The case
of the
vanishing
zeros
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onminimum-phase zeros, that is, closed-right-half-plane (CRHP) zeros, affect both
the open-and closed-loop behavior of continuous-time linear systems in undesirable
ways [1]. For example, an asymptotically stable linear system with an odd number

j:ENS gé I\é’ HOAGG of positive zeros experiences initial undershoot to a step input (see “Initial Under-
RICH ARD E ’ shoot”). Moreover, under the rules of root locus, zeros in the open-right-half plane
HINDMAN én d (ORHP) attract closed-loop poles, which limits the controller gain and thus the performance

of the closed-loop system. In linear quadratic Gaussian theory, closed-loop poles are attracted
to the reflected locations of the open-loop ORHP zeros in the high-control-authority (that is,
cheap-control) limit, thus constraining the achievable closed-loop bandwidth [2, p. 289].
Given the critical role of nonminimum-phase zeros, it is useful to identify physical
characteristics that give rise to them. Although spatial separation between sensors and
actuators is often postulated as a source of nonminimum-phase zeros, analysis of the
transfer functions between separated masses in a serially connected structure shows that
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Initial Undershoot
nitial undershoot occurs when the step response of a transfer
function initially moves in the direction opposite to the direc-
tion of its asymptotic value.

Let G(s) 2 B(s)/(s'a(s)) be a strictly proper transfer function
with relative degree d > 0, where r = 0 and «a(s) is asymptoti-
cally stable. Let y(t) be the unit-step response of G. Then initial
undershoot occurs at t= 0 if

Y201y <o,

where y @0 2 limq y@(t) and y?(0) A lim,..y“(t). The
unit-step response has the initial curvature

y90%) = lim y@(#) = lim s(s%(s)) = lim sd“<G(s)1§> = lim s%G(s)#0,

t—0" S—® S—® s—®

as well as the asymptotic curvature

y(0) A lim.y(t) = Iims’*1<G(s)1> = @

s—0 S,

The initial direction of the step response depends on the

sign of the product of the initial curvature y®(0*) and the

asymptotic curvature y”(). The following result is dis-
cussed in [1].

this is not necessarily the case [3]. On the other hand, nonco-
location in rotational motion may give rise to nonminimum-
phase zeros [4], [5].

Aside from zero locations, the number of zeros deter-
mines the relative degree of the system, which impacts the
asymptotic, that is, high frequency, phase of the transfer
function. The relative degree of an asymptotically stable
transfer function also plays a role in the initial behavior of
the step response. This relationship is apparent from the
initial value theorem applied to the derivative of the
output. When the initial slope of the output is zero, higher
order derivatives of the initial response, which determine
the initial curvature of the output, can be evaluated to
detect the possibility of initial undershoot. In particular,
the sign of the first nonzero derivative of the output rela-
tive to the sign of the dc gain determines whether or not
the step response exhibits initial undershoot. The number
of derivatives that must be evaluated to determine the sign
of the first nonzero derivative is equal to the relative
degree of the system.

In aircraft dynamics, the instantaneous acceleration
center of rotation (IACR) of an aircraft is the point on the
aircraft that has zero instantaneous acceleration. For an
aircraft that is perturbed from steady horizontal flight by
an elevator step deflection, the IACR is the point at which
the elevator-to-vertical-velocity transfer function and the
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FIGURE S1 Unit step response of the transfer function G(s) =
—(s — 1)(s — 2)(s — 3)/(s(s + 1)(s + 2)(s + 3)(s + 4)). The
step response of this system exhibits initial undershoot with
three direction reversals due to its three positive zeros.

PROPOSITION S1

Let G 2 B(s)/(s‘a(s) be a strictly proper transfer function,
where r= 0 and «(s) is asymptotically stable. Then the unit
step response has an initial undershoot if and only if G(s) has
an odd number of positive zeros.

As an example, consider the transfer function G(s) =
—(s—1N(—2)(s—3)/(sls+1)(s+2)(s+3)(s+4)). The unit step
response exhibits initial undershoot with three direction rever-
sals due to the three positive zeros, as shown in Figure S1.

elevator-to-horizontal-velocity transfer function both have
at least one zero that vanishes.

For the elevator-to-vertical-velocity transfer function,
the zero that vanishes typically corresponds to a nonmini-
mum-phase zero aft of the JACR and a minimum-phase
zero forward of the IACR. In this case, as the point p, at
which the vertical-velocity response is determined, is
moved forward from the tail to the IACR, a real nonmini-
mum-phase zero moves toward «, where it vanishes. As p
moves past the IACR, the zero “reappears” at — and
moves toward an asymptotic location as a minimum-phase
zero. Thus, the vertical-velocity measurement at each point
along the aircraft between the tail and the IACR exhibits
initial undershoot. This phenomenon plays a role in the lit-
erature on aircraft dynamics and control [6, pp. 313-316],
[7]-[15]. Vanishing zeros are discussed in [16].

In the present article, we demonstrate the relationship
between vanishing zeros and the response of the aircraft
at the JACR. The TACR of a rigid body is related to, but
distinct from, the center of rotation. See “Center of Rota-
tion and Center of Percussion,” which discusses the
motion of a bar-like rigid body in response to an impact. A
bar-like rigid body possesses a point, called the center of
percussion, with the property that an impulsive force
at this location leads to zero velocity at another point on
the body, called the center of rotation, at the instant
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Center of Rotation and Center of Percussion
onsider the free rigid body shown in Figure S2, with con-
centrated masses my, ..., m, at distances of ¢4, ..., ¢,

respectively, from the point Og, which is the origin of the
body-fixed frame Fg. The frame F, is assumed to be an iner-
tial frame. Consider a force F that impacts the structure at the
point P and perpendicular to the body, and assume that R is
the point on the body at which the velocity Vg0, Of R relative
to O, with respect to F, is zero at the instant immediately fol-
lowing the impact. The point R is the center of rotation relative
to P; equivalently, P is the center of percussion relative to R. Let
€r and ¢, denote the distances from the upper end of the body
to R and P, respectively. The distance ¢, from the upper end of
the body to the center of mass c is given by

n
> mié;
i=1
b=—j
Miotal

where My £ 37 m;is the total mass of the bodly.
Next, viewing O, as an unforced particle, Newton’s second

law implies
- A
F = Mot Veiouns

(S1)

where F = F3(1) ja, and Vg0, is the velocity of c relative to
O, with respect to F,, which can be written as Vy0,a = Vo(1)ja.
Thus, it follows from (S1) that Fy8(t) = My Vs(t), which implies
that the velocity after the impulse, that is, at t= 0", is given by

F
Vc(o+) = :

Mhiotal

(82)
Next, the moment Mp,. on P about ¢ due to F is given by

Mo = oo X F= 1, G, (s3)
where g, is the angular velocity of Fg relative to Fj,
LA 32, m(¢,—¢,)° is the moment of inertia of the
body relative to ¢, and the position of P relative to ¢ is
given by Fpe= (€p—€)ig. Since F = Fpd(D)ja= Fod(Dja
and k, is aligned with kg, it follows from (S3) that
Fo(€p — €,)8(1) = I,w(t), which implies that the angular ve-
locity after the impulse, that is, at t= 07, is given by

(S4)

Next, the velocity Vg, Of R relative to O, with respect to
F, can be written as

N A
Vrioya = I'rio,
A A
= Ire t reo,
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FIGURE S2 A free rigid body with nonuniform concentrated
masses my, ..., m, at distances of ¢, ..., ¢, from the
upper end Og of the structure. The point R is the center of
rotation relative to P, while the point P is the center of
percussion relative to R.

B.
= Veoya T Mrie T @ga X Ieie

= Veoya T @pa X IR

= Voja+ (€q = €s)w ] (S5)
B.

Note that rz,, = 0 since R and c are fixed in the body. Since, at

t=0", ja is aligned with jg, it follows from (S2), (S4), and (S5)

that, for t=0",

+
Motal c

= 1 (€R - ec)(eP B ec) A
Veioya = Fo | Ja-

Lastly, since R is the center of rotation, we have, for t=0",

F0< 1 +(er€c)l(€rfc)> o

Miotal c

It follows that the location of R is given by

le

br=tbg————.
: ¢ mtotal(eP - ec)

(S6)

Consequently, if at {= f, the force impacts the body at the
center of percussion P relative to R, where P is located at ¢p,
then the velocity Vg, at the center of rotation located at £5
given by (S6) is zero at t= {3 . In other words, (S6) character-
izes the location of R.



Instantaneous Velocity Center of Rotation

et B be a rigid body with body-fixed frame Fg, let F, be a

frame with origin O,, and let wg,, be the angular velocity
of Fg relative to F5. A point p that is fixed relative to B is an
instantaneous velocity center of rotation (IVCR) of B relative to
Fa at time tif @g,(f) # 0 and Vo4 () = 0 [S1, pp. 147-149],
[S2, pp. 49-52]. For convenience, we omit the phrase “relative
to F,”. The motion of B can be viewed as instantaneously rotat-
ing about p. See Figure S3.

Let g be a point that is fixed relative to B. It follows from the
definition of an IVCR and the transport theorem that p is an
IVCR of B if and only if g, # 0 and

Vooya = @ga X Toq + Vgoua =0. (§7)
Resolving Vgoua, @ga and 7,4 in Fgas
VA Vyoun| @ & Gga| , L Foql
B B
(S7) can be rewritten as
*r+v=0. (S8)

The existence of an IVCR thus depends on the existence
of a solution r to (S8). Since w™ is singular, (S8) has either
zero or infinitely many solutions. Let R denote range.

FACT St
The following statements hold:
)Ifve R (™), then B has no IVCR.
i) If ve R (o), then B has infinitely many IVCRs.
iii) Suppose v € R (w*). Then p is an IVCR if and only if
there exists a € R such that

w X V.

r=oaw — ——¢
lwl?

(S9)

It follows from (S7) that, if p is an IVCR of B and q is
fixed relative to B, then &g Vyom =0'V=—0'(0”r) = 0.
Hence, if @g/p - Vyo,a # 0, then B has no IVCR. This situation
occurs, for example, in bullet flight, where the translational ve-
locity is parallel to its angular velocity.

FACT S2
pisan IVCR of B if and only if p satisfies the following conditions:

i) dg/n Vgoyn =0.

N _ 1 . _

i) @ga X | Forqg — e @gip X Vgoun | = 0.
@pg/A

In this case,

g/~ o

Foig = o2 @pp X Vgoya T
g,

dgp. (S10)

=2
| @ga

PROOF
Assume that p is an IVCR of B. Then it follows from (S7) that

@pia Vgoyn = g (—dgp X g ) =0,

On

A
Ia

FIGURE S3 Instantaneous velocity center of rotation p. B is a
rigid body, and the point q is fixed relative to B. F, is a frame
with origin O,, @g/a is the angular velocity of Fg relative to Fj,
and it is assumed that @g, # 0. The point p, which is fixed
relative to B, has the property that, at time t, the velocity of p
relative to O, with respect to F, is zero. Thus, B is instanta-
neously rotating about p.

which proves i). To prove ii), it follows from (S7) that

@ X (f pla T2 2 @ea X Vq/O,JA) = dgp X Iyq + Vyoua
logal
=0.

Hence, ii) holds.

Conversely, it follows from ii) that there exists @ € R such
that 7,4 = (1/ldgal?)dga X Vgoua + adga. Using i) and ii), it
follows that

Vpioua = Vpiga T Vgoua
= Vogs T @sia X Toiq T Vgoua

R 1
= wpp X

PE @pa X Vgoua T aa’B/A) + Vgo,a
B/A

= —Vgoua t Vgoua
=0.

To show (S10), assume p is an IVCR of B. It follows from
(S7) that

g X (dga X Foq + Vgoum) =0,
which is equivalent to

(S11)

(Gpia - Foq) Dain = | @gjal® Foq + dga X Vgoya = 0.
Solving for 7,q in (S11) yields (S10). O
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FIGURE 1 Aircraft and Earth frames. The aircraft frame is fixed to
the aircraft, while the Earth frame is assumed to be an inertial
frame. The signed quantities ¢ and n determine the location of the
point p at which the output is defined relative to the center of
mass c. The pitch angle ©, which is positive as shown, is deter-
mined by the right-hand rule about the axis jxc = jg, Which is not
shown but is directed out of the page.

immediately following the impact. Another related notion
is the instantaneous velocity center of rotation (IVCR),
which is discussed in “Instantaneous Velocity Center of
Rotation.”

To demonstrate the relationship between vanishing
zeros and the response of the aircraft at its IACR, we
consider both the vertical-velocity response and the hor-
izontal-velocity response of the aircraft to an elevator
step deflection. In particular, we show that, at the IACR,
the relative degree of the linearized transfer function
from elevator deflection to vertical velocity (and thus to
altitude) increases by at least one, and the relative degree
of the linearized transfer function from elevator deflec-
tion to horizontal velocity increases by at least one.
Moreover, we provide conditions under which the zeros
that vanish at the IJACR are nonminimum phase. Fur-
thermore, we characterize the relationship between
these vanishing zeros and the potential for initial under-
shoot in the aircraft’s step response. For a business jet
example, we show that each point on the aircraft that is
aft of the IACR experiences initial undershoot in vertical
velocity, whereas each point forward of the IACR does
not experience initial velocity undershoot in the vertical
direction.

To provide a tutorial development of the relevant
transfer functions, we begin with the nonlinear equa-
tions of motion, show how these equations incorporate
aerodynamic effects in terms of stability derivatives,
and then arrive at the transfer functions for the linear-
ized motion. This development provides an introduc-
tion to aircraft dynamics, which may be useful to
readers who have not had the benefit of a course on
flight dynamics. For further details on aircraft dynam-
ics, see [6], [17], and [18].
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AIRCRAFT KINEMATICS

The Earth frame Fz, whose orthogonal axes are labeled 7,
Jg, and I%E, is assumed to be an inertial frame, that is, a frame
with respect to which Newton'’s second law is valid [19]. A
hat denotes a dimensionless unit-length physical vector.
The origin Oy of the Earth frame is any convenient point on
the Earth. The axes Iy and Jg are horizontal, while the axis
I}E points downward; we assume the Earth is flat. The air-
craft frame F,., whose axes are labeled i,c, jac, and ke, is
fixed to the aircraft. The center of mass ¢ and frame vectors
Iac and IAcAC are shown in Figure 1. The aircraft is assumed
to be a three-dimensional rigid body.

In longitudinal flight, the aircraft moves in an inertially
nonrotating vertical plane by translating along i, and ]A(AC
and by rotating about jc. The direction of jc is thus fixed
with respect to Fr. For convenience, we assume that j,c =
J&- The velocity and acceleration of the aircraft along jac
are thus identically zero for longitudinal flight, as are the
roll and yaw components of the angular velocity of the air-
craft relative to the Earth frame. The sign of the pitch angle
0, which is the angle from 7 to I,¢, is determined by the
right-hand rule with the thumb pointing along j,c and
with the fingers curled around j,c. For example, the pitch
angle 0O, shown in Figure 1, is positive.

Let p denote a point in the plane that is parallel to the 7, - k AC
plane and passes through c. The position of p relative to Og
can be written as

rp/OF = rphlE + rpvkE/ (1)

where a harpoon denotes a physical vector. The position of
p relative to c is given by

Tpic = TpiO,c + T0,lc =V pi0ye ~ TeiOper (2)
which can be written as
Tore = Ciac + Mkac, 3)

where ¢ > 0 indicates that p is forward of ¢, that is, toward
the nose, and ¢ < 0 denotes that p is aft of ¢, that is, toward

the tail. Resolving ;P/C in Fuc yields
¢

Tore|y o = 0. 4)
n

The distance between the aircraft center of mass ¢ and the
point p is given by

1Tl = V& + 0.

The orientation matrix, that is, the direction cosine
matrix, of Fsc relative to Fy corresponding to the pitch
angle O is

cos® 0 —sin®
O] 0 1 0
sin® 0 cos®



Therefore,

cos® 0 sin®
Opac = Onck = 0 1 0o | )
—sin® 0 cos®

Hence, using (4) we have

€ cos O + 7 sin O
0 . (6)
—{sin ® + ncos O

7

oic| = Owac Tpre
E

AC

Since, in longitudinal flight, the aircraft rotates about
Jac, the angular velocity of Fyc relative to Fr and resolved
in Fuc is given by

P 0
N Q=106 ()
AC R 0

Note that Q = O and that P and R are identically zero.
Resolving @ zc in F, we have

0

o | (8)
AC 0

wace| = Opac Wack

To change the frame with respect to which the physical
vector x is differentiated, we use the transport theorem,
which is given by the “ABBA rule”

RL?

B.
=X+ dpa X X, ©)

where a labeled dot over a physical vector denotes the frame
derivative with respect to the 1nd1cated frame. In part1cular
ifX=x04 + 2574+ x3kA, thenx =Xlp + X ]a + x3kA Hence,

E. AC. R R AC.
Opce = Wack T Oace X Oace = Oack (10)

and thus it follows from (7), (8), and (10) that

0

AC. E. AC. E. .
WAC/E = WACE| T WACE| T WACE 0|

AC AC 0

Let @0,/ and a0,/ denote the velocity and accelera-
tion of c relative to O with respect to Fy, respectively, and
let 0, 0,/5 and a0,/ denote the velocity and acceleration of
p relative to Oy with respect to F, respectively, that is,

- A =
vc/OF/E = rc/OEI
- A =
Ac/0g/E = Te/Ogr

and

i

- A
Up/0/E = Tp/ogs

s
:

5 A
Ap/0./E = Tpioy

We resolve 0,0, in Fac as

u u
5c/OE/E =|V]=]10]
AC W w

11

and note that V is identically zero for longitudinal flight.

Next, it follows from (2) that

Tp/o = ” o T rc/OF/
which implies that

E. E. E.

VpsouE = T pioy = 7 pic T 7 ci0, = Oprere T Desouses

where

E.
R A B R
Upre/E = T pre = Dack X Tpre

Next, it follows from (5)—(8) and (11)-(13) that

+ ((DAC/E X Fp/c)
E

ﬁp/oE/E . = Z7c/oE/E .
cos® 0 sin® || U
= 0 1 0 0
—sin® 0 cosO® W
0 € cos ® + i sin O
+]0|x 0
0 —+{sin O + 1 cos O
vph
=| 0 |
Vpy
where

Oph 2 (cos®)U + (sin®)W — £(sin®)O + 1(cos®)O,
—(sin®)U + (cos®)W — £(cos®)O — 1(sin®)0O.

|

Vpy 2

Next, it follows from (9) and (11) that

E.
= Uc/0p/E
AC

Ac/Op/E
AC

AC.
=0 cowe T @acke X UcjouE

(U 0 u
=l0o|+]|O6|x]|0
| W 0 W
[+ 0w
= 0 )
| W - 06U

Differentiating the transport theorem (9) yields

A.

A.
—
B. A.
X + wpp XX + @gp XX

A..
X

AC

12)

(13)

(14)
(15)

(16)
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¥
H

e B A N B. -
:x+wB,AXx+a)B,A><x+wB,A><(x+wB,A><x)

LUTJ

=3 +2wB,A X x +wB,A X X+ wpp X (@pa X X),

17)
which is the double transport theorem. Note that
~ 2B Eee
AoiouE = Tpio, = Tpi + 7’/0 = Aprep + AgoyE (18)
where
Boser A rp . (19)
Now, using (16)—(19), we have
le/OE/E = ap/c/E + dc/OE/E
AC AC AC
AC. AC.  AC. R
=\ Tpe + 2050k X ” e T OacE X Tpre
+ @ pck X (D ack X rp/c ))’ + dgoyE
AC AC
AC. - -
wacE| X Tpel t@ack
AC AC AC
X <(I) AC/E X ?p/c ) + ﬁc/OL/E
AC AC
0 € 0 0 14
=[O |x|0|+]|O|x||6|X]|0
0 n 0 0 n
[u + 0w
W-—ou
—(@2+ I+ WO + 10
= 0 (20)

—0 + W — U6 — n0?

AIRCRAFT DYNAMICS
To apply Newton’s second law for translational accelera-
tion, we view O as an unforced particle [19] and all forces
as acting at the aircraft’s center of mass. We thus have
Mayoum =M§g +ﬁA +ﬁTr (21)
where m is the mass of the aircraft, = glAcE is the accelera-
tion due to gravity, F, is the aerodynamic force, and Eris
the engine thrust force. Resolving (21) in F,c yields

AC

+FT
AC

, (22)
AC

M Aok =
AC
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where
—gsin ©

= 0 ,
gcos ©

8

= Oack § (23)

AC E
under longitudinal flight. R
Next, the aerodynamic force F, is given by

Fy = — Diyw— D.jw — Lkw,

where iy, Jw, and IAcw are the axes of the wind frame,
which is a velocity-dependent frame defined such that iy
is aligned with 0 5; IAcW is aligned with the stability-
frame unit vector lAcs defined below; and where D, D,, and
L denote the magnitudes of the drag, side drag, and lift
forces, respectively. For simplicity, we assume D, = 0, and
thus

The stability frame Fs with axes 7s, s, and IAcS is obtained by
rotating the wind frame through the sideslip angle S,
which is the angle from the iAC-IAcAC plane to 9,0, /5- Resolv-
ing F A in the stability frame yields

cosB sinB 0| —D —D cos B
EF,l =|—sinB cosB 0 0 |=] —DsinB|.
s 0 0 1Jl-L -L

Furthermore, resolving F  in the aircraft frame yields

[cosa 0 —sina|[ —D cos B
Eal =| 0 1 0 —Dsin B
AC lsinae 0 cosa —L

—D(cos B) cos a + L sin «
= —Dsin B ,
—D(cosB) sin « — L cos a

where « is the angle of attack of the aircraft, that is, the
angle from ig to iyc. Since we consider only longitudinal
flight, it follows that B is identically zero, and thus

—D cosa + Lsin«

E = 0 (24)
AC —D sina — Lcos «
For the thrust force, we have
cosdr 0 sindg || Fr Frcos &
Fi| = 0 1 0 0= 0 ,
AC —sin®; 0 cos®; |l 0 — Frsin &
(25)



where F; & | ﬁTI is the engine force magnitude and @ is the
angle from i,c to the engine force direction. We assume that
the component of the engine thrust in the direction j¢ is zero.

Now, substituting (16), (23), (24), and (25) into (22) yields
the surge and plunge equations

m(U + WO) = —mg sin ® — D cos a + L sin a + Fycos Oy,
(26)

m(W — U®) = mg cos ® — D sin a — L cos a — Fysin ®r.
(27)

The sway equation for 1% plays no role in longitudinal
flight.

Note that differential equations (26) and (27) involve the
variables U, W, 0, and «. To eliminate W from (26) and (27),
we derive a relationship among W, U, and a. Resolving
/0,5 in Fg yields

u
Z_jc/OE/E =10 ’
S
0

where U 2 VU? + W2 Likewise, resolving 9or in Fac
yields

cosa 0 —sina|[U U cos a
Ugoue| = 0 1 0 0= 0 . (28)
AC sine 0 cosa 0 U sin «
It follows from (11) and (28) that
u U cos a
0= 0
W Usin a
Hence,
u = tan a. (29)

For longitudinal flight, U is nonzero. Thus, it follows from
(29) that

W=Utan ¢, (30)

which implies

W= Utan a + U(sec® a)a. (31

Finally, substituting (30) and (31) into (26) and (27) yields
m(U + U(tan )©) = —mg sin ® —D cos «
+Lsina+Fycos Oy,
(32)
m(U tan a + U(sec? @) — U ©)= mg cos © — D sin
— L cos a — Frsin ®y.
(33)

Next, the rotational momentum equation for the aircraft
about its center of mass is given by Euler’s equation

5 AC _ - N
Tacie @ace + @ace X Iacie @ace = Macr, (34)
where the physical inertia matrix is defined by
7 A = 277 = =
IAC/C = | Tdmie U — Tamie Tdmic dm/ (35)
AC

Tqme is the position of a mass element relative to ¢, (-)’
denotes a pthical covector [20, p. 269], and the physical iden-
tity matrix U is defined by

U 2 Byclpe + fac ac + kac kac. (36)
Note that the integral in (35) is evaluated over the aircraft
body. In (35) and (36), the notation ¥ g for vectors X and
denotes a second-order tensor, which operates on a vector z
according to (¥ 7)Z =%§Z = (i - )% [20]. Finally, M
denotes the total thrust and aerodynamic moment acting
on the aircraft relative to c.

Next, resolving I zc/ in Fac yields

Ixx Ixy _Ixz
IAC/c 7Ixy Iyy 7Iyz ’ (37)
A _Ixz _Iyz Izz

where

L, = j (y* + 2%)dm,
AC

L, = J xy dm,
AC

and likewise for the remaining entries. Assuming that
Izc-kac is a plane of symmetry of the aircraft, it follows
that

Ly=1.=0
Thus, (37) becomes
IX.’A O IXZ
Iacke 0 L, 0

Ac _Ixz 0 Izz

Now resolving Euler’s equation (34) in the aircraft
frame, that is,

. AC
Incre @ ac

yields

= Macre
AC

7

AC

N
+ (wAC/E X T acke wAC/E)
AC
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TABLE 1 Aerodynamic parameters. These parameters
characterize the basic features of the aircraft for steady
longitudinal flight.
N\ v
S Wing area
b Wing tip-to-tip distance
[ Wing mean chord
p Air density
Vac Aircraft speed
Pd Dynamic pressure 3pV2,
VACO Uo
Pe, 3pU5
_ J
0 0 0 O] o Lac
1,0 |+ 0. 0 0||L,®]| =|Mac|
0 -® 0 0 0 Nac

Nuc]". The pitch equation

where Mucie| 2 [Lac Mac

is thus given by

1,0 = M. (38)
LINEARIZING THE EQUATIONS OF MOTION

In steady horizontal longitudinal flight, the aircraft is
assumed to fly at constant velocity U = U, constant
angle of attack a = aj, and constant pitch angle ® = 0,,
with 90 aligned with 7. To simplify the aerodynamic
analysis, we choose F,¢ so that ®; = 0. This choice is uni-
versally made in the literature [18, p. 67]. Since the steady
flight-path angle is zero, this choice of F5c implies that
the steady angle of attack « is zero, that is, in steady
flight, i is aligned with iyc. Linearizing the surge,
plunge, and pitch equations (32), (33), and (38) about
(Uy, g, ©) the first-order approximations
U=Uy+u a=a;+8éa, and O =0;+6, where
ay = 0, =0, and dividing the linearized equations by the
mass m and inertia I, to solve for the linear and angular
acceleration, yields

using

i=—g0 +fx +fr, (39)

Upda = Upg + fa, (40)

g =myc, (41)

6=gq, (42)

where

fa 2 X, 1+ X, 8 + X, e, 43)

fr, & Xr,u, (44)

fa 2 Zyu+ Zoba+ Zo 8 + Z, q + Zy, e, (45)
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e A
TABLE 2 Force stability derivatives. The aerodynamic
parameters are given in Table 1. These lift and drag stability
derivatives model the aerodynamic forces applied to the
aircraft due to perturbations from steady longitudinal flight.
This table is based on [17, Table 6.1].

1 @
C (u, g, ba, 8a, de) C,+Cu+5—
0

U 20, Ctd

@ .
ar CL%(SOI ar 27UOCLMSC\C ar CLM(SQ

L
C P
to Pa,S
aC,
C
= Gl
. aC,
e a(ED)l,
8CL
CL"" dda |,
aC,
C —
= a(g%of) 0
BCL
Cu, asel,

. 1 @
Co(u, q, 8a, 8cv, Se) Cp, + UOCDUOU + ZTJOCD""q

+ Cp da + Cp 5t + Cp, de

D
Co, )
Co, 2KC,C,,
Gy, 2KC,Ci,
e erEy e
Co, 2KC,C,,
i, 2KC,C,,,
& _J

Mac 2 M, u + M, da + Mg 8a + M, q + Mj, Se
+ My u + My, S, (46)
and oe denotes the elevator perturbation from its trim
deflection. Note that f, and f, are the perturbations of Fa
in the direction of i,c and k¢, respectively. Furthermore, fr,
is the perturbation of Fr in the direction of iac, and myc is
the perturbation of M,c. The stability parameters X,,, X,,,
Koy X1,0 Zuy ZLaw Ly Zgy Loey Muy May Ma, My, Mse, Mr,,
and Mr are combinations of aerodynamic parameters
and stability derivatives, which are defined in Table 1,
Table 2, and Table 3. The stability parameters are defined
in Table 4.
It follows from (39)-(46) that the linearized surge,
plunge, and pitch equations are given by

it = (X, + Xp Ju + X, 0a — g0 + Xy, ¢, (47)

Hy

Upda = Z,t + Zo da + (Uy + Z,)q + Zs 86 + Zs, 8¢, (48)



e N

TABLE 3 Moment stability derivatives. The aerodynamic
parameters are given in Table 1. These pitch stability
derivatives model the aerodynamic moments applied to
the aircraft due to perturbations from steady longitudinal
flight. This table is based on [17, Table 6.1].
N v
Cn(u, q, 80, 8a, 68)  {(2C,, + Con U+ 355 C @
c .
+ Cmapa + TUOC,";KQEO{ + C,,,MBe
G, M,
P4, SC
Cn, aC,,
a1,
Cn, 9Cn
a(% 0
Co., 9Cin
dda |
Co,. aC,,
a(ED1,
Cmﬁ% ﬁ
ase |,
_ y,
q=(M,, + My )u+ (M, + My )da + M, q
+ M8 + My, Se, (49)
0=4q. (50)

LAPLACE TRANSFORM ANALYSIS
Taking the Laplace transform of (47)—(50) and assuming that the
initial conditions of the perturbations (u, a, 0) are zero yields

s—(X,, + Xz,) ~X,, g
~Zu S(Uy~Zs)~Za,  —(Up+2Z,)s
—(My, + My,)  —(Mgs + My, + My,,)  87=Ms
ii(s) Xﬁen
da(s) | = | Zs, | 86(s),
9(5) Magu

where hat in this context denotes the Laplace transform of
a scalar function of time. The transfer functions from 8é(s)
to i1(s), 8a(s), and O(s) are thus given by

Ga/aé (s) gﬂ“((ss))
Gsayor (s) | 2 83%(5)2
Gaye: (s) g’a(i))
s—(X,, + Xr,) . g -1
= _ZMG S(UO_ZdO)_Zm) —(UO + Z%)S
- (MHo + MT““) - (Mdos + Man + MTal,) SZ_M%S
XSBD
Z‘S‘-’n
MSEO

@ A
TABLE 4 Stability parameters. These parameters are func-
tions of the aircraft parameters and stability derivatives
given in Table 2. This table is based on [17, Table 6.3].

N v
Stability
Parameter Definition Units

Ps,S
X, — UO(ZCD" +Cp,) 1/s
Pa,S
X, - Uo(zcm +Cry) 1/s
Pa,S
X :n (C,—Cp,) ft/s?-rad
Pa,S
Xse, p= Cp,, ft/s?-rad
Pa,S
z, - mUO(chO +C,) 1/s
Pa,S
Zo jn (C.. —Cp) ft/s?-rad
Ps,SC
Z;, “om U St ft/s-rad
Ps,SC
Lo, ~om UOCL% ft/s-rad
Pe,S
Zse, - :n » ft/s?-rad
Pa,SC
M, (2C,, + C, ) rad/ft-s
o IyyUO o o
Pg,SC
My (2Ctm + Crm.) 1/ft-s
“ lyyUo ’ “
Sc
M, Pt 1/8?
lyy
Pg,SC
MT‘, ’ Tm, 1/32
) lyy
pdo's62
M;, 21,0 O 1/s
ps,SC?
My, 21,0y ™ 1/s
Pq,SC
My, dl C. 1/g?
_ i y
Consequently,
As®+Bs>+Cs+D
Gﬁ/&é(s) = : 3” 2 . : 4 (51)
Es*+ Fs>+ Gs+ Hs + 1
A+B,s*+C,s+D,
Gsassls) = ’ 52
s Es*+Fs3+Gs?+Hs+1 (52)
Ays*+ Bys + C,
Gé/aé ( ) (53)

s) = ,
Es*+ Fs®+ Gs*+ Hs + I
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where the coefficients of (51)—(53) are defined in tables 5
and 6. Note that the relative degree of (53) is two. For
details, see “Markov Parameters and Relative Degree.”

Next, we find the transfer function from the elevator
perturbation to the vertical-velocity perturbation. It follows
from (15) and (30) that

Vpy = —(sin ®)U + (cos @) U(tan a)
— ¢(cos ©)0O — n(sin 0)0. (54)

Letting v, denote the vertical velocity in steady horizontal
longitudinal flight, it follows from (54) that
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) )
TABLE 5 Transfer function numerator coefficients. These TABLE 6 Transfer function denominator coefficients. These
coefficients appear in the transfer functions from the el- coefficients appear in theAtransfgr functions from the
evator deflection 5é(s) to i(s), da(s), 8(s), HV,(s), and elevator deflection 5&(s) to i(s), da(s), 0(s), 3V,(s), and
Sy, (8). By (S).
N g K Y
Ay Xoo(Up—Z,) E U2
Bu _ )(660 [(UO _ Zo’zo) ,V,q0 + Zao + Mo‘zu(UO 4 Zqo) + Z(Senxalj F 7(UO - Zd ) (Xuo - )(Tu\1 + M%) - Zao - Mc’m(UO + Z%)
c, XBEB[M%Z% . (Mao + M) (U +ch)] . ZBeD[Mdog " XaoMqJ (Xu0 - XTUO)[Mq.,(Uo - Zdo) F Ly = Mao(uo + Z%)]
’ + My 2., — ZuXoy — (Mao aF MT%)( Uy + Zqo)
+ Mseo[xdo( UO + Zqo) - (UO - Zao)g]
H g[ZuuMa'u+ (Iwu0 + MTWI)( UO - Zlio)]
Du = ZaMug + Moo Zo,9 + (My, + My ) =X (Up + Zg) 1+ Zy Xo My,
Ac e, + (X, + X (M, + Mz )(Up + Z5) = Mo Z,]
B, Xse.,Zu., + Z&e.,[ _Mq - (Xuo + XTU“)] + MBeO(UO + un) l g[(/‘/’mc + /\/’1—«“)2“D - Zﬂu(/‘/,uD + MTMD)J
(& J
Ca Xéeg[(UO + Zq,)(’”uD + MTUO) - MqoZqu + ZﬁeDMqD(XuD + XTUO)
™ Moo (Uo + Z3) (X, + X1,) Linearizing (54) about (U, ay, @) = (U, 0,0) using the
D, Zso(My+ M, )g— Ms. Z,9 first-order approximations v, = v, + 60,, U= U;+ 1,
Ay My (Uy—Z,) + ZooMs, a = 8a, and O = 0 yields
By XoaZuMi, + (Us — Zo))(M,, + My)] Vpy, + 60,y = —(sin ) (U, + u) + (cos 0)(U, + u)(tan da)
+ Zoe [ (M, + My ) — My (X, + Xr,)] —€(cos 6)6 — n(sin 0)8,
+ Myl = Z,, — (U — Z; ) (X, + X7,)] ) ) ) ) )
Co Xoul(My + My )Zy — Zo(M,, + My )] wher.e 80,y is the f.1rst—order aPprox1mat10n of the Vert1c.al-
“ * velocity perturbation. Neglecting products of perturbation
+ Mo [ Zoo( Xy + X1,) = XoiZ,] variables, and approximating cosf = 1, sinf =~ 6, and
pp g
+ Zéeo[ _(Mao + MT%)(XUO + XT,,D) + Xao(Muo + IV,T,,Q)] tan da = S« ylelds
A, — A+ UA, 80, = Upda — Uy — €6. (55)
B, =B~ UA + UsB, Next, taking the Laplace transform of (55) and assuming
C, —4C,— UsB,+ UyC, that the initial conditions of the perturbations (u, 8a, 6) are
zero yields
D, - U,C,+ Uy,D,
A, mA+A, 80,y(s) = Uypda(s) — (U + €5)6(s). (56)
B, B+ B,
It follows from (52), (53), and (56) that the transfer function
G G+ Gy from 8¢(s) to 80, (s) is given by
D, D,
A+ B>+ Cys+ D,
(& J

Gsﬁpv /o6 (s) (57)

TESf 4P+ GR+ Hs + 1

where the numerator coefficients are defined in Table 5 and
the denominator coefficients are defined in Table 6.

Next, to find the transfer function from the elevator per-
turbation to the horizontal-velocity perturbation, it follows
from (14) and (30) that

Opp = (cos @)U + (sin O)(tana)U — £(sin 0)0 + 7(cos 0)0O.
(58)

Letting v, denote the horizontal velocity in steady hori-
zontal longitudinal flight, it follows from (58) that

vPho = UO'



Markov Parameters and Relative Degree

onsider
x(1) = Ax(t) + Bu(1),
y(H) = Cx(t) + Du(t),
whose Laplace form is given by
sx(s) — x(0) = Ax(s) + Bi(s),
9(s) = Cx(s) + Di(s).
Then,
9(s) = C(sl— A)'x(0) + [C(sl — A) "B+ DJi(s),
where
G(s) 2 C(sI- A)'B+ D.

Expanding G(s) in a Laurent series about infinity yields

(S12)
We now consider G;s5(s) given by (53). Using (S12), we obtain
lim sGys4(s) = CB.
s

Writing (47)—(49) in state-space form with elevator-deflection
input and setting Z, = 0 and M, = 0 for convenience yields

u u
o sl
da | _ 41 %% | | Bse. (S13)
g g
0 0

Linearizing (58) about (Uj, e, ©,) = (U,, 0,0) using the
first-order approximations vy, = vy, + 00, U =~ Uy + 1,
a = da,and O = 0 yields

Vpn, T 80 = (c0s 0) (U, + u) + (sin 6) (U, + u)(tan da)
—€(sin 0)0 + n(cos 0)6,

where 6oy, is the first-order approximation of the horizon-
tal-velocity perturbation. Neglecting products of perturba-
tion variables, and approximating cos # =~ 1,sin § = 6, and
tan da = da yields

80, = u + mh. (59)
Next, taking the Laplace transform of (59) and assuming

that the initial conditions of the perturbations (u, 8, ) are
zero yields

80,(s) = ii(s) + nsd(s). (60)

where
[ X, + X, X., X, -9
Uy Z‘ln UU + ZQU 0
Al U, U, Uy 5
M, + M, M, +M; M, 0
0 0 1 0
[ Xe,
Zse,
BA| Uy |, CA[0 0 0 1]
Mse,
. O
Note that

Since D=0 and CB = 0, it follows from (S12) that

lim s2G(s) = CAB.

s—x

(S14)

Therefore,

A
lim $2Gjjs6(S) = —
s

£ (S15)

where A, is the coefficient of s? in the numerator of (53). From
(S14) and (S15) it follows that Ay/E = CAB= Mj,, for Z, =0
and M, = 0. It thus follows that the numerator of Gj55(s) in (53)
is of second order.

It follows from (51), (53), and (60) that the transfer function
from 8¢(s) to 80y, (s) is given by

A+ Bys® + s + Dy,
Es*+F*+ Gs*+ Hs + I

Gﬁivp,, /55(5 (61)

where the numerator coefficients are defined in Table 5, and
the denominator coefficients are defined in Table 6.

INSTANTANEOUS VELOCITY

CENTER OF ROTATION

The point pycg is an IVCR of the aircraft at time t; if prycg
is fixed relative to the aircraft and, at time ¢, the angular
velocity of the aircraft relative to Fy is not zero and the
velocity of pyycr relative to Osc with respect to Fy is zero.
For details, see “Instantaneous Velocity Center of
Rotation.” It follows that the location of the unique pyycg
whose coordinate along j,c is zero, if it exists, has
the form
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Crver
?Plv(k/c = 0 : (62)
AC
Thvcr
It thus follows from (S10) that
= 1 ~ - (I)AC/E ) Fpl\’CK/C N
Towee = | =~ 2 Pack X Daoye T~ -7 PACE: (63)
WAC/E WAC/E

Note that the second term in (63) is zero since @ ¢k is
aligned with j,c and the component of 7 along Jacis
zero. Thus, (63) can be written as

Prver/c

. 1 - .
= X
rPIVCR/C |(;)AC/E | 2 WAC/E Z)C/OF/E
1. . R .
= &[G) Jac X (Uixc + Wkac)]
W, u p
Yy kac. (64)
Therefore,
W _ Utana
Cver = O 0 (65)
u
= - 66
Thvcr ) (66)
Since ®0 0, it follows that €1ycg and myycr are infinite for

steady flight, and thus no IVCR exists in steady flight.

Next, for the elevator step deflection de(t) = 1(t — t,),
where & # 0, we approximate €¢1ycg and ey at £y using the
first-order approximations U =~ U, + u, @ = da, and O = 6.
Thus,

(67)

nIVCR(t(;r) = = 0( YT (68)

where it follows from the initial value theorem that

o(ty) = 1imsé(s)
= 1im SG@/BE(S)g
e(Ays* + Bys + Cp)
o s F9 + G + Hs + 1
=0,

(69)
0(ty) = lims[s(s) — 6(t7)]

s
= lim s* Gi(s)
£(Ays® + Bys? + Cys)

s—>°°Es +Fs>+ Gs>+ Hs + 1
=0,

Sa(ty) = lim sda(s)

(70)

. e
=lim SGaa/(se(S)*
s S
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- e(AP+Bs2+Cs+D,)
= lim

so» Es* + Fs® + Gs> + Hs + [
_O,

u(ty) =limsii(s)

s—®

€
= 1lim sGjy5(s) -
R s

1)

(A +Bs*+Cs+D,)

= lim
s—>» Es*+ Fs®+ Gs>+ Hs + [
=0.

(72)

Thus it follows from (67)—(72) that

U, tan «
Oyer(ty) = 7905) = o,
Uy
nIVCR(tJ) = = 9(1‘3) =®

Therefore, no IVCR exists for an elevator step deflection.

INSTANTANEOUS ACCELERATION

CENTER OF ROTATION

The point piacr is an IACR of the aircraft at time f if pyacg
is fixed relative to the aircraft and, at time ¢, the accelera-
tion of piacr relative to O,c with respect to Fy is zero. For
details, see “Instantaneous Acceleration Center of Rota-
tion.” It follows that the location of the unique pjacg whose
coordinate along jac is zero, if it exists, has the form

Ciacr
0 | (73)
THACR

It thus follows from (20) and the definition of the IACR
that

rPIACR/ <

— Uack®? + U + WO + n, O

ﬁplACR/OE/E = 0 = O/
A .. . . .
¢ = Uiack® + W — UO — n;,cz®°
which implies

oo WO® + U0? — UOO + WO o
TACR @)4 + @2 4 ( )

- U®® + WO+ WOO — UG)
MACR = (75)

0t — 6

Alternatively, using (S27) yields

- 2 =~ A_C. -~
|wAC/E| Agoye T OacEe X Aejo/E

rPIACR/ e ™

=~ PR o
loackl* + |@ack!
. AC. R
() Ao e T @ace X AcoyE
- 0!+ 62

Therefore,



U+ we 0 U+ we
R 1 - Iy
T ol —7®4+®2® . 0 | 0| X . 0 .
AC W—Ue 0 W—Ue
We? + 1O — Ue6 + W6
0+ 62
= O ,
—U®® + We?+ wee — U6
0+ 62

which agrees with (73)—(75).
Next, it follows from (30), (31), (74), and (75) that

U(tan a)©%+ UO* — UOO + (U tan a + U(sec?a)d)®

Vs = < Y 12
TIACR o' + B2

(76)

- U + (U tan a + U(sec’) &) O + U(tan o) OO — 1O

THACR — 0! + &2 .

(77)

Since O, = 0 and 6, = 0, it follows that £;,cg and ncg are
infinite for steady flight.

Next, for the elevator step deflection de(t) = 1(t — t,),
where £ # 0, we approximate €;5cg and Macg at f; using the
first-order approximations U = U, + u, a = da, and O = 6.
Thus,

o
820" + 60
+i(ty)0*(tg) + [i(ts) (tan Sa(ty))

+ [Uy + ulty))(sec? da(ty) dér(ty) o (t)

Ciacr(ts) = (U +u(t))(tan da(t)6° ()

— [Up + ()0 ()8 (t5),

nys 1 + NG ()
Macr(ty) = 720°) + 6*0") (U + u(ty ))(tan da(ty))6 (t5 )6 ()

— iult)8(tg) + [in(to) (tan Sa(ty))
+ [Uy + ulty)lsec® dalty)da(ts)6* (k)
— Uy + u)0°(to),

(78)

(79)
where the initial value theorem implies that
da(ty) = 12118[55&(5) — da(ty)]
. &
= lg{} SZG(S&/E?(S)E
- e(Ast+ B+ Cs*+ D)
= lim
s>» Es*+ Fs® + Gs?> + Hs + I

_EA,
=5

(80)

0(t5) = lims[s%0(6) — s0.(t5) — 03]
= lim $'Gyyse(6) 5

g(Ays* + Bys® + Cys?)

= lim
soxEs* + Fs® + Gs®> + Hs + [
%Y (81)
=
iu(ty) = lims[sit(s) — u(ty)]
T 2 €
= lgfls GBﬁ/S@(S) 3
- e(Ast+ B, + C,s2+ D,s)
= lim n 3 >
s—» Es*+ Fs°+ Gs*+ Hs + 1
_ eA, 8
= (52

It thus follows from (69)—(72), (78)—(82), and the expres-
sions given in Table 5 that

Ciacr(ty) = UX;‘Q
UyZs,
T ZoM,, + Ailéej(uo ~Z,) (83)
and
Macr(ty) = _Z:
_ Xoe\Uo = Za,) ' 64)

 ZsMa, + My (Uy — Z4)

INITIAL SLOPE AND QUADRATIC CURVATURE

OF THE VERTICAL- AND HORIZONTAL-VELOCITY
PERTURBATIONS AT THE IACR FOR AN ELEVATOR
STEP DEFLECTION

The vertical-velocity perturbation 8v,,(t;) at p due to the
elevator step deflection Se(t) = e1(t — t;), where & # 0, is
given by

80, (ty) = 1im 587, (s)

s—®

. &
= !1_{2 Scafzp‘,/aé(s)g
e(As*+ B,s*+ Cyss+ D,)

m ==y 3 2
s—» Fs* 4+ Fs°+ Gs*+ Hs +

=0

while the initial slope 89,,(t;) of the vertical-velocity per-
turbation is given by
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Instantaneous Acceleration Center of Rotation

et B be a rigid body with body-fixed frame Fg, let F be a

frame with origin O,, and let @g,s be the angular velocity
of Fg relative to F,. A point p that is fixed relative to B is an in-
stantaneous acceleration center of rotation (IACR) of B relative
to Faat time t if 4,,0,a() = 0 [S1, pp. 150-155], [S3, pp. 336—
338]. For convenience, we omit the phrase “relative to Fj.”

To characterize this property, let g be a point fixed relative
to the rigid body B. It follows from the definition of an IACR and
the transport theorem that p is an IACR if and only if

B

Ap0,n = Dgia X Foiq T Ogia X (Opa X Foq) + dqoya=0.  (S16)
N B. S
Resolving &y0,/a; @g/a, @g/a, @Nd Fyq in Fgas
A 5 A~ g2 A F
a= agoyp| » © = Wgp| ,® = WAl , = Iyg| »
B B B
(S16) can be rewritten as
(0 +w*®)r+a=0. (S17)

The existence of an IACR thus depends on the existence of
a solution r to (S17). Furthermore, (S17) can yield zero, one, or
infinitely many IACRs.

Note that the determinant of & + w2 is given by

B. B. B.
det (0 + ©*®) = (dpa- @pa)® — (Gpa” Bpn)(@pa- Dpn)

B.
= — lagalPlogal?sin?6,

(S18)
where
. B
w w
0 & cos AR (s19)
|(BB/AH(I)B/A|
FACT S3

There exists a unique IACR if and only if 6/ is not an integer,
@gn # 0,and @g # 0.

PROOF

Suppose (S17) has a unique solution. Therefore, &> + w*? is
nonsingular, and thus the determinant of * + »*?is nonzero.
Hence, it follows from (S18) that

B.
det (0™ + 0*?) = — |@gal?l@gal?sin®0 # 0,

B.
which implies that 6/7 is not an integer, @g/, # 0, and @g, # O.
Conversely, since /7 is not an integer, &gy # 0, and

@gp # 0, it follows from (S18) that det(o*+ w*?)=
— |Ggal?|@gal?sin?6 # 0, which implies that (S17) has a
unique solution. 0
FACT S4

B. R
Assume g, =0, @g/y # 0, and aqo,a # 0. Then p is an IACR
if and only if p satisfies the following conditions:
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i) “jB/A'éq/OA/A # 0.
.. B - 1 B R
i) @pa X | o — B @pa X Bgoya | = 0.

| gyp |2

In this case, p satisfies

B.
= 1 B. = O To/q B.
Toa = . @pp X goya T B @p/p- (S20)
&gl l@g)al
PROOF
Assume p is an IACR. Since @g;, = 0, it follows from (S16) that
B. = B. B. - ~ _ _
WA oA = Wp/a” (—w BA X Tog — @pja X (@g/a X rp/q))
B B
= —apgp (@ga X Toq)
=0,

which proves i). To prove ii), it follows from (S16) that

B. R 1 B. ~ B. ~ ~
wpgp X <r pa g @eAX aq/OA/A) = wga X lpyq 1 @go,a
= 2
&gl
=0.

Hence, ii) holds.
Conversely, it follows from ii) that there exists « € R such that
_ 1 B = e
Toig = 5, @ga X 8goya T @ Opa
logal?

(s21)

Using i) and (S21), it follows that

_ A.
apoua = oo,
A A
=Toq+Tgo,
L R B. B R
= Toiq T 2wgja X Iyq T @ga X Ty
+ @gp X (wga X Fp/q) + éq/OA/A
B. 1 B. ~ B. -
= agp X| g @paXdgomta G)B/A) + ago,a
| @l 2
B

B/A " 8go,A B R R
Wp/A — 8goyn T goa

| wg/al?
=0,

and thus p is an IACR.
To show (S20), assume p is an IACR. It follows from (S16) that

B. B. B.
wp/p X p00n = Op/A X(wB/A X T + @gaX (@p/a X Foyg) + aq/OA/A> =0,

which implies that

B. B B B B
(@A * Toig) Wgia — (@p/a * @g/a)Toig + @gia X Aqoya = 0. (S22)
Hence, solving for 7, in (S22) yields (S20). O



FACT S5
Assume aJB,A =0, wgp # 0,and &yo,a # 0. Then pis an IACR
if and only if p satisfies the following conditions:

i) @g/a - 8goya = 0.

3

iy - Q/OA

ii) wgp X (rp,q = " |2) =0
wWg/A

In this case, p satisfies

@A o

_ g0
= Wp/A-

Ir

B (S23)

a2 -2
|@gypl lwgal

PROOF 5
Assume p is an IACR. Since wg = 0, it follows from (S16) that
B.
Dg/A * g0, n = OpA (_ Wgp X Iyq — @A X (wga X rp/q))

= —ogp- (&)B/A X (@pa X Fp/q))
0,

which proves i). To prove ii), it follows from (S16) that

a
_ - qouA L
Wg/p X (rp/q - ﬂ) =wpa X lpq — Dp/a
B/A B.

g X Toyqg— Dgp X (@ga X o)

|@g/al?

R R R g X (@pa X Tyg)

=wga X fpqtwga X ——————5
lwg)al

= dga X Tyqg = Dgja X Iyq

=0. (S24)

Hence, ii) holds.

Conversely, it follows from ii) that there exists « € R such that

a
= q/Op/A -
Tg= =5 T awg. (S25)
lwgal
Using i) and (S25), it follows that
R An
apioya = I po,
A A
= loig T Iq0,
B.. _ B. B -
=T piq T 20pa X I pq T X fyq
+ @ga X (@g/a X Toq) + agoya
R R Ag/0,A R R
=wpa X |wpa X | =5 T awpa || Tagoua
lwgal

= —8goyn T ayo,A

=0.

To show (S23), assume p is an IACR. It follows from (S16) that

B.
wgp X g T wpa X (wg/a X rp/q) +agoya

=wgp X (@pa X Iyg) +ag0,a

= (Wgia o) wp/a — (@g/a " @p/a)Toig + 8goya

-o. (S26)
Solving (S26) for 1, yields (S23). O

FACT S6 5
Assume @g, =0 and g, = 0. Then every point p that is
fixed relative to B is an IACR if and only if

ayo.a = 0.

PROOF
Assuming p is an IACR, it follows from (S16) that
B. _ ~ ~ ~ _
0 =@gp X g + @ X (@ X Toq) +ago.a
= éq/OA/A-

Conversely, A

a p/OA/A = ?p/OA
. A
/q

A
= Iyq T Iyo,

B.. B. B. ~
=T piq T 2dpa X I pq T DA X Tyq

+ @gaX (@paXToq) + Bgioya

=d8y0,A

=0.

FACT S7B' 5.

Assume &g, and ag, are colinear, and let k 2 (&g - dga)/
|@gal? Then p is an IACR if and only if p satisfies the following
conditions:

i) @/ 8goya =0.

B.
_ 22 = _
l@g/al® 8o, n + @A X @gioya

ii) wga X | Foyq—

B.
l@gal* + | @gpl?

In this case, p satisfies

B.
. Bs B. -
R |®g/Al” 8qo,n + ®ga X @goya
——
p/q R B.
l@gpl* + | dgpl?
[PV _ B. R
g al* (g - Forg) + Kk @g/a -~ Forg
T Dga- (S27)
logal* + | @gal?
PROOF

Assume pis an IACR. It follows from (S16) that wg/s - @yoa = 0,
which proves i). To prove ii), note that, since p is an IACR, it
follows from (S16) that

B. L R ~ _
0 = g X Tyyq + 0pa X (@/a X Tg) T+ gioya
B. _ _ I _ .
= wpa X Iyg + (@gia Toig) Dea — (@g/a  @p/a)Toig T Bgoya  (S28)
B.
Next, the cross product of wg, and (S28) can be expressed as
B. B
0=dgpa X | @ X Fyq + (Gpa - Fog) D
— (@g/a* Dgya) Fog + éq/O,JA)
B. _ .B

B. .
= (wgn- fp/q)wB/A — l@g/al* /g

(S29)

B. B.
. /B . B .
— logal?(dga X Foq) + g X dgoya-
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It follows from (S28) that

B.
Wpp X g = — (dga - Torg ) @gja

+ ((@gja* Dgin) Foqg — Agon - (S30)

Substituting (S30) into (S29) yields

B. B. B.
_ (A~ Y 2 oz T _r
0= (apgn" rp/q)wB/A — |@g/al o + 10 g/l (GIYe rp/q)wB/A

B.
— @ gal*Foq + 18g/alPdgon + Gra X dgoya
B.
= [k og foiq + 1@ palX(@gsa - r;)/q)J(I’B/A
R B. R B.
+ 1B g/alPag0,n + Oga X dgoyn — (1@l + 1dgal*) ryq -

(S31)

Now, solving (S31) for r, yields (S27), which implies that ii)
is satisfied.

Conversely, it follows from ii) that there exists @« € R such
that

B.
|@g/al?a + g X d B
qoyA T DA qOyA B
£ “— + awgp. (S32)

Forg = B.
l@gal* + @ gjal?

Using i) and (S32), dy0,a is given by

Svpv(t(;r) = llj}l S[Saf}pv(s) - 6vpv(t3)}

€

= 122 SZGaz}P\ /5@(S)§

e(As*+ B,s® + Cys2 + Dys)
Es*+ Fs®+ Gs*+ Hs + I

= lm

=2 (85)

Hence, if eA,/E # 0, then the vertical-velocity perturba-
tion has a slope discontinuity due to the elevator step
deflection. Note that the initial slope 60,,(t;) of the ver-
tical-velocity perturbation is the initial value of the ver-
tical-acceleration perturbation.

Next, it follows from the expression for A, given in Table 5
that

A, = —CA, + UyA,. (86)

Therefore, A, = 0 if and only if
¢ = Yofa &7
=0 (87)

Hence, it follows from (85) that 80, (ty) = 0 if and only if €
satisfies (87). For details, see “The Initial Curvature Theo-
rem and Unit-Step Response.”

Similarly, the horizontal-velocity perturbation 6v,,(ty)
at p due to the elevator step deflection Se(t) = 1(t — t,),
where ¢ # 0, is given by
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- A
apioya = Ipio,

Ae A
= o T Ig0,
B. B. B.

= loq + 20ga X Fyq + dga X Foyq

+ @pp X (@gp X Foq ) + dgoga

B.
= @ B _
lwgal® @qoyn + dea X dqoya

B.
= Wp/a B. QWp/A
log/al® + g 2
- 2 - B. -
logal® g0y + dga X dgoya

+ wpa X [ @pa X B.
l@gal* + | g 12

+ awpp || + agoya

= — ago,ua T dgoya
=0. O
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80, (tg) = 1im 580,,4,(s)

o e
= 12{} SGBiPh/ﬁﬁ(S)g
. 8(AS> + Bys® + Cys + Dy)
=am--y 3 2

s—» Es* 4+ Fs® + Gs~+ Hs + 1
=0,

while the initial slope 80,,(ty) of the horizontal-velocity
perturbation is given by

B0 (17) = lims[585,,(5) — B0,
, e
S
e(Ays* + Bys® + Cps? + Dys)

= lim

sow Es*+Fs®+ Gs?+Hs+1
_ SAh
.

= 11_{2 Szcsﬁ‘,h/aé(s)

(88)

Next, it follows from the expression for A, given in Table 5 that

An=nA, + A, (89)
Therefore, A,, = 0 if and only if
= (90)

Hence, it follows from (88) that 8o, (t;) = 0 if and only if n
satisfies (90).



The Initial Curvature Theorem and the Unit-Step Response

INITIAL SLOPE THEOREM
et y(s) denote the Laplace transform of y(t). Then the initial
slope of y(t) is given by

y'(0%) & limy'(t) = lim slsy(s) — y(0")]

To illustrate the initial slope theorem, we consider the
unit-step response of the asymptotically stable, strictly prop-
er transfer function G with relative degree d = 1. The unit-
step response has the initial value y(0") A lim,_q y(t) =
limg_...s(G(s)1/s) = G(«) = 0. The initial slope of y(t) is thus
given by

y'(07) = lims? y(s) = lim sG(s).
s—® s>
Consequently, if d=1, then y’'(0") # 0, whereas, if d= 2,
then y’(0") = 0. These results are illustrated in Figure S4 and
Figure S5.

INITIAL CURVATURE THEOREM
Let y(s) denote the Laplace transform of y(t). Then the initial
curvature of y(t) is given by

y90") A lim y9(f) = lim s?*1y(s),

t—0" s

where y“” denotes the dth derivative of y, and d is the smallest
integer such that y@(0*) # 0.

We now consider the unit-step response of the asymptoti-
cally stable, strictly proper transfer function G with relative de-
gree d = 1, where

-d ~d-1
_ :Bn—dsn +Bn—d—1sn +ot By
$"+a, 8"+ +a

G(s)
The initial derivatives of the unit step response are thus given by

y2(0*) = lims™1y(s)

s—®

: 1
F i+1 I
lims G(s)s

S—x

lims'G(s)

S—x

{0, i=1,...,d—1,
Bn-a [=d.

Next, it follows from (83) and (84) that pjacg for an eleva-
tor step deflection satisfies both (87) and (90). Therefore,
A, =0and A, = 0if and only if (¢, ) = (€;acg, Macr)- Thus,
evaluating (85) and (88) at pjacg for the elevator step
deflection 8e(t) = e1(t — t;), where & # 0, yields 80,,,(t5) =0
and 69,,(ty) = 0. Therefore, at the IACR, the initial slopes of
the vertical- and horizontal-velocity perturbations are zero.
Equivalently, despite the step discontinuity in the elevator
deflection, the initial values of the vertical- and horizontal-

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-0.1
-0.2

Unit Step Response y(t)

012 3 456 7 8 9 10

Time (s)

FIGURE S4 The unit step response of the asymptotically stable
transfer function G(s) = (s—2)%/((s+ 1)(s+2)(s+ 3)) with
relative degree d = 1. The initial slope y’'(0") of the unit step
response is one.

x 1078

Unit Step Response y(t)

FIGURE S5 The unit step response of the asymptotically stable
transfer function G(s)=(s—3)/(s+5)* whose relative
degree is three. The initial slope y'(0") of the unit step
response is zero, whereas the initial curvature y”(0*) of the
unit step response is one.

Therefore, the initial curvature of the unit step response is
y(d)(0+) = Bn-a

acceleration perturbations are zero. Therefore, the initial
value of the acceleration measured by a body-fixed acceler-
ometer whose direction of measurement is orthogonal to
jac is zero [6, pp. 313-316], [7]-[15].

Since A, =0 at the TACR, it follows that the transfer
function Gs; /s:(s) at the TACR becomes

3 B,s>+ Cy,s+ D,
Es*4+ Fs* + G+ Hs + I

G&ﬁ},\,/(se(s)
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Next, at the IACR, it follows from the expression for B,
given in Table 5 that

B, = —{iacrBy — UpAy + UB,

_[ABy
= Ag +Ag a UO.

Consequently, if B, # 0, then the relative degree of G; /55(5)
increases from one to two, and thus one of the zeros of
Gs3, /5(s) vanishes at the IACR.

Similarly, at the IACR, A, = 0. Thus, if B, # 0, then the
relative degree of G&;ph /5:(s) increases from one to two, and
thus one of the zeros of Gs;, 5:(s) vanishes at the IACR. The
vanishing zeros are a consequence of the fact that the initial
slope of the vertical-velocity perturbation and the
horizontal-velocity perturbation are zero at the IACR. Note
that €jacr and nmacgr depend on the speed U and the stabil-
ity derivatives Zs,, Za,, Xs., M, and Mj, . Vanishing zeros
are discussed in [16].

INITIAL UNDERSHOOT OF THE
VERTICAL VELOCITY FOR AN ELEVATOR
STEP DEFLECTION
Let G(s) 2 B(9/(s’a(s)) be a strictly proper transfer function
with relative degree d > 0, where r = 0 and a(s) is asymp-
totically stable. Let y(t) denote the response of G to the step
command 1(¢ — t,). Then initial undershoot occurs at time ¢,
if the step response initially moves in the direction opposite
to its asymptotic direction, that is,
Yyt )y (=) < 0. (91)

To determine whether the vertical-velocity perturbation
80,,(t) to the elevator step deflection Se(t) = &l1(t — t)
exhibits initial undershoot, we investigate (91) with
G(s) = Gsg, jae(s), 7 = 0, and y(t) = 6v,,,(1).

First, the asymptotic direction of the step response is
given by the sign of

50, () = lim 59,9
= lgl_f}(} SGB&P\,/aé(S)g
e(A$® + Bys*+ Cys+ D)

im
s>0 Es*+ Fs®+ Gs®>+ Hs + 1
eD,

It follows from Table 5 and Table 6 that 8v,,(>) does not

depend on the location of p, that is, the value of (¢, 7).
Next, the initial direction of the step response is given

by the sign of

ngg(tg )= lim s[stf)Pv(s) — s 180, (tg) = — SZ)ffv_l)(ta’ )]

= lim s/ *'80,,,(s)

5=
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€
1Gaz>p\,/3@ (S)g

3 d( AP+ Bs®+ Cys + D, )
Es*+ Fs® + Gs>+ Hs + I

=lims**
s

2« if d =1, (thatis, A, #0),
_ %“, f d=2, (thatis, A,=0, B, #0),
)%, if d=3, (thatis, A,=B,=0,C, #0),
Do if d=4, (thatis, A,=B,=C,=0,D, #0).
(93)

Thus, for d = 1, 8v,,,(t) exhibits initial undershoot if and only
if 89, (ty) 60, () = A,D,/(EI) < 0; for d = 2, 8v,,,(t) exhibits
initial undershoot if and only if 87,,(t))80,,() =
B,D,/(EI) < 0; for d = 3, 8v,,,(t) exhibits initial undershoot if
and only if 50(3)(t0)BvPV(OO) = C,D,/(EI) < 0. Furthermore,
for d =4, 8v,,(t) does not exhibit initial undershoot since
Svii(tg )dv, ( ) = D%/(EI) = 0.

The following results follow from (87) and (91)-(93)
along with Proposition S1.

Proposition 1
Assume that € does not satisfy (87). Then the following
statements hold:
i) The relative degree of Gg; s5:(s) is one, and thus
A, # 0.
ii) 8v,,(t) exhibits initial undershoot if and only if
A,D, <0.
iii) 8v,,(t) exhibits initial undershoot if and only if
G&;pv/&(s) has either exactly one or exactly three real
nonminimum-phase zeros.

Proposition 2
Assume that ¢ satisfies (87) and B, # 0. Then the following
statements hold:
i) The relative degree of Gs; ,5:(s) is two, and thus
A, =0.

ii) 8v,,(t) exhibits initial undershoot if and only if
B,D, < 0.

iii) 8v,,(t) exhibits initial undershoot if and only if
G&;pv/&(s) has exactly one real nonminimum-phase
zero.

Following the same procedure for 87, (t) yields identical

results, that s, 87,,(t) exhibits initial undershoot if and only
if 8v,,,(t) exhibits initial undershoot.

INITIAL UNDERSHOOT OF THE HORIZONTAL
VELOCITY FOR AN ELEVATOR STEP DEFLECTION
To determine whether the horizontal-velocity perturbation
8vy(t) to the elevator step deflection &e(t) = &1(t — t)
exhibits initial undershoot, we investigate (91) with
Gls) = Gaéph/aé(s)/ r=0,and y(t) = Svph(t)'

First, the asymptotic direction of the step response is
given by the sign of



vah(w) = 11_1;1(‘)1 Sai}ph@)
= 1€1£r01 SGaﬁpl/se (S)E
e(Aps® + Bps? + Cys + Dy,)
im
s=0 Es*+ Fs®+ Gs®>+ Hs + I
- SD],\
="

(94)

It follows from Table 5 and Table 6 that 5v,,(>) does not
depend on the location of p, that is, the value of (¢, 7).

Next, the initial direction of the step response is given
by the sign of

80f(t7) = Tim s[s8D,,(5) — 5160, (t) — -+ — S0l V()]
= !LHO} Sd+ 16’8!;)]'\(5)
. 3
= 11_{2 st 1Gsﬁph /56 (5)§

d< Ah53 + BhSZ + ChS + Dh >
&S
Es*+ Fs®+ Gs*+ Hs + I

“hif d=1, (thatis, A, #0),

% if d=2, (thatis, A,=0, B, # 0),

% if 4 =3, (thatis, A,=B,=0,C,#0),

Do if d =4, (thatis, A,=B,=C,=0, Dy #0).
(95)

Thus, for d=1, 8v,,(t) exhibits initial undershoot if
and only if 80,,(ty)8v,,(*) = ADW/(EI) <0; for d=2,
8v,(t) exhibits initial undershoot if and only if
80,1 (tg ) 801 () = B, Dy /(EI) < 0; for d = 3, 5v,,(t) exhib-
its initial undershoot if and only if Svg)h(tg )80 (o) =
CwDy/(EI) < 0; Furthermore, for d =4, 8v,,(t) does not
exhibit initial undershoot since Bv%ﬁ(tg)ﬁvph(oo):
D,2/(EI) = 0.

The following results follow from (90), (91), (94), and
(95) along with Proposition S1.

Proposition 3
Assume that 1 does not satisfy (90). Then the following
statements hold:
i) The relative degree of Gy, 5(s) is one, and thus
Ay # