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Modeling, Identification, and Feedback Control 
of Noise in an Acoustic Duct 

Jeongho Hong, James C. Akers, Ravinder Venugopal, Miin-Nan Lee, 
Andrew G. Sparks, Peter D. Washabaugh, and Dennis S. Bernstein 

Abstract- Although active noise control has been a subject 
of interest for over 50 years, it has become feasible only with 
recent technological advances. This paper formulates the problem 
of noise control in a one-dimensional acoustic duct in a form 
that lends itself to the application of feedback control theory. In 
contrast to most of the literature on the subject which uses feed- 
forward techniques, a feedback approach is used. Inconsistencies 
that appear in previous feedback control models are rectified, 
controllers are designed using precompensated linear quadratic 
Gaussian (LQG) synthesis, and experimental verification of the 
control designs is presented. The experimental results show a 
reduction of about 5-12 dB over a frequency range from 150-350 
Hz. 

I. INTRODUCTION 
LTHOUGH active suppression of noise has been a tech- A nological objective for more than half of a century 

[1]-[3], it is only recently with the advent of low-cost high- 
speed processors that this objective has become feasible. The 
proven and potential applications of active noise suppression 
are vast, ranging from aircraft engines to automobile interiors 
to heating, ventilation, and air conditioning (HVAC) systems 
to household appliances. The broad applicability, technological 
feasibility, and nonhazardous nature of active noise control 
technology represent a major opportunity for control engi- 
neering. 

The most widely used approach to active noise control 
technology is based upon adaptive disturbance cancellation 
techniques [3]-[5]. These techniques involve a gradient-type 
search for control gains to reject undesirable disturbances. 
Because these methods require disturbance measurements, 
they are traditionally viewed as feedforward algorithms. 

An alternative approach to the active noise control problem 
is to apply standard feedback control techniques. Although 
such techniques have been widely applied throughout almost 
all areas of engineering, they have seen relatively little applica- 
tion in the area of active noise control. Exceptions include the 
work of Radcliffe and co-workers [6]-[8], who demonstrated 
the feasibility of applying feedback control to the problem 
of suppressing noise in a one-dimensional duct with circular 
cross section, and Yang et al. [9] who used robust feedback 
control design techniques to attenuate structurally generated 
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interior noise in a reverberant acoustic enclosure. Recently, 
researchers have explored the relationship between feedback 
controI techniques and feedforward methods [ 101 and [ 1 11. 

The goal of the present paper is to continue the inves- 
tigation of [SI into feedback control techniques for active 
noise suppression. Since our primary motivation is noise 
suppression in air conditioning systems, we consider a duct 
with rectangular cross section. We begin our development 
with a detailed derivation of the state-space model of a 
duct with speaker and microphone. Although portions of this 
derivation are largely standard (see [12, (4-3.7)], [13], and 
[ 14]), this derivation serves several purposes. First, we correct 
a dimensional inconsistency that can be found in [8, (l)] 
and which can be traced to the dimensions ascribed to the 
spatial delta function. These inconsistencies arise from the 
fact that the derivation in [12]-[14] and related work applies 
to the three-dimensional case, while the specialization to one 
dimension is not immediate. And, second, this development 
provides a largely self-contained derivation of the dynamic 
equations in a recognizable form that is accessible to control 
engineers accustomed to state-space models that are required 
for modern feedback synthesis. Finally, this derivation ac- 
counts for all of the nonlinear terms that arise and illustrates 
the meaning of each physical parameter and its role in the 
plant dynamics. 

In the present paper we consider a single-input, single- 
output plant involving one control actuator (speaker) and 
one control sensor (microphone). Additional speakers and 
microphones are used to provide disturbances and to assess 
closed-loop performance. To simplify matters, we confine 
our consideration in this paper to the case of a colocated 
sensor and actuator, that is, the control speaker and control 
microphone located at the same position along the duct. This 
configuration has been studied in the noise control literature 
under the name of tightly coupled monopole [15]-[17]. In 
contrast to feedforward control, however, we do not assume 
that a measurement of the disturbance is available. 

