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The upper atmosphere is a strongly driven system in which the global state is rapidly altered by the solar drivers.

Oneof themaindrivers of theupper atmosphere is the solar irradiance in the extremeultraviolet andx-raybands.The

solar irradiance in these bands is proxied by ground-basedmeasurements ofF10.7, which is the solar irradiance at the

wavelength of 10.7 cm. The problem of estimating F10.7 and physical states in the upper atmosphere is considered by

assimilating the neutral densitymeasurements in the global ionosphere–thermospheremodel andusing retrospective-

cost adaptive input and state estimation. Retrospective-cost adaptive input and state estimation is a non-Bayesian

estimator that estimates the input by minimizing the difference between the estimator output and the output of the

physical system. In this paper, we use retrospective-cost adaptive input and state estimation to estimate F10.7 using

simulated data as well as real satellite data.

I. Introduction

S TATE-ESTIMATION techniques combine measurements with dynamical and statistical models. The external input may consist of an
unknown stochastic driver and a known deterministic driver, where knowledge of the latter is used in the estimator. If the deterministic driver

is unknown, it can be treated as a stochastic driver; however, the resulting estimates may be poor. State estimators that account for the unknown
deterministic signal include unbiased Kalman filters, unknown input observers, and state estimators with input reconstruction [1–5].

In many applications, the response is primarily due to the deterministic driver since, as the effect of the initial state decays, the forcing alone
governs the asymptotic response. In the linear case, systems with this property are asymptotically stable; in the nonlinear case, these systems are
called incrementally stable or contractive, and this phenomenon is called entrainment [6–8]. Entrainment in strongly driven systems suggests that,
at least in some cases, the state-estimation accuracy can be enhanced by estimating the unknown drivers.

In the near-Earth environment, the effects of space weather are primarily manifested by the properties of the ionosphere and thermosphere,
which influence radio propagation and satellite drag. The sun is the primary driver in this region, strongly driving the combined ionosphere and
thermosphere. In particular, the sun’s extreme ultraviolet (EUV) and x-ray radiation produces photoionization that, in turn, through chemistry and
heating, drives the ionosphere and thermosphere.

Unfortunately, it is not possible to measure EUVand x-ray flux from the ground due to atmospheric absorption. Consequently, measurements
of solar irradiance at 10.7 cm wavelength (F10.7) are used as a proxy for EUVand x-ray flux. This quantity, in units of 10−22 W-Hz−1 m−2 � 1
solar flux units (SFUs), ismeasured daily at local noon by theDominionRadioObservatory in Penticton, Canada [9]. The present work is aimed at
estimating F10.7 at arbitrary temporal resolution in a manner that is consistent with features of the ionosphere and thermosphere by assimilating
satellite neutral density measurements. Such model-based estimation of F10.7 using alternative sensors can also be used to validate direct
measurements made at ground stations. Furthermore, since models of the ionosphere–thermosphere are typically incomplete or inexact, the
difference between estimates of F10.7 and direct measurements provides the basis for model calibration and parameter estimation.

In this paper, we use the global ionosphere–thermospheremodel (GITM) [10], which captures global temperature, density, andwinds from 100
to 600 km above the Earth. Drivers include electric fields that give rise to the aurora, lower-atmosphere tides, and solar radiation. Chemistry and
thermodynamics account for ions and neutrals.

We use retrospective-cost adaptive input and state estimation (RCAISE) [11] to estimate F10.7 by assimilating satellite measurements in GITM.
Assuming that the drivers (that is, inputs) of the system are unknown,RCAISE constructs an input to the estimator thatminimizes the cost function
based on the error between the measured and computed neutral densities. To do this, RCAISE adapts the coefficients of the driver-estimator
subsystem by retrospectively optimizing the neutral density error with respect to the driver estimate: that is, the estimator input. The output of the
adaptive driver-estimator subsystem is then used to asymptotically drive the neutral density error to zero. In this way, RCAISE estimates the
unknown input (that is, the external driver) along with the unknown states of the system.

RCAISE differs from existing data assimilation methods in several ways. For example, unlike four-dimensional (4-D) variational data
assimilation (VAR) techniques [12–17], RCAISE does not require an adjoint code; in fact, no adjoint code is available for GITM. Furthermore,
like both 4-D VAR and ensemble-based methods, RCAISE does not require an explicit model of the system dynamics, and thus can be
implemented based on a numerical black-box simulation of the dynamics.Moreover, like 4-DVAR, but unlike ensemble-basedmethods [18–20],
RCAISE does not require an ensemble of models. In addition, RCAISE does not assume the existence of a stochastic model, and it does not use
any prior information concerning the statistics of unknown quantities. For example, RCAISE does not use statistical knowledge of the sensor
noise (instrument error), stochastic drivers, or parametric errors to stochastically optimize the state and driver estimates. Consequently, RCAISE is
a non-Bayesian technique, and thus does not provide a statistical measure of the accuracy of its estimates: for example, in terms of a probability
distribution or confidence intervals. Nevertheless, we consider applications in which sensor measurements are corrupted by noise; for example,
the Challenging Mini Satellite Payload (CHAMP) [21] data used in this study are inherently subject to instrument error. Finally, RCAISE is
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relatively inexpensive to implement since, unlike 4-D VAR, it does not depend on nonquadratic optimization and, unlike Bayesian methods, it
does not require an ensemble of models.

In accordancewith the application of RCAISE to estimateF10.7, theGITM study in this papermakes no assumption about prior statistics, which
are required by Bayesian methods. In contrast, the related study in [22] is based on assumed statistical priors constructed based on ad hoc
requirements. For example, the initial distribution of F10.7 in [22] was chosen to be normal in accordance with the assumptions of the ensemble
adjustment Kalman filter (EAKF) [20] used in the data assimilation research testbed (DART) code [23]. In this case, the standard deviation was
chosen to create sufficient spread after an initial spinup in order to initialize the ensemble. This technique for choosing priors, alongwith inflation
and localization, is representative of the “tuning knobs” routinely used to implement Bayesian ensemble methods.

The derivation of the RCAISE algorithm given in this paper is based on a linear dynamics model for which themodeling information needed to
implement the algorithm consists of components of the impulse response. However, since RCAISE does not require an explicit model of the
dynamics (which may, for example, be in the form of a computer code, as in the case of GITM), RCAISE can be applied to nonlinear systems. In
this case, the required modeling information can be based on either the qualitative behavior of the system or by observing the response of the
estimator. The numerical examples in this paper show that RCAISE is effective on nonlinear systems, which is due to the fact that the algorithm
requires extremely limited modeling information. In analogy with ensemble methods, the tuning knobs used in RCAISE include the required
modeling data and theweights used for regression. The sensitivity of the accuracy of RCAISE to variations in themodel data is illustrated for both
an illustrative example in Sec. III and for GITM in Sec. VI.

