinite, it follows from (3) that
P�1
k
> c1In, which implies that 0 6 Pk 6 1

c1
In. Thus, ¹Pkº1kD0 is bounded. Similarly, it follows

from (6) and (8) that, for all k > 1,Q�1
k
> c1In andL�1

k
> c1In, which imply that 0 6 Qk 6 1

c1
In

and 0 6 Lk 6 1
c1
In. Thus, ¹Qkº

1
kD1

and ¹Lkº1kD1 are bounded.

To show (ii), note that because ¹bkº1kD0 is bounded, it follows that 1 , supk jjbkjj < 1.
Additionally, because ¹˛kº1kD0 is bounded, it follows that 2 , supk jj˛kjj < 1. Furthermore, it
follows from the last inequality in (22) that, for all k > 0, Rk 6 c2In, where c2 , "2 supk>0 �k <
1. Hence, it follows from (4) that, for all k > 0,

jjxkjj D

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌1
2
Pk

 
kX

iDk�r

bi � 2Rk˛k

!ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌

6 1
2
jjPkjj

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ kX
iDk�r

bi � 2Rk˛k

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌

6 1
2
jjPkjj

 ˇ̌̌ˇ̌̌ kX
iDk�r

bi

ˇ̌̌ˇ̌̌
C 2jjRkjjjj˛kjj

!

6 1

c1
..r C 1/1 C 2c22/ :

Therefore, ¹xkº1kD0 is bounded. �

Proof of Theorem 2
To show (i), let ���1 D ��. Then, it follows from (24) and (25) that ��;2 D ��;3 D ��;� D � � � D x�,
and

��;1 D �P�

 
�X

iD��r

1

2
bi �R�x�

!
D �P�

 
�

�X
iD��r

1

2
Ai �R�

!
x� D x�;

and thus, �� D ��. Similarly, for k D �, it follows from (24) and (25) that ��C1;2 D ��C1;3 D
��C1;� D � � � D x�, and

��C1;1 D �P�C1

 
�C1X

iD�C1�r

1

2
bi �R�C1x�

!
D �P�C1

 
�

�C1X
iD�C1�r

1

2
Ai �R�C1

!
x� D x�;

and thus, ��C1 D ��. It follows that, for all k > � � 2, �k D ��, and thus, �k � �� is an
equilibrium solution of (24).

To show (ii), because, for all k > �, ˛k D xk�� , it follows from (4) that, for all k > �,

xk D �Pk

 
kX

iDk�r

1

2
bi �Rkxk��

!
;

where, for all j 2 ¹0; 1; : : : ; � � 1º, the initial conditions are Pj D
�Pj

iDj�r Ai CRj

��1
and

xj D �
1
2
P0

�Pj
iDj�r bi � 2Rj�

�
. It follows that
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xk D Pk

 
kX

iDk�r

Ai CRk

!
xk�� � Pk

kX
iDk�r



Aixk�� C

1

2
bi

�

D xk�� � Pk

kX
iDk�r



Aixk�� C

1

2
bi

�
:

(39)

Define Qxk , xk � x�. Subtracting x� from (39), and using (23) and (25), yields, for all k > �,

Qxk D Qxk�� � Pk

kX
iDk�r

Ai Qxk��

D Qxk�� � Pkˆkˆ
T
k Qxk��

D Pk
�
P�1k �ˆkˆ

T
k

�
Qxk��

D PkRk Qxk��

D
h
R�1k �R

�1
k ˆk

�
Iqk Cˆ

T
kR
�1
k ˆk

��1
ˆT
kR
�1
k

i
Rk Qxk��

D Qxk�� � T
�1
k ˆk

�
�kIqk Cˆ

T
kT
�1
k ˆk

��1
ˆT
k Qxk��

D Qxk�� � T
�1
k ˆk�

�1
k ˆ

T
k Qxk�� ;

(40)

where �k , �kIqk C ˆT
k
T �1
k
ˆk . Define Q�k , �k � ��, and, for all i 2 ¹1; : : : ; �º, define

Q�k;i , Qxk�iC1. Then, it follows from (24) and (40) that, for all k > � � 2,

2
6664
Q�kC1;1
Q�kC1;2
:::

Q�kC1;�

3
7775 D

2
6664
�
I � T �1

kC1
ˆkC1�

�1
kC1

ˆT
kC1

�
Q�k;�

Q�k;1
:::