In designing feedback controllers for the acoustic duct, 
we apply modern state-space control techniques. The use 
of such techniques is necessitated by the high order of the 
identified model, which, for a 400 Hz modeling bandwidth 
in our experiment, involves 30 states. Feedback controllers 
designed for noise suppression were obtained by applying 
linear quadratic Gaussian (LQG) synthesis with suitable pre- 
compensation [ 181 to assure robustness to high-frequency 
uncertainty. Experimental results that show significant noise 
reduction over a broad frequency range are presented. 
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Fig. 1. Acoustic duct 

11. STATE-SPACE MODEL OF THE Acousnc 

The duct is assumed to be rectangular in cross section 
and open at both ends. A fairing is attached to one end to 
accommodate a fan for future investigation of the effects of 
mean flow and fan noise. The dimensions 11 and 12 of the duct 
are sufficiently small compared to its length L ( l l /L ,  Zz/L << 
1) that acoustic waves travel along the axis of the duct with 
planar wave fronts. This assumption enables us to treat the 
duct as a one-dimensional waveguide with spatial coordinate 
x, where 0 5 x 5 L. The control actuator is a speaker located 
in the wall of the duct in its plane at x = z,, while the sensor 
is a microphone placed inside the duct at the same location, 
as depicted in Fig. 1. 

The state-space model of the acoustic duct with actuating 
speaker in the duct wall and sensing microphone is developed 
from three fundamental equations that characterize the propa- 
gation of an acoustic disturbance through a fluid. The first of 
these equations is the equation of state ([14, pp. 100-1011) 

DUCT WITH SENSOR AND ACTUATOR 

P ( T  t )  = C 2 P ( Z ,  t ) S ( x ,  t )  (1) 

where p ( x ,  t )  is the acoustic pressure, p(z, t )  is the density, 
c = is the phase speed of the acoustic wave (343 m / s  
in air at room conditions), B is the adiabatic bulk modulus of 
the medium (1.423 x lo5  Pa for air at room conditions), po is 
the equilibrium density (1.21 kg/m3 for air at room conditions), 
and S(x ,  t )  = [ ~ ( x ,  t )  - p 0 ] / p O  is the condensation of the 
fluid. The acoustic pressure p(x, t )  is related to the absolute 
pressure P ( x ,  t )  and the equilibrium pressure PO by p(z, t )  = 

The second fundamental equation is the equation of con- 
tinuity. To derive this equation with the speaker as a point 
mass source or sink, consider the infinitesimal volume element 
Ax Ay Az shown in Fig. 2. The mass flux Mleft entering 
through the left side of the volume element, assuming that the 
fluid particle velocity v ( x ,  t )  is in the positive x direction, is 

A 

P ( x ,  t )  - Po. 

I 

AX 

Fig. 2. Volume element in acoustic medium. 

while the mass flux Mrzght exiting through the right side of 
the element in the x direction is 

W z g h t  = {P(G t M x ,  t )  + [ P k ,  t ) v ( x ,  t)lzAx:> 
. ayaZ. ( 3 )  

Suppose the speaker is a piston with cross-sectional area A,, 
which injects mass into the duct in the x direction with velocity 
v,(z, t) .  The speaker is assumed to be an infinitesimal source 
of length A x  located at z, so that 

%(E, = o ,  0 5 x < X,, 
= w s ( t ) ,  5 ,  5 2 F 5 ,  + Ax, 
= o ,  z , + A x < x < L  (4) 

where vs( t )  is the speaker baffle velocity. The mass per unit 
time injected into the duct by the speaker is p(x, t)v,(x,  t)A,, 
and the equivalent mass flux Ms into the volume element is 
given by 

The total increase in mass in the volume element per unit 
time is 

M ~ e f t  - Mrzght f Ms = - [ P ( Z ,  t ) v ( x ,  t) ]z A X  AY 
+ P(Z,  t ) v s (x ,  t )  AY AZ. (6) 

Since the element does not move with the medium, however, 
the mass increase of the volume element per unit time is the 
rate of change of density within the element multiplied by the 
volume of the element, that is 

Mleft - Mi-zght + Ms = pt (x ,  t )  AX AY A z .  (7) 

From (6) and (7) it follows that 



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 4, NO. 3, MAY 1996 285 

which implies that 

Taking the speaker to be a point source, let Ax -+ 0. If 
IC, 5 xs < Xb, it follows from (4) that 

Therefore 

where S(x - xs) is the spatial delta function concentrated at 
2 = x, with dimensions (length)-’. Hence, we can rewrite 
(9) as 

P t ( Z ,  = - [ P ( Z ,  t )v (x ,  t)l% + M ( x ,  t )  (12) 

(13) 

The third fundamental equation is the linearized invis- 
cid force equation derived from Euler’s equation [14, pp. 

(14) 

where 
A 

M ( x ,  t )  = P(Z,  t )vs ( t )qx  - x s ) .  

1 02- 1041 

P x ( 5 ,  t )  = -Povt(x, t ) .  

--Povzt(x, t )  = P z z ( Z ,  t ) .  

Differentiating this equation with respect to x yields 

(15) 

Next, substituting p(x,  t )  = po[ l+  S(z, t ) ]  in the equation of 
state ( 1 )  and differentiating twice with respect to t implies that 

1 
[1+2S(z,  t ) ] ~ o S t t ( x ,  t )  = -ptt(x, t ) - 2 ~ o S Z ( x ,  t ) .  (16) 

c2 

Substituting p(z ,  t )  = po[l + S ( x ,  t ) ]  in (12) yields 

POSt(Z, t )  = -PO{Sx(x, t )v (z ,  t )  + [I + S ( X ,  t)lvx(x, t ) }  
+ q x ,  t )  (17) 

while differentiating (17) with respect to t implies 

PoStt(Z, t )  = -Po{Szt(x, t )v (x ,  t )  + Sz(T t)wt(x, t )  
+ St(? t ) vx ( z ,  t )  + [I + S(Z, t)lvzt(x, t ) )  
+ Mt(., t ) .  (18) 

From (15), (16), and (18) we obtain 
1 

C 2  
-P t t (Z ,  t )  = p z x ( z ,  t )  + N ( x ,  t )  

+ [1 + 2S(Z, t ) lMt(x ,  t )  (19) 

where 

N ( z ,  t )  2P&$(Z, t )  + 2S(Z, t ) P z z ( Z ,  t )  
- P 0 [ 1 +  2S(Z, t ) ]  
. [Szt(x, t ) v ( x ,  t )  + Sz(z, t )v t (x ,  t )  
+ St(Z, t)vz(z,  t )  + S ( x ,  t)wzt(x, t ) ] .  (20) 

Differentiating (13) with respect to time and substituting 
Mt(x,  t )  into (19) yields 

1 
c2 
- P t t ( X ,  t )  = P z z ( s ,  t )  + p o f i s ( t ) S ( z  - 2,)  

+ N ( x ,  t )  + Ns(z, t )  (21) 

where 

N s ( x ,  t )  2 P O [ S t ( X ,  t ) v s ( x ,  t )  + S(Z, t)G(t)] 
. S(x - x,). (22) 

Note that N ( x ,  t )  and N,(x, t )  contain all of the nonlinear 
terms in (21). Deleting these terms yields the linearized 
nonhomogeneous equation 

1 
-Ptt(x, t )  = P,,(Z, t )  + p o f i S ( t ) S ( z  - x s )  (23) 
c2 

which describes the pressure in the acoustic duct with the 
speaker attached to the duct wall. 

Note that (23) is dimensionally consistent. In contrast, [8, 
(l)], which involves particle displacement and an end speaker, 
is not dimensionally consistent. Specifically, with the correct 
dimensions attributed to the spatial delta function, [8, (l)] has 
an additional dimension of length on the left-hand side. 

Using separation of variables, let 

P ( 5 ,  t )  = dt)V(x)  (24) 

and consider the homogeneous equation 
1 

C2 
-Ptt(”, t )  = Prz(Z, t ) .  (25) 

Substituting (24) into (25) and rearranging gives 

(26) 
X 

Vxx(x) + 7j V ( 5 )  = 0 

V ( x )  = Q! sin kx + P cos kx 

where X is a positive constant. Hence 

(27) 
A where k2 = X/c2. From the open-open boundary conditions 

p ( 0 ,  t )  = p ( L ,  t )  = 0, it follows that 

V(0)  = P  
= 0, 

V ( L )  = a  sin kL 
= 0. (28) 

A Therefore, IC = k ,  = m / L ,  i = 1, 2, 3, .... We define 
U,, = k2c, which gives K ( x )  = Q sin k,x. For convenience, 
K(.) is scaled so that 

A 

v,(.), - V.(.)  = - K(x)Iqx)  dx ( C: >” c: lL 
= s i j  (29) 

where Si j  is the Kronecker delta. This implies that Q = 
c m  and thus 

k,z ,  i = 1, 2 ,  3, ... . (30) 
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Returning to the nonhomogeneous equation (23), let To obtain a state-space description of the acoustic duct, let 

j=1 

1 "  Y d ( t )  =Cdxd(t) (44) 
- [i,(t) + A,q,(t)lV,(4 = p o k ( t )  b(x - xs). (32) where, with the inclusion of proportional damping and assum- 

ing that a pressure-type microphone is used 
j=1 

c2 

Taking the inner product of both sides of (32) with K(.) as 
in (28) yields ] . . .  A 

Ad = block-diag 

&(t)  + X,q,(t) = b,u,(lt), i = 1, 2, 3, . . '  

where b, = %(xs) and us( t )  = poG,(t). 

(33) 
a A 

n 
To obtain a state-space form, we consider T modes Bd = [o bl ... 0 brIT,  

(45) 

(46) 

(47) 
c d  = A [Vl(Xm) 0 " '  K(%m) 01. 

4 ( t )  [41(t) . . .  4 T ( t ) l T ,  

Bo = [bl  . ' *  br]T 
A Next, we incorporate a model of the speaker in the state- 

space description. The transfer function from the speaker 
voltage input V, to the speaker baffie acceleration 6, is given 
bv 

(34) 

and rewrite (33) in the form 

q(t) + 02q(t) = Bous(t) (35) 

where fl = diag(wnl, . " ,  wnr) .  Equation (35) is the un- A 

damped normal mode equation for the acoustic duct with 
actuation. 

For measurement we consider two types of microphones, 
namely, pressure type and pressure gradient type. For the case 

where K ,  is a speaker constant, w,, is the natural frequency 
of the speaker, and cs is the damping ratio. Let the state-space 
realization of this transfer function be given by 

of a pressure microphone located at x = xm, the measurement (49) 
ym(t) is given by G(t)  = C,xs(t) + DsV,(t) (50) 

2s ( t )  = A,x,(t) + BsVs(t), 

Ym(t)  = d z m ,  t )  where 

j=1 

which, retaining r modes, can be written as 

where 

For the case of a pressure gradient microphone located at 
x = x,, the measurement is 

m 

L = l  
(39) 

which, retaining r modes, can be written as (37) with 

t 40) 
a 

CO = [V~z(zm)  . . .  Vrl:(zm)l. 

The microphone provides an output voltage y ( t )  that depends 
on the measured pressure or pressure gradient. Assuming that 
the transfer function of this device is a pure gain Km, we 
obtain 

Defining the augmented state vector 

(53) 

(43), (44), (49), and (50) can be combined as 

C 5 [O KmCd], 

(57) 
A u(t)  = VS(i) .  

Note that (54) has order nplant = 2r + 2. I 
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Speaker 2 controller _vm" Microphone A 
Fig. 3. Closed-loop system. 

The control objective is to minimize the acoustic pressure 
due to the disturbance input at a specified performance location 
x = xp. In the closed-loop configuration, the input to the 
controller is the output voltage from the microphone, while 
its output is a commanded voltage that drives the actuating 
speaker. 

For controller synthesis, a disturbance noise source located 
at x = xd is introduced and sensor noise is included in the 
model. The plant shown in Fig. 3 thus has the state-space 
representation 

where D1 is given by 

and where the matrix 0 2  = [0 
The vector w ( t )  is defined as 

0 2 0 1  represents sensor noise. 

where w l ( t )  is the disturbance signal and w ~ ( t )  is sensor noise. 
The signals wl( t )  and w2( t )  are assumed to be uncorrelated 
unit-intensity white noise processes. 

The performance variable ~ ( t )  is a weighted sum of the 
states and the control input vector, that is 

Since the control objective is to minimize the acoustic pressure 
at a given performance point, the matrix El has the same form 
as the matrix C for a pressure type microphone and is thus 
given by 

where xp is the point at which performance is to be optimized, 
and ~ 1 ,  ... , E ,  are weights that can be chosen as design 
parameters. Equations (58), (59), and (62) represent the plant 
with sensor and actuator in a form suitable for control design. 

TABLE I 
MODAL FREQUENCIES AND DAMPING RATIOS OF THE 

DUCT IDENTIFIED WITH DISTURBANCE SPEAKER 

Mode I fni (Hz) (Exp.) I fn, (Hz) (Theory) I % Error 
1 1  125.56 128.00 I 1.94% 

179.27 170.67 4.79 % 
221.37 213.33 3.63 % 
269.97 256.00 5.17 % 
321.32 298.67 7.05 % 
352.90 341.33 3.27 % 

7 384.89 384.00 0.23 % 

7.11 % 
2.35 % 
4.95 % 
4.23 % 
1.63 % 
1.56 % 

111. IDENTIFICATION OF DUCT, SPEAKER, 
AND MICROPHONE PARAMETERS 

The parameters of the state-space model of the duct de- 
scribed in the previous section are obtained by experimental 
identification. Although many of these parameters, such as 
the modal frequencies, can be estimated from the theoretical 
development, others, such as the damping ratios, must be 
experimentally identified. The transfer function (48) of the 
speaker from input voltage to speaker baffle acceleration 
is obtained by first determining the transfer function from 
input voltage to speaker baffle displacement. This is done 
by measuring the baffle displacement in response to a known 
input voltage using a photonic sensor. The acceleration of the 
baffle is then evaluated as the second time derivative of its 
displacement. The modal frequency fns = w,,/27r and the 
damping ratio Cns of the speaker are found to be 67 Hz and 
74%, respectively. 

The duct is 12 ft in length and has cross-section 8 in x 
12 in. The fairing that is attached at one end is 2 ft long. 
The duct parameters are identified by introducing a known 
signal consisting of 400 simultaneous sinusoidal tones of var- 
ious frequencies through either the control or the disturbance 
speaker, and using a spectrum analyzer to perform a fast 
Fourier transform (FFT) on the microphone voltage output. 
Since the loudspeakers have poor frequency response below 
100 Hz and the type of acoustic disturbance in this study is 
chosen to have frequency components limited to the 400 Hz 
range, the system is identified from 100 to 400 Hz. 

A least-squares curve fit is performed to determine a transfer 
function that matches the gain and phase of the experimental 
frequency response, and the modal frequencies and damping 
ratios are determined from this transfer function. With this 
method, a transfer function from speaker voltage input u(t) 
to microphone voltage output y(t), corresponding to (54) and 
(59 ,  is obtained in one step. 

The theoretical and identified natural frequencies and iden- 
tified damping ratios of the modes of the duct are given 
in Tables I and 11, while experimental and identified modal 
frequency response plots of the duct for disturbance source 
and control speaker are shown in Figs. 4 and 5, respectively. 
Table I also lists the theoretical estimates of the modal fre- 
quencies. The first cross mode has a frequency above 450 Hz, 
and for the amplitudes of the acoustic disturbances used, the 
walls of the duct remain rigid. Hence, these aspects, as well 
as the effect of duct termination impedances, do not seem to 
affect the model to any considerable degree. The correlation 



288 IEEE TRA? 

-1500- 

-2000- 

JSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 4, NO. 3, MAY 1996 

X 

x 
0 

xo 
ox , 

TABLE I1 
MODAL FREQUENCIES AND DAMPING RATIOS OF 
THE DUCT IDENTIFIED WITH CONTROL SPEAKER 

I- 7 

141.47 
182.65 
228.30 
262.78 
314.06 
340.45 
366.46 

8.82 % 
5.41 % 
3.37 % 
5.28 % 
3.69 % 
2.46 % 
3.51 % 

Dashed Line Model 

I 
150 200 250 300 350 400 -601 

100 
Frequency Hz 

200 

- 
P 100 U 
m 
- 
- 
z o  
a, 

-100 

150 200 250 300 350 m -200 
100 

Frequency (Hz) 

Fig. 4. 
phone. 

Frequency response of the duct from disturbance speaker to micro- 

between the theoretical and experimental modal frequencies 
suggests that finite speaker size does not have a significant 
effect. Pole-zero maps for the identified models of the duct 
with disturbance speaker and control speaker are shown in 
Figs. 6 and 7. By combining the models identified using 
the disturbance and control speakers, we obtain an identified 
model of the duct with T = 15 modes in the frequency range 
of 100 to 450 Hz. 

One factor to be noted in the identification of the duct is that, 
at least theoretically, the modes identified using the control 
speaker and the disturbance speaker should be identical. As 
can be seen from Tables I and 11, however, some of the modes 
observed while using the control speaker are not observed 
while using the disturbance speaker. Also, there are small 
discrepancies in the natural frequencies of the modes that 
are common to both identified transfer functions with more 
distinct differences in the damping ratios of these modes. 
These variations can be attributed to the following factors. 
First, the control and disturbance speakers are not identical, 
specifically, the control speaker is an 8-in woofer while the 
disturbance speaker is a 5 114-in woofer. Second, the dynamics 
of the duct interact with those of the speakers, and the strength 
of this interaction varies from mode to mode depending upon 
the relative locations of the speakers. Third, some modes may 

I 
100 150 200 250 300 350 400 

-50 I 
50 

Frequency (Hz) 

200 

50 100 150 200 250 300 350 400 
Frequency (Hz) 

Fig. 5. Frequency response of the duct from control speaker to microphone. 

I I 

-,,or x x  O i  

Real Axis 

Fig. 6. 
speaker to microphone. 

Pole-zero map of the identified transfer function from disturbance 

not be observable since the sensing microphone may be located 
at a node of those modes. 

IV. FEEDBACK CONTROLLER DESIGN 

The control objective is to minimize the acoustic pressure 
at the performance point 2,. To obtain desired rolloff char- 
acteristics for robustness to high-frequency uncertainty, the 
precompensation technique described in [18] is used, and a 
precompensator G,, of order npc is introduced as shown in 
Fig. 8. Note that precompensation is not a form of performance 
weighting, but rather a technique for influencing the loop 
shape. Let G,, have a realization 

.pc(t) = A,cz,,(t) f B p c u ( t ) ,  (64) 
U p c ( t )  = C,&,,(t). (65) 

This precompensator is cascaded with the plant of order nplant 
to obtain an augmented state-space representation of the plant 

\ 
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Pole-zero map of the identified transfer function from control speaker 
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and precompensator of order fi = nplant + npc given by 

i ( t )  = A q t )  + Bu(t) + f i ,w(t) ,  
y ( t )  = C q t )  + 82w(t ) ,  
Z ( t )  = & q t )  + &(t) 

(66) 
(67) 
(68) 

where 

c 5 [O C ] ,  

Dl !! [ n D , ] ,  
A D z  = Dz, 

E ,  !2 [O E l ] ,  
A 

E 2  = Ez. 

For controller synthesis, the performance point is the sensing 
microphone location, and thus E1 is taken to be equal to 
C. This choice obviates the need to calculate the matrix El 
from the eigenfunctions, since C is obtained directly from the 
identified transfer function. The control weighting matrix E2 

is chosen using trial and error, the object being to minimize 
control effort while obtaining good performance. 

For the plant of order nplant described by (58) ,  (59), and 
(62), we seek a controller G, with a realization of the form 

The first step in obtaining the above controller is to design a 
controller Gc of order fi for the augmented plant of order fi 

I&) = AC&(t) + Bcy(t), 
u( t )  = C,&(t). (75) 

(74) 

Defining 

the closed-loop system becomes 

i ( t )  = A q t )  + Dw(t) ,  
q t )  = E Z ( t )  

where 

E i? [E,  E&]. 

(77) 
(78) 

LQG synthesis minimizes the H2 norm of G ( s ) ,  the transfer 
function of the state-space realization (77), (78), and yields a 
controller of order npc + nplant given by 

A,=A+BCc-BcC,  
B, = (QCT + Vlz)V<' (81) 
Cc = - RT1(BTP + RT,) (82) 

where V2 = DzD?, V12 = DID:, RZ E T E z ,  
RI2 6 E T E 2 ,  and Q and P satisfy the Riccati equations 

A A 

AQ + &AT + v1 
- (QCT + V ~ Z ) V < ~ ( Q C ~  + = 0 ,  (83) 

A T P +  PA+ R1 

- ( P B  + R12)RT1(PB + R I ~ ) ~  = 0. (84) 

The implemented controller G, given in (72) and (73) is 
now obtained by cascading the precompensator Gpc with the 
controller Gc described by (82). This yields the controller 
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Fig, 9. Frequency response of the precompensator Gpc. 
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Fig. 10. Frequency response of the reduced-order controller Gc,  r e d .  

which is of order nc = nplant + 2npc. The controller is 
discretized and implemented digitally using a dSPACE real- 
time control interface board. The discrete-time controller has 
a realization given by 

A,,h =eAch,  

B c ,  h =H(h)Bc .  
1 

Cc, h = CcH(h)  (86) 

where H ( s )  5 eAcr dr and h = 0.0002 s is the sampling 
interval corresponding to a 5-m~ sample rate. 

For a precompensator of order npc = 3, the resulting 
controller G, is of order nc = 36. By applying standard 
balancing and truncation techniques, a controller Gc, r e d  of 
order n c , r e d  = 22 is obtained with little loss of perfomance. 
Frequency response plots of the precompensator, the reduced- 
order controller, the loop gain, and open-loop (no control) and 
closed-loop performance at the sensor location and at the end 
of the duct are shown in Figs. 9-13. From Fig. 12 it can be 

20, I 

1 
0 50 100 150 200 250 300 350 400 450 

-20‘ 

Frequency (Hz) 

I 

0 50 100 150 200 250 300 350 400 450 
4 5 3  

Frequency (Hz) 

Fig 11. Frequency response of the loop gam. 
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Fig. 12. Open-loop and closed-loop performance at z,. 

seen that noise reduction of 5 dB to 12 dB is obtained at 
the sensor location x, over a bandwidth of about 200 Hz 
using the control techniques described above. Fig. 13 shows 
the open-loop and closed-loop performances at the end of the 
duct away from the disturbance source. It can be seen that 
significant noise attenuation is obtained over a bandwidth of 
about 200 Hz. The performance plots show the magnitude and 
phase of the microphone output voltage: the reduction in sound 
pressure level (SPL) is not known. SPL data, however, are 
not currently available to compare the performance to other 
acoustic control schemes. 

v. DISCUSSION AND CONCLUSIONS 

Reduction in noise levels in the acoustic duct is obtained us- 
ing precompensated LQG feedback controller synthesis tech- 
niques. The experimental identification of the duct provides 
the numerical parameters used for controller synthesis. The 
closed-loop performance shows a significant reduction in noise 
level over a reasonable bandwidth with a simple control 
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Fig. 13. Open-loop and closed-loop performance at the end of the duct. 

design procedure. Using this design procedure, it is found 
that much higher levels of noise attenuation can be obtained 
below 400 Hz at the expense of creating peaks at frequencies 
beyond the model bandwidth. As shown in [20], this spillover 
phenomenon is a direct result of the Bode integral constraint 
on sensitivity. More sophisticated control schemes involving 
multiple sensors and actuators are to be investigated. Finally, 
direct robust reduced-order controller synthesis techniques 
remain to be applied to obtain lower-order controllers with 
specified gain and phase margins. 
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