In [24], RCAISEwas used to estimate constant F10.7 in GITMusing simulatedmeasurement data, where themeasurement was assumed to be at
a fixed position in the atmosphere. The contribution of the present paper is to derive RCAISE, illustrate RCAISE using simple examples,
formulate RCAISE for GITM, and apply RCAISE to space weather driver estimation using GITM in the case where the measurements are
obtained from real and simulated satellites and where the driver F10.7 is time varying.

As noted previously, RCAISE is intended for use with strongly driven systems with unknown deterministic drivers, and furthermore does not
provide bounds or statistics on the states or drivers. Therefore, RCAISE is not intended to compete with Bayesian estimation techniques that use
priors to obtain error density estimates. On the other hand, since RCAISE requires no ensemble or adjoint code, and it depends solely on linear
regression, it is easy and inexpensive to implement. In contrast, the results of [22] required 640 processors, where one week of simulated time
(which is typical of space weather applications) required about one week of computer time, for a total of about 107,500 CPU hours. This cost is
partly due to the inefficient interface between the DARTandGITM. Nonetheless, the computational cost of running RCAISEwith GITM is close
to the cost of running GITM alone, which is approximately 10–15 times faster than real time, so that one week of simulated time requires about
17 h of computer time, for a total of about 544 CPU hours. Consequently, GITMwith the DART (as implemented in [22]) is about 200 timesmore
expensive than GITM with RCAISE.

As shown in [25], RCAISE can also be used for model refinement through subsystem identification. For details, see [26].
The contents of this paper are as follows. In Sec. II, we formulate RCAISE for linear systems, followed by illustrative linear and

nonlinear examples in Sec. III. Section IV describes GITM and CHAMP andGravity Recovery and Climate Experiment (GRACE) [27] satellites
that are used in the numerical experiments. In Sec. V, we formulate RCAISE for GITM and describe the implementation of RCAISE on a
multiprocessor GITM simulation. Section VI presents state and driver estimation results. Finally, in Sec. VII, we give conclusions and future
directions.

II. Retrospective-Cost Adaptive Input and State Estimation

In this section, we give a brief derivation of RCAISE for a linear time-invariant system. Consider

x�k� 1� � Ax�k� � Bu�k� (1)

y�k� � Cx�k� (2)

where x�k� ∈ Rn is the unknown state, u�k� ∈ Rm is an unknown driver, and y�k� ∈ Rp is the measured output. The matrices A ∈ Rn×n,
B ∈ Rn×m, and C ∈ Rp×n are assumed to be known.

To obtain an estimate x̂�k� ∈ Rn of the state x�k�, we consider the state estimator

x̂�k� 1� � Ax̂�k� � Bû�k� (3)

ŷ�k� � Cx̂�k� (4)

z�k� � ŷ�k� − y�k� (5)

where x̂�k� ∈ Rn is the estimated state, ŷ�k� ∈ Rp is the estimated output, û�k� ∈ Rm is the estimated driver, and z�k� ∈ Rp are the innovations:
that is, the output error. The signal û�k�, which is the estimate of the unknown driver, is the output of an adaptive driver-estimator subsystem of
order ne for which the input is z�k�. The adaptive subsystem is formulated as

û�k� �
Xne
i�1

Mi�k�û�k − i� �
Xne
i�0

Ni�k�z�k − i� (6)

whereMi�k� ∈ Rm×m, i � 1; : : : ; ne, andNi�k� ∈ Rm×p, i � 0; : : : ; ne. The order ne of the state estimator is chosen based on the assumed order
of the unknown subsystem. RCAISE minimizes z�k� by updatingMi�k� and Ni�k�.

Figure 1 shows the structure of the adaptive input and state estimator [Eqs. (3–6)]. Note that the coefficientsMi�k� and Ni�k� of the adaptive
driver-estimator subsystem [Eq. (6)] change based on z�k�. Also, Eq. (3) is intended to mimic Eq. (1), where the driver estimate û�k� replaces the
true driver u�k�. The ability of Eq. (3) to estimate x�k� depends on the implicit assumption that Eq. (1) is a strongly driven system, where the effect
of the initial conditions goes to zero asymptotically, and the output of the system is solely due to the input.
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Note that Eq. (3) is distinct from the standard Kalman filter, which has the form

x̂�k� 1� � Ax̂�k� � Bu�k� � Kz�k� (7)

where u�k� represents the known deterministic driver, and the gain matrixK is updated based on the computed error covariance. Note that Eq. (7)
gives only state estimates, whereas Eq. (3) gives estimates of both the state and the unknown driver, assuming that the system is asymptotically
stable.

In the Kalman filter, the state estimates are improved by assimilating the output error z�k�. Once the state estimates converge to the true state,
application of the deterministic driver u�k� forces z�k� to converge to zero asymptotically. However, in RCAISE, the output error z�k� is used to
estimate the unknown driver u�k�. Coupled with the assumption that the system is strongly driven, RCAISE and the estimated driver û�k� then
drive z�k� to zero asymptotically.

For all i ≥ 1, define theMarkov parameterHi of �A;B;C� byHi � CAi−1B. Let r be a nonnegative integer. Then, substitutingEq. (3) into itself,
r − 1 times gives, for all k ≥ r,

x̂�k� � Arx̂�k − r� �
Xr
i�1

Ai−1Bû�k − i� (8)

It follows from Eqs. (1), (4), (5), and (8) that

z�k� � CArx̂�k − r� − y�k� � �H �̂U�k − 1� (9)

where

�H � �H1 · · · Hr � ∈ Rp×rm; �̂U�k − 1� � � ûT�k − 1� · · · ûT�k − r� �T

Next, rearranging the columns of �H and the components of �̂U�k − 1�, and partitioning the resulting matrix and vector, yields

�H �̂U�k − 1� � H 0Û 0�k − 1� �HÛ�k − 1� (10)

where H 0 ∈ Rp×�rm−l�,H ∈ Rp×l, Û 0�k − 1� ∈ Rrm−l, and Û�k − 1� ∈ Rl. For example, if

�H � �H1 H2 H3 H4 H5 �

then �H can be partitioned as Eq. (10) with

H 0 � �H1 H2 H4 �; U 0�k − 1� �

2
4 û�k − 1�
û�k − 2�
û�k − 4�

3
5

and

H � �H3 H5 �; Û�k − 1� �
�
û�k − 3�
û�k − 5�

�

Fig. 1 Adaptive input and state estimator structure.The adaptive input and state estimator uses the errorz�k�between themeasured output y�k� and the
computed output ŷ�k� to update the adaptive driver-estimator subsystem in order to obtain an estimate û�k� of the driver u�k� that minimizes the
retrospective cost �J defined by Eq. (22). The driver estimate û�k� asymptotically drives the error between y�k� and ŷ�k� to zero. Consequently, for a
strongly driven system, the state x̂�k� of the physical system model converges to the state x�k� of the physical system.

ALI ETAL. 769

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 M
ar

ch
 2

2,
 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.I
01

02
86

 



The partitioning of Eq. (10) provides flexibility in implementing RCAISE, in that only selected columns of �H and the components of �̂U�k − 1�
need be used.

Next, using Eq. (10), we can rewrite Eq. (9) as

z�k� � S�k� �HÛ�k − 1� (11)

where

S�k� � CArx̂�k − r� − y�k� �H 0Û 0�k − 1� (12)

Next, for j � 1; : : : ; s; we rewrite Eq. (11) with a delay of kj time steps, where 0 ≤ k1 ≤ k2 ≤ · · ·≤ ks, and we replace H by Hj ∈ Rp×l to
obtain

zj�k − kj� � Sj�k − kj� �HjÛj�k − kj − 1� (13)

where Eq. (12) becomes

Sj�k − kj� � CArx�k − kj − r� − y�k − kj� �H 0jÛ
0
j�k − kj − 1�

and Eq. (10) becomes

�H �̂U�k − kj − 1� � H 0jÛ
0
j�k − kj − 1� �HjÛj�k − kj − 1� (14)

whereH 0j ∈ Rp×�rm−lj�, Û 0j�k − kj − 1� ∈ Rrm−lj , and Ûj�k − kj − 1� ∈ Rlj . The subscript j inH 0j,Hj, Û
0
j, and Ûj indicates that the partitioning

of �H �̂U�k − kj − 1� in Eq. (14) can be different for each delay. Now, by stacking z�k − k1�; : : : ; z�k − ks�, we define the extended performance

Z�k� �

2
64
z1�k − k1�

..

.

zj�k − ks�

3
75 ∈ Rsp (15)

Therefore,

Z�k� � ~S�k� � ~H ~̂U�k − 1� (16)

where

~S�k� �

2
64
S1�k − k1�

..

.

Ss�k − ks�

3
75 ∈ Rsp; ~̂U�k − 1� �

2
64
û�k − q1�

..

.

û�k − qg�

3
75 ∈ Rmg (17)

where, for i � 1; : : : ; g, k1 ≤ qi ≤ ks � r and ~H ∈ Rsp×mg is constructed according to the structure of ~̂U�k − 1� The vector ~̂U�k − 1� is formed
by stacking Û1�k − k1 − 1�; : : : ; Ûs�k − ks − 1� and removing copies of repeated components.

For example, with k1 � 0 and k2 � 1, stacking Û1�k − 1� � � û�k − 1� û�k − 2� �T and Û2�k − 2� � û�k − 2� results in ~̂U�k − 1� �
� û�k − 1� û�k − 2� �T . The coefficient matrix ~H consists of the entries of H1; : : : ;Hs arranged according to the structure of ~̂U�k − 1�.

Next, we define the retrospective performance

ẑj�k − kj� � Sj�k − kj� �HjU
�
j �k − kj − 1� (18)

where the past drivers Ûj�k − kj − 1� in Eq. (13) are replaced by the drivers U�j �k − kj − 1�, which are obtained next using retrospective-cost
optimization. In analogy with Eq. (15), the extended retrospective performance for Eq. (18) is defined as

Ẑ�k� �

2
64
ẑ1�k − k1�

..

.

ẑs�k − ks�

3
75 ∈ Rsp

and thus is given by

Ẑ�k� � ~S�k� � ~H ~U��k − 1� (19)

where the components of ~U��k − 1� ∈ Rg are the components of U�1�k − k1 − 1�; : : : ; U�s �k − ks − 1� ordered in the same way as the
components of ~̂U�k − 1�. Subtracting Eq. (16) from Eq. (19) gives

Ẑ�k� � Z�k� − ~H ~̂U�k − 1� � ~H ~U��k − 1� (20)

where, in analogy with Eq. (17),
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~U��k − 1� �

2
64
u�k−1�k − q1�

..

.

u�k−1�k − qg�

3
75 ∈ Rmg

Finally, we define the retrospective-cost function

J� ~U��k − 1�; k� � ẐT�k�R�k�Ẑ�k� (21)

where R�k� ∈ Rps×ps is a positive-definite performance weighting. The goal is to determine retrospectively optimized drivers ~U��k − 1� that
would have provided better performance than the past driver estimates ~̂U�k − 1� that were applied to the adaptive state estimator.

A. Cost Function Optimization with Adaptive Regularization

To ensure that Eq. (21) has a global minimizer, we consider the regularized cost

�J� ~U��k − 1�; k� � ẐT�k�R�k�Ẑ�k� � η�k� ~U�T�k − 1� ~U��k − 1� (22)

where η�k� ≥ 0. Substituting Eq. (20) into Eq. (22) gives

�J� ~U��k − 1�; k� � ~U��k − 1�TA�k� ~U��k − 1� � B�k� ~U��k − 1� � C�k�

where

A�k� � ~HTR�k� ~H� η�k�Ig;

B�k� � 2 ~HTR�k��Z�k� − ~H ~̂U�k − 1��;

C�k� � ZT�k�R�k�Z�k� − 2ZT�k�R�k� ~H ~̂U�k − 1� � ~̂U
T
�k − 1� ~HTR�k� ~H ~̂U�k − 1�

If either ~H has full column rank or η�k� > 0, then A�k� is positive definite. In this case, �J� ~U��k − 1�; k� has the unique global minimizer

~U��k − 1� � −
1

2
A−1�k�B�k� (23)

The optimized drivers given by Eq. (23) are subsequently used to update the adaptive driver-estimator subsystem [Eq. (6)]. Note that ~H is the
only modeling information required by RCAISE.

B. Adaptive Driver-Estimator Subsystem Update

The adaptive driver-estimator subsystem model [Eq. (6)] can be expressed as

û�k� � θ�k�ϕ�k − 1�

where the driver-estimator coefficients are

θ�k� � �M1�k� · · · Mne�k�N0�k� · · · Nne �k�� ∈ Rm×�2nem��2ne�1�p�

and the regressor vector is

ϕ�k − 1� �

2
666666664

û�k − 1�
..
.

û�k − ne�
z�k�
..
.

z�k − ne�

3
777777775

∈ R2nem��2ne�1�p

Next, for all i ∈ f1; : : : ; kg, let di be a positive integer such that ~U��k − 1� contains u�k−1�k − di�. Then, we define the cumulative cost function

JR�θ�k�� �
Xk
i�1
kθ�k�ϕ�i − di − 1� − u�k−i�i − di�k2 (24)

where k · k is the Euclidean norm. Byminimizing Eq. (24), we update the gains θ�k� using the retrospectively optimized driversu�k−i�i − di�. The
recursive minimizer of Eq. (24) is given by the standard recursive least-squares (RLS) algorithm

P�k� � λ−1P�k − 1� − λ−1P�k − 1�ϕ�k − dk − 1�
× �ϕT�k − dk − 1�P�k − 1�ϕ�k − dk − 1� � λ�−1 × ϕT�k − dk − 1�P�k − 1� (25)
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θT�k� � θT�k − 1� � P�k�ϕ�k − dk − 1��ϕT�k − dk − 1�θT�k − 1� − u�T�k − dk�� (26)

with the initial conditions θT�0� ∈ R�nc�m�p��1�×m and P�0� � γI, where γ > 0. For details on RLS, see [28].

C. Computational Complexity

RCAISE is an ensemble-free algorithm that involves the minimization of two quadratic cost functions. For implementation, RCAISE requires
the computation of Eqs. (6), (23), (25), and (26). The computational complexity of the matrix product in Eq. (6) isO�m�ncm� �nc � 1�p��, and
the computational complexity of the matrix products in Eqs. (25) and (26) isO��ncm� �nc � 1�p�2�. Finally, the computational complexity of
the matrix products and inverse in Eq. (23) is max�O��mg�2sp�;O��sp�2mg�� and O��mg�3�, respectively. In this paper, we consider the case
where m � 1, p � 1, g � 1, and s � 1, for which the computational complexity of RCAISE is O�n2c�.

An implementation of RCAISE on a four-processor GITM simulation with low resolution (16,200 grid points) from 24 November 2002 to
28 December 2002 with nc � 100 completes in 4 h, 3 min of which are devoted to RCAISE equations (6), (23), (25), and (26). Consequently,
RCAISE adds about 1% to the cost of a single GITM simulation.

III. Illustrative Examples

In the previous section, RCAISE was derived for a system with a linear dynamics model, and implementation of this algorithm requires the
matrix ~H. Thematrix ~H can be constructed from the impulse response of themodel or it can be determined by numerical testing. In this section,we
demonstrate RCAISE with nonlinear models. For these models, we construct ~H by numerical testing.

Example III.1 (Lorenz system): The three-variable Lorenz system is known to have chaotic solutions for certain parameter values and initial
conditions. This system does not have external drivers. A fictitious input, retrospectively optimized by RCAISE, is applied to the estimator in
order to drive the estimator states toward the Lorenz system states.

Consider the discretized Lorenz equations

x1�k� 1� � x1�k� � Tsσ�x2�k� − x1�k��;
x2�k� 1� � x2�k� � Ts�x1�k��ρ − x3�k�� − x2�k��;
x3�k� 1� � x3�k� � Ts�x1�k�x2�k� − βx3�k��;

y�k� � x1�k� � x2�k�

where Ts � 0.001, σ � 10, β � 8∕3, and ρ � 28, and the initial conditions x1�0�, x2�0�, x3�0� are chosen randomly from a normal distribution.
For this choice of parameters, the solution of this system is extremely sensitive to the initial conditions. The only measurement is the scalar
output y.

The adaptive estimator has the form

x̂1�k� 1� � x̂1�k� � Tsσ�x̂2�k� − x̂1�k�� � û�k�;
x̂2�k� 1� � x̂2�k� � Ts�x̂1�k��ρ − x̂3�k�� − x̂2�k��;
x̂3�k� 1� � x̂3�k� � Ts�x̂1�k�x̂2�k� − βx̂3�k��;

ŷ�k� � x̂1�k� � x̂2�k�

where û�k� is a fictitious input to the estimator, which is determined by RCAISE to drive the estimator states to true states. We use
~H � H2 � 10; 000, R�k� � 1, η � 0, nc � 4, and γ � 100, where H2 is obtained by numerical testing, and the estimator is initialized with
x̂1�0� � x̂2�0� � x̂3�0� � 0. Figure 2 shows that, after RCAISE is turned on at k � 100, the estimated states are driven to the true states of the
Lorenz system, and z�k� is asymptotically driven to zero.

Example III.2 (Van der Pol oscillator):We consider the Van der Pol oscillator driven by a harmonic input. Consider the nonlinear discretized
Van der Pol oscillator equations in state-space form

x1�k� 1� � x1�k� � Tsx2�k�;
x2�k� 1� � x2�k� � Ts�1 − x1�k�2�x2�k� − Tsx1�k� � Tsu�k�;

y�k� � x1�k� � 0.2x2�k�

where Ts � 0.1 s, and the unknown input is u�k� � sin�0.01k�. The objective is to use the measurement y to estimate u.
The adaptive estimator has the form

x̂1�k� 1� � x̂1�k� � Tsx̂2�k�;
x̂2�k� 1� � x̂2�k� � Ts�1 − x̂1�k�2�x̂2�k� − Tsx̂1�k� � Tsû�k�;

ŷ�k� � x̂1�k� � 0.2x̂2�k�

where û�k� is the estimate of u�k� obtained from RCAISE.We use R�k� ≡ 1, ~H � 0.01, η � 0.001, nc � 2, and γ � 200, where ~H is chosen by
numerical testing. Figure 3 shows that, after RCAISE is turned on at k � 80, the retrospectively optimized input converges to the unknown driver,
and the estimated states are driven to the true state of the Van der Pol oscillator.