Q�k;��1

3
7775 : (41)

Note that Q�k � 0 is an equilibrium solution of (41). For all ´ 2 R, define the strictly increasing
functions ˛.´/ , "1´2 and ˇ.´/ , "2´2, and, for all k > � � 1, define the Lyapunov function

V. Q�k; k/ ,
�X
iD1

Q�T
k;iTkC1�i Q�k;i :

The difference �Vk , V. Q�k; k/ � V. Q�k�1; k � 1/ is given by

�Vk D Q�
T
k�1;� .Tk � Tk��/ Q�k�1;� � 2 Q�

T
k�1;�ˆk�

�1
k ˆ

T
k Q�k�1;�

C Q�T
k�1;�ˆk�

�1
k ˆ

T
kT
�1
k ˆk�

�1
k ˆ

T
k Q�k�1;�

6 �2 Q�T
k�1;�ˆk�

�1
k ˆ

T
k Q�k�1;� C Q�

T
k�1;�ˆk�

�1
k ˆ

T
kT
�1
k ˆk�

�1
k ˆ

T
k Q�k�1;�

D � Q�T
k�1;�ˆk�

�1
k

�
Iqk C Iqk �ˆ

T
kT
�1
k ˆk�

�1
k

�
ˆT
k Q�k�1;�

D � Q�T
k�1;�ˆk�

�1
k

�
Iqk C

�
�k �ˆ

T
kT
�1
k ˆk

�
��1k

�
ˆT
k Q�k�1;�

D � Q�T
k�1;�ˆk�

�1
k

�
Iqk C �k�

�1
k

�
ˆT
k Q�k�1;�

6 � Q�T
k�1;�ˆk�

�1
k ˆ

T
k Q�k�1;� :

(42)

Because, for all k > � � 1 and Q�k 2 Rn� , ˛.jj Q�kjj/ 6 V. Q�k; k/ 6 ˇ.jj Q�kjj/ and �Vk 6 0,
it follows from [23, Theorem 13.11] that the equilibrium solution Q�k � 0 of (41) is uniformly
Lyapunov stable. Furthermore, because ˛.´/!1 as ´!1, it follows from [23, Corollary 13.4]
that, for each Q���1 2 Rn� , the sequence ¹ Q�kº

1
kD��1 is bounded. Hence, for each x0 2 Rn, ¹ Qxkº

1
kD0

is bounded, and thus, ¹xkº
1
kD0 is bounded.

To show (iii), it follows from (42) that
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0 6
kX
jD�

QxT
j��ˆj�

�1
j ˆ

T
j Qxj�� 6 �

kX
jD�

�Vj D V. Q���1; � � 1/ � V. Q�k; k/ 6 V. Q���1; � � 1/:

Hence, the nondecreasing sequence
°Pk

jD� Qx
T
j��ˆj�

�1
j ˆ

T
j Qxj��

±1
kD�

is bounded, and thus,P1
jD� Qx

T
j��ˆj�

�1
j ˆ

T
j Qxj�� exists.

Next, for all k > �, define Mk ,
Pk
jD� jjxj � xj�� jj

2, and it follows from (40) that

Mk D

kX
jD�

jjT �1j ˆj�
�1
j ˆ

T
j Qxj�� jj

2 6
kX
jD�

kT �1j k Qx
T
j��ˆj�

�1
j ˆ

T
jT
�1
j ˆj�

�1
j ˆ

T
j Qxj�� :

Note that, for all k > �, kT �1
k
k 6 k 1

"1
Ink D

1
"1

. Therefore,

Mk 6
1

"1

kX
jD�

QxT
j��ˆj�

�1
j

�
�j Iqj Cˆ

T
jT
�1
j ˆj � �j Iqj

�
��1j ˆ

T
j Qxj��

D
1

"1

kX
jD�

QxTj��ˆj�
�1
j ˆ

T
j Qxj�� �

1

"1

kX
jD�

�j Qx
T
j��ˆj�

�2
j ˆ

T
j Qxj��

6 1

"1

kX
jD�

QxT
j��ˆj�

�1
j ˆ

T
j Qxj�� :

Because
P1
jD� Qx

T
j��ˆj�

�1
j ˆ

T
j Qxj�� exists, it follows that the nondecreasing sequence ¹Mkº

1
kD�

is bounded, and thus, limk!1Mk exists, which verifies (iii).
To show (iv), because ¹Akº1kD0 is bounded, it follows that ¹ˆkº1kD0 is bounded. Because, in

addition, ¹�kº1kD0 and ¹T �1
k
º1
kD0

are bounded, it follows that there exists c3 > 0 such that, for all

k > 0, c3Iqk 6 �min

�
�
�1=2

k

�
Iqk 6 �

�1=2

k
, which implies that

0 6 c3jjˆT
k Qxk�� jj 6 �min

�
�
�1=2

k

�
jjˆT

k Qxk�� jj 6 jj�
�1=2

k
ˆT
k Qxk�� jj:

Therefore, because (iii) implies that limk!1�
�1=2

k
ˆT
k
Qxk�� D 0, it follows that

limk!1ˆ
T
k
Qxk�� D 0, which implies that limk!1  

T
k
Qxk�� D 0:

Next, because ¹Akº1kD0 is bounded, it follows that  , supk>0 �max. k/ <1. Thus,

jjAkxk C
1

2
bkjj D jjAkxk � Akx�jj

D jj k 
T
k Qxkjj

6 jj T
k Qxkjj

D jj T
k Qxk�� C  

T
k Qxk �  

T
k Qxk�� jj

6 
�
jj T

k Qxk�� jj C jj kjjjj Qxk � Qxk�� jj
�

6 
�
jj T

k Qxk�� jj C jj Qxk � Qxk�� jj
�

D jj T
k Qxk�� jj C 

2jj Qxk � Qxk�� jj:

(43)

Because limk!1  
T
k
Qxk�� D 0, and (iii) implies that limk!1. Qxk � Qxk��/ D 0, it follows from (43)

that limk!1.Akxk C
1
2
bk/ D 0, which confirms (iv).

To show (v), it follows from (43) that limk!1Ak Qxk D 0 and limk!1  
T
k
Qxk D 0. Next, using

arguments similar to those used in (43), we obtain
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jjAk�� Qxkjj 6 jj T
k�� Qxkjj

D jj T
k�� Qxk�� C  

T
k�� Qxk �  

T
k�� Qxk�� jj

6 jj T
k�� Qxk�� jj C 

2jj Qxk � Qxk�� jj:

(44)

Because limk!1  
T
k
Qxk D 0, and (iii) implies that limk!1. Qxk � Qxk��/ D 0, it follows from (44)

that limk!1Ak�� Qxk D 0 and limk!1  
T
k��
Qxk D 0. Again, using arguments similar to those used

in (43), we obtain

jjAk�2� Qxkjj 6 jj T
k�2� Qxkjj

D jj T
k�2� Qxk�� C  

T
k�2� Qxk �  

T
k�2� Qxk�� jj

6 jj T
k�2� Qxk�� jj C 

2jj Qxk � Qxk�� jj:

(45)

Because limk!1  
T
k��
Qxk D 0, and (iii) implies that limk!1. Qxk � Qxk��/ D 0, it follows from (45)

that limk!1Ak�2� Qxk D 0 and limk!1  
T
k�2�
Qxk D 0. Repeating this argument shows that, for all

i 2 ¹0; 1; 2; : : : ; lº, limk!1Ak��i Qxk D 0. Because, for all k > �l � r , cIn 6
Pl
iD0Ak��i , it

follows that

jj Qxkjj 6
1

c

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ lX
iD0

Ak��i Qxk

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ 6 1

c

lX
iD0

jjAk��i Qxkjj;

which implies that limk!1 Qxk D 0. Thus, limk!1 �k D ��, and the equilibrium solution �k � ��
of (24) is globally asymptotically stable. �

Proof of Theorem 3
To show (i), note that the update equations forLk ,Qk , andPk are identical to those in SW-VR-RLS.
Thus, (i) follows directly from Theorem 1.

To show (ii) and (iii), it follows from (32) and (23) that, for all k > k0 C �,

ık D PkRkık��

D
h
R�1k �R

�1
k ˆk

�
Iqk Cˆ

T
kR
�1
k ˆk

��1
ˆT
kR
�1
k

i
Rkık��

D ık�� � T
�1
k ˆk

�
�kIqk Cˆ

T
kT
�1
k ˆk

��1
ˆT
kık�� :

The remainder of the proof of (ii) and (iii) is analogous to the proof of Theorem 2 from (40) onwards
with xk replaced by ık , x� replaced by 0, Qxk replaced by ık , and Q�k replaced by �k . �
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