Next, to study the sensitivity of RCAISE to ~H, RCAISE is run with three separate values of H1, which are chosen to span one order of
magnitude. Figure 4 shows how the choice ofH1 affects the transient response and convergence time. By observing these responses,H1 can be
chosen to adjust RCAISE to obtain the desired response.
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Example III.3 (Van der Pol oscillator with matched, unmodeled dynamics): Consider the modified Van der Pol oscillator

x1�k� 1� � x1�k� � Tsx2�k�;
x2�k� 1� � x2�k� � Ts�1 − x1�k�2�x2�k� − Tsx1�k� � sin�x2�k�� � Tsu�k�;

y�k� � x1�k� � 0.2x2�k�

where sin�x2�k�� is an unmodeled feature of the dynamics, Ts � 0.1 s, and the driver u�k� � sin�0.01k� is unknown. Note that the unmodeled
term sin�x2�k�� is matched to the unknown driver in the sense that there exists a driver signal that can account for the presence of this term. In
particular, replacing u�k� by u�k� − sin�x2�k��∕Ts removes the unmodeled term. Since the term sin�x2�k�� is unmodeled, it is not included in the
estimator, which has the form

x̂1�k� 1� � x̂1�k� � Tsx̂2�k�;
x̂2�k� 1� � x̂2�k� � Ts�1 − x̂1�k�2�x̂2�k� − Tsx̂1�k� � Tsû�k�;

ŷ�k� � x̂1�k� � 0.2x̂2�k�

Fig. 2 True and estimated states for the three-variable Lorenz system: a, c, e) estimated states of the Lorenz system; b, d, f) error in the estimated states;
g) fictitious driver; and h) estimator output error z�k�. The initial state of theLorenz system is chosen randomly fromaGaussian distribution, whreeas the

initial state of the estimator is set to zero. RCAISE is switched on after k � 100. To estimate the states, RCAISE adds a fictitious driver û�k� to themodel,
which converges to zero as the states converge.
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LetR�k� ≡ 1, ~H � 0.02, η � 0.0008, nc � 4, and γ � 1000. Figure 5 shows the true and estimated states and driver. Figure 5 shows that, after
RCAISE is turned on at k � 80, RCAISE reduces the error in x̂1�k� and x̂2�k� by one order of magnitude. For this example, the estimated driver
does not converge to the true driver due to the matched, unmodeled term sin�x2�k�� in the dynamics of the oscillator. In fact, the estimated driver

Fig. 3 True and estimated states x1�k� and x2�k�, and driver u�k� for the Van der Pol oscillator: a, c) estimated states; b, d) error in the estimated states,

e) true and estimated drivers; and f) estimator output error z�k�. The vertical line indicates the time step at which RCAISE is switched on. After k � 80,
RCAISE reduces the error in x̂1�k�, x̂2�k�, and û�k� by approximately three orders of magnitude.

Fig. 4 True and estimated states x1�k� and x2�k�, and driver u�k� for the Van der Pol oscillator: a, b) estimated states; and c) true and estimated drivers.

The vertical line indicates the time step at which RCAISE is switched on. RCAISE is run with three separate values ofH1, which are chosen to span one
order ofmagnitude to illustrate the sensitivity of the estimate of the unknown input u to the choice ofH1. These plots show how the choice ofH1 affects the
transient response and convergence time. By observing these responses,H1 can be chosen to adjust RCAISE to obtain the desired response.
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û�k� converges to u�k� � sin�x2�k��∕Ts, which shows that RCAISE reconstructs not only the unknown driver but also the matched, unmodeled
feature of the dynamics.

Example III.4 (Van der Pol oscillator with unmatched, unmodeled dynamics): Consider the modified Van der Pol oscillator

x1�k� 1� � x1�k� � Tsx2�k� � 0.1 sin�x2�k��;
x2�k� 1� � x2�k� � Ts�1 − x1�k�2�x2�k� − Tsx1�k� � Tsu�k�;

y�k� � x1�k� � 0.2x2�k�

where 0.1 sin�x2�k�� is an unmodeled feature of the dynamics, Ts � 0.1 s, and the driver u�k� � sin�0.01k� is unknown. Unlike Example III.3,
however, the unmodeled term 0.1 sin�x2�k�� is not matched to the unknown driver, and thus there does not exist a driver estimate that can exactly
account for the presence of this term. Since the term 0.1 sin�x2�k�� is unmodeled, the estimator has the form

x̂1�k� 1� � x̂1�k� � Tsx̂2�k�;
x̂2�k� 1� � x̂2�k� � Ts�1 − x̂1�k�2�x̂2�k� − Tsx̂1�k� � Tsû�k�;

ŷ�k� � x̂1�k� � 0.2x̂2�k�

Let R�k� ≡ 1, ~H � 0.005, η � 0.0008, nc � 4, and γ � 1000. Figure 6 shows that there is a persistent error in the estimated states and that
RCAISE cannot estimate u�k� due to the unmatched, unmodeled feature of the dynamics. This example shows that RCAISE requires knowledge
of the correct model structure in order to achieve accurate input estimation.

IV. GITM and Satellites

GITM solves the Navier–Stokes equations for the upper atmosphere in a spherical coordinate system. For the ionosphere, the continuity
equation is solved, whereas themomentum and energy equations are simplified using the assumption of steady state. This approach is effective in
the ionosphere, where the timescales for changes in the charged particle velocities and temperatures are extremely small. Frictional terms couple
the species and capture eddy diffusion in the lower thermosphere. In the upper thermosphere, all of the species separate out and reach a roughly
hydrostatic balance.

GITM is fully described in [10] and has been used to study various geophysical phenomena, such as nonhydrostatic wind structures [29],
circulation in the ionosphere [29], and the influence of ion variability and grid resolution on heating in the thermosphere [30].

Fig. 5 True andestimated statesx1�k�andx2�k�, anddriveru�k� for theVanderPol oscillatorwithmatched, unmodeleddynamics: a, c) estimated states;
b, d) error in the estimated states; e) true and estimated drivers; and f) estimator output error z�k�. The vertical line indicates the time step at which
RCAISE is switched on. After k � 80, RCAISE reduces the errors in x̂1�k� and x̂2�k� by approximately one order of magnitude. For this example, the
estimated driver does not converge to the true driver due to the unknown term sin�x2�k�� in the dynamics of the oscillator. However, û�k� does give an
estimate of u�k� � sin�x2�k��∕Ts, which shows that RCAISE reconstructs not only the unknown driver but also the matched, unmodeled feature of the
dynamics.
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The initial state of the upper atmosphere, which includes the temperature and densities of the main species, is determined at the subsolar point
from mass spectrometer and incoherent scatter radar (MSIS) [31–33] and the International Reference Ionosphere [34]. These quantities are then
used to compute the scale height of the atmosphere as a function of altitude. The grid spacing is given as one-third of the initial subsolar scale
height. In addition to 50 altitudes, two ghost cells are included at the lower and upper boundaries to specify the boundary conditions. The
bottommost modeled cell is at a 100 km altitude, whereas the topmost cell can be as low as 450 km during solar minimum conditions or a 750 km
altitude during solar maximum conditions.

In the vertical direction, the momentum is solved for all of the main species that, in Earth’s upper atmosphere, are O,O2,N2, N, and NO. These
are treated as five separate fluids, with a coupling frictional term as a source term for each of them. This frictional term forces the fluids to move
with almost exactly the same speed below about 120–130 km altitude, and it is considered to be caused by eddy diffusion within the model. The
remaining species, which consist of excited states of N and O, are assumed to be in chemical equilibrium.

The drivers of GITM include the solar luminosity (as described later in this study), tides at the lower boundary specified by theMSIS empirical
atmosphere model [31–33], the horizontal wind model [35], the high-latitude electric field specified in [36], the aurora specified in [37], and the
magnetic field based on the International Geophysical Reference Field model.

The grid structure within GITM is fully parallel and covers the entire planetary surface by using a block-based two-dimensional domain
decomposition in the horizontal coordinates [29]. The number of latitude and longitude blocks can be specified at runtime in order to modify the
horizontal resolution. GITMhas been run on up to 256 processors with a resolution as fine as 0.31° latitude by 2.5° longitude over the entire globe
with 50 vertical levels, covering a vertical domain from 100 km to roughly 600 km [10]. This flexibility can be used to validate consistency by
running the estimator at various levels of resolution.

In summary,GITMcan be implemented onmultiple processorswith a nonuniform grid, using variousmodels of electric fields, magnetic fields,
auroral particle precipitation, solar EUVand x-ray drivers, and particle energy deposition.

In this paper, we use neutral density data from CHAMP and GRACE satellites. CHAMP data are used as measurements to obtain state and
driver estimates, whereas GRACE data are used as a metric for assessing the accuracy of state estimates. Figure 7 shows the trajectories of
CHAMP and GRACE from 02:12:00 to 03:40:00 Coordinated Universal Time on 21 November 2002. Note that, since only CHAMP is used to
obtain measurements for driver estimation, this satellite may at certain times be located where the solar zenith angle is greater than 90 deg. When
this occurs, the effect ofF10.7 on the estimator output is significantly delayed [38]. This delay can bemitigated by usingmultiple satellites such that
the solar zenith angle at the location of at least one satellite is less than 90 deg. However, in this paper, we use only one satellite.

V. RCAISE Formulation for GITM

We now implement RCAISE with GITM. Consider the ionosphere–thermosphere system represented by

x̂�k� 1� � f̂�x̂�k�; v�k�; û�k�� (27)

ŷ�k� � ĥ�x̂�k�� (28)

where x̂�k� ∈ R31ng is the estimated state; ng is the number of grid points; the number of states per grid point is 31; ŷ�k� ∈ Rp represents the
estimator outputs at the satellite locations, where p is the number of satellites; and û�k� ∈ R37 is the estimated driver (that is, the EUVand x-ray

Fig. 6 True and estimated states x1�k� and x2�k�, and driver u�k� for the Van der Pol oscillator with unmatched, unmodeled dynamics: a, c) estimated
states; b, d) error in the estimated states; e) true and estimated drivers; and f) estimator output error z�k�. The estimated driver does not converge to the
true driver because of the unmatched, unmodeled term 0.1 sin�x2�k�� in the dynamics of the oscillator, which cannot be estimated by the adaptive
estimator. Consequently, errors in the estimates of x1�k� and x2�k� are persistent.
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flux in 37wavelength bins).Within this formulation,GITMuses the extreme ultraviolet fluxmodel for aeronomic calculations (EUVAC)model of
the solar EUV irradiance given in [39] to provide an estimate of u�k�, which is given by

û�k� � �̂F10.7�k�E�Q (29)

where

E ∈ R37; Q ∈ R37

and

�̂F10.7�k� �
1

2
�F̂10.7�k� � F̂10.7a�k�� (30)

where F̂10.7�k� ∈ R is the estimated solar irradiance at thewavelength of 10.7 cm, and F̂10.7a ∈ R is an 81-day average of F̂10.7�k�. In other words,
GITM uses the EUVAC model to estimate u�k� using �̂F10.7�k�. The matrices E and Q were given in table 1 of [39]. Finally, we define the error
z�k� � y�k� − ŷ�k�, where y�k� is the neutral density measured by CHAMP and ŷ�k� is the neutral density estimated by RCAISE.

Our goal is to estimate x�k� by determining a driver signal �̂F10.7�k� that minimizes �J [22]. We implement RCAISE on GITMwith ~H � H1. To
select a suitable value ofH1, we use the following modifications of RCAISE. We use a low-pass filter that limits the rate of change of the output

�̂F10.7�k� from the adaptive driver-estimator subsystem [Eq. (6)]. This prevents Eq. (6) from converging to a system that gives a highly oscillatory

�̂F10.7�k�. Second, we constrain themaximum andminimum values of the output fromEq. (6) in order to prevent GITM from yielding nonphysical

states. We set these constraints to 70 ≤ �̂F10.7�k� ≤ 400.
This approach also accounts for unknown dynamics and measurement noise. In particular, if z�k� is nonzero, RCAISE attempts to minimize it

by changing �̂F10.7�k�. However, since the effect of a change in �̂F10.7�k� on the output ŷ�k� is slow, and since �̂F10.7�k� alone cannot counteract the
effect of all other drivers in GITM, RCAISE gives an oscillatory �̂F10.7�k� in an attempt to minimize z�k�. For some values of H1, this can cause

�̂F10.7�k� to alternate between the saturation limits. To prevent this, we apply a low-pass filter to the signal z�k�. A schematic for estimating states
and driver in the ionosphere–thermosphere using GITM and RCAISE is shown in Fig. 8. Note that, in Fig. 8, the input to Eq. (6) is zf�k� and the
output from Eq. (6) is �̂F10.7;f�k�.

The frequency of computing the RCAISE update equations and updating �̂F10.7�k� depends on the frequency of availablemeasurements. For the

purposes of this paper, GITM uses the fixed time step Ts � 2 s, whereas measurements are used to update �̂F10.7�k� only every 60 s.
Due to the low computational burden of RCAISE compared to GITM, we implement RCAISE on one processor and send all information

needed by RCAISE from other processors to this processor. A flowchart summarizing the implementation of RCAISE with GITM on four
processors is shown in Fig. 9.

VI. State and Driver Estimation Results for GITM

We divide the RCAISE implementation into two main setups. The first setup uses simulated satellite data, whereas the second setup uses real
satellite data. In the first setup, we run GITM with a specified “true” �F10.7�k� and store neutral mass density at CHAMP and GRACE satellite
locations, which we call the “truth data.”Neutral density at CHAMP’s location is denoted by yC�k� and at GRACE’s location is donated by yG�k�,
whereas the estimated neutral densities at CHAMP’s andGRACE’s locations are denote by ŷC�k� and ŷG�k�. Note that we use yG�k� and ŷG�k� as
a metric for assessing the accuracy of the state estimates, and do not use it in RCAISE. Next, we combine RCAISE with GITM and use yC�k� to
estimate �F10.7�k� and states.

The second setup involves real satellite data. Similar to the previous setup, yC�k� denotes the neutral mass density measured by CHAMP (the
truth data), whereas yG�k� denotes the neutral mass density measured by GRACE. GITM is first simulated with the ground observations of
�F10.7�k�, yielding the neutral mass density at CHAMPandGRACE locations, denoted by yC;obs�k� and yG;obs�k�, respectively. Next, RCAISE and
GITM use yC�k� to estimate both states and �F10.7�k�. The estimated neutral mass densities from GITM with RCAISE at CHAMP and GRACE
locations are denoted by ŷC�k� and ŷG�k�. Note that GRACEdata are used solely as ametric for assessing state estimate accuracy; RCAISE has no
access to these data.

0 60 120 180 240 300 360
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Fig. 7 CHAMP and GRACE trajectories on 21 November 2002.
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To implement RCAISE, �̂F10.7�k� is set to a constant value of 100 SFUs for the first 24 h. RCAISE is switched on after 24 h. This allows the initial
condition response to decay.

We implement GITM on four processors with a resolution of 5° latitude and 5° longitude. The time step for GITM is set at 2 s, and RCAISE
updates �̂F10.7�k� every 60 s. In all figures in this section, RCAISE is switched on after 24 h. All numerical experiments consider the period from
21 November 2002 to 6 December 2002, during which real data are available.

Fig. 9 Implementation of RCAISE on a four-processor GITM simulation. Each processor simulates the ionosphere–thermosphere dynamics in one
quadrant of the Earth’s atmosphere. If, at the current time step k, rem�kTs;ν� � 0, then the processor that simulates the quadrant of the atmosphere in

which the satellite is located uses satellite data to obtain y�k� and uses x̂�k� to obtain ŷ�k�. These estimates are then sent to processor (proc.) 0, where
RCAISE uses them to obtain �̂F10.7�k�, which is then sent to all processors to allowGITM to propagate states to the next time step. If rem�kTs;ν� ≠ 0, then
RCAISE is not used and �̂F10.7�k� remains unchanged from its previous value.Note thatTs � 2 s and ν � 60 s; hence,RCAISEupdates �̂F10.7�k� every 60 s.

Fig. 8 RCAISE setup for GITM. The known driver v�k� is used in GITM, whereas the unknown driver u�k� must be estimated. The objective is to
construct an estimate of �̂F10.7�k� that, when used in the EUVAC model, minimizes �J given by Eq. (22).
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The filters P1 and P2 for all of the following studies are defined as

�̂F10.7�k� � P1� �̂F10.7;f�k�� �
1

90

X119
i�0

�̂F10.7;f�k − i� zf�k� � P2�z�k�� �
1

120

X119
i�0

z�k − i�

Note that �̂F10.7�k� is 120 min average of the driver-estimator subsystem output, and zf�k� is a 90 min average of the difference between the
output of the physical system and the estimator output, as shown in Fig. 8.

The orbital period of CHAMP is 90min, duringwhich it traverses from the day side to the night side of Earth, causing an oscillatory behavior in
yC�k� and yG�k�. Therefore, for the following studies, we show the 90 min moving averages �yC;90�k� and �yG;90�k�.

A. Simulated Satellite Data (Constant F10.7)

We consider the case where the truth data are generated by setting �F10.7�k� � 150 SFUs for all k ≥ 0. Neutral density is extracted from GITM
output along the circular orbit in CHAMP’s orbital plane at the altitude of 413.513 km and along the circular orbit in GRACE’s orbital plane at the
altitude of 501.171 km. RCAISE modeling data are chosen as ~H � H1 � 0.1, γ � 100, and η � 0.

Figure 10 shows that �F10.7 converges to within 10 SFUs within four days after RCAISE is switched on. Figures 11 and 12 show the true and
estimated 90 min averages of the neutral density along the circular orbits in CHAMP and GRACE orbital planes. These plots show that the
estimated neutral densities �̂yC;90�k� and �̂yG;90�k� converge to the true neutral densities �yC;90�k� and �yG;90�k� within four days after RCAISE is
switched on. Note that RCAISE does not use �yG�k� to estimate the driver; it is used as a metric to assess the quality of the state estimate.

As noted in Sec. IV, if one satellitemeasurement is available, then the solar zenith angle at the satellite locationmay becomegreater than 90 deg.
When this occurs, the response ofGITM to a change in �̂F10.7�k� is delayed. Figure 13 shows the time periods duringwhich the solar zenith angle at
the satellite location is greater than 90 deg, as indicated by the shaded regions. Despite this, RCAISE is able to force the output from GITM to
match the true output. In addition, it may be possible to increase the rate of convergence of the estimates by using multiple satellites to reduce the
time periods during which the minimum solar zenith angle at all satellites is greater than 90 deg.

Fig. 10 True �F10.7�k� and estimated �̂F10.7�k� for the case of simulated satellite datawith the constant true �F10.7�k� � 150SFsU. This plot shows that, after
RCAISE is turned on, �̂F10.7�k� converges to within 10 SFUs of �F10.7�k� within four days.

Fig. 11 Ninety-minute average of measured neutral density �yC;90�k� and the estimated neutral density �̂yC;90�k� at CHAMP’s location for the case of
simulated satellite data with the constant true �F10.7�k� � 150 SFUs. In this example, RCAISE is turned on after GITM simulates 24 h of atmospheric
response. This plot shows that the error �zC;90�k� � �yC;90�k� − �̂yC;90�k� converges to zero.
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Fig. 13 Time periods during which the solar zenith angle at the satellite location is greater than 90 deg (shaded region) for the case of simulatedCHAMP
satellite datawith a constant of �F10.7�k� � 150SFUs.Note that the neutral density estimate ŷ�k� ismore accuratewhen the solar zenith angle at the satellite
location is less than 90 deg.

Fig. 12 Ninety-minute average of measured neutral density �yG;90�k� and the estimated neutral density �̂yG;90�k� at GRACE’s location for the case of
simulated satellite data with the constant true �F10.7�k� � 150 SFUs. Note that �yG;90�k� is used to assess the quality of state estimation, and it is not
assimilated by RCAISE.

Fig. 14 Comparison of measured and estimated �F10.7�k�. �̂F10.7�k� is the estimate of �F10.7�k� given by RCAISE by assimilating neutral density measured

byCHAMP satellite inGITM.This plot shows that �̂F10.7�k� averaged over one day given by �̂F10.7;1440�k� converges to within 10 SFUs ofmeasured �F10.7�k�
within five days.
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B. Real Satellite Data

Wenow consider the casewhere the truth data are the neutral densitymeasurementsmade byCHAMPandGRACE from21November 2002 to
6 December 2002. RCAISE modeling data are chosen as ~H � H1 � 0.1, γ � 100, and η � 0.

In addition to RCAISE, we also run GITM with F10.7 obtained from ground measurements by the Dominion Radio Astrophysical
Observatory [9]. We denote neutral density calculated by GITM using measured F10.7 along CHAMP’s and GRACE’s orbits ŷC;obs
and ŷG;obs.

Figure 14 shows the estimate �̂F10.7�k� along with one-day average �̂F10.7;1440�k� and the measured �F10.7. Figure 15 shows the 90 min average of

the neutral density �yC;90�k�, �̂yC;90�k�, and �̂yC;obs;90�k� along CHAMP orbit.

We calculate the root mean square of the output error zC after 24 h in order to minimize the effect of transients generated due to the initial
conditions. GITM with measured �F10.7 gives RMS�zC;obs � �yC;90 − �̂yC;obs;90� � 1.0504 × 10−12 kg · m−3, whereas GITM with RCAISE-
estimated �̂F10.7�k� gives RMS�zC;RCAISE � �yC;90 − �̂yC;90� � 0.4603 × 10−12 kg · m−3, which is an improvement of 56%.

To determine the quality of the state estimate, we use the neutral density measured by GRACE. Figure 16 shows the 90 min average of the
neutral density �yG;90�k�, �̂yG;90�k�, and �̂yG;obs;90�k� along GRACE orbit. We calculate the root mean square of the error zG after 24 h in order to
minimize the effect of transients generated due to the initial conditions. GITM with measured �F10.7 gives RMS�zG;obs � �yG;90 − �̂yG;obs;90� �
0.2796 × 10−12 kg · m−3, whereas GITMwith RCAISE estimated �̂F10.7�k� gives RMS�zG;RCAISE � �yG;90 − �̂yG;90� � 0.2426 × 10−12 kg · m−3,
which is an improvement of 13%.

Fig. 16 Ninety-minute average ofmeasured neutral density yG;90�k�, computed neutral density yG;obs;90�k� by usingmeasured �F10.7�k� inGITM, and the

estimated neutral density ŷG;90�k� by using �̂F10.7�k� estimated byRCAISE inGITMatGRACE’s location for the case of real satellite data. In this example,

RCAISE is turnedonafterGITMsimulates 24hof atmospheric response.Note thatRMS�zG;obs � yG;90 − yG;obs;90� � 2.7963 × 10−12 kg · m−3, whereas
RMS�zG;RCAISE � yC;90 − ŷC;90� � 2.4268 × 10−12 kg · m−3, and RCAISE reduces the error in the estimated neutral density by 13%.

Fig. 15 Ninety-minute average of measured neutral density yC;90�k�, computed neutral density yC;obs;90�k� by using measured �F10.7�k� in GITM, and

the estimated neutral density ŷC;90�k� by using �̂F10.7�k� estimated by RCAISE in GITM at CHAMP’s location for the case of real satellite data. In

this example, RCAISE is turned on after GITM simulates 24 h of atmospheric response. Note that RMS�zC;obs � yC;90 − yC;obs;90� �
1.0504 × 10−12 kg · m−3, whereasRMS�zC;RCAISE � yC;90 − ŷC;90� � 0.4603 × 10−12 kg · m−3, and RCAISE reduces the error in the estimated neutral

density by 56%.
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VII. Conclusions

This paper used retrospective-cost input and state estimation for data assimilation with neutral density measurements from a satellite in the
global ionosphere–thermosphere model. For the case of simulated satellite measurements, GITM was used as both the truth model and the data
assimilation model, whereas for the case of real satellite measurements, GITMwas used as the data assimilation model. RCAISE estimates both
states and unknown drivers under the assumption that the system is strongly driven.RCAISE requires neither an ensemble nor an adjoint code, but
instead involves theminimization of twoquadratic cost functions at each assimilation step. RCAISE is not based onBayesian updates; thus, unlike
ensemble-based data assimilation methods, does not explicitly account for instrument errors and does not estimate probability distributions of the
estimation errors.

For input and state estimation in GITM, it was assumed that the only available measurements were the neutral density data obtained from
CHAMP satellite. For the case of simulated CHAMP data based on GITM truth model, RCAISE was able to estimate �F10.7 and states within five
days. For the case of real CHAMP data with GITM, the �̂F10.7 estimate provided by RCAISE reduced the rms error between the measured output
and the output fromGITMby56%compared toGITMusing themeasured �F10.7, and it reduced the rms error betweenGRACEdata and the output
fromGITM at GRACE locations by 13% compared to GITM using the measured �F10.7. For all of GITM state and driver estimation examples, the
computational cost of the RCAISE adaptive driver-estimator subsystem update was equivalent to approximately 1% of the computational cost of
GITM. In comparison, the related study in [22] required about 200 times more computational effort.

The specific application of RCAISE in the present paper, namely, the use of neutral density measurements to estimate F10.7, is intended as an
illustration of RCAISE on a highly nonlinear, physically realistic system. Although measurements of F10.7 are available from observations, the
estimates provided by RCAISE at a modest computational cost may, for practical purposes, be useful for validation. Furthermore, RCAISE can
provide the estimates of F10.7 at desired temporal spacing. In addition, this work provides a first step toward estimating drivers that cannot be
measured or estimated by existing techniques.

The demonstration of RCAISE in this paper is but a first toward elucidating the properties of this method. Quantification of noise sensitivity,
convergence speed, accuracy, computational cost, and ease of tuning relative to data assimilation methods such as 4-DVAR and EAKF remain to
be examined beyond the results of [22]. Finally, it is noted that the ability of RCAISE to estimate drivers at low computational cost may serve as a
useful aid to ensemble-based data assimilation algorithms: for example, by merging the classical state estimator [Eq. (7)] with the adaptive state
estimator [Eqs. (2–6)]. In this sense, RCAISEmay provide a low-cost enhancement to relatively expensiveBayesian data assimilation techniques.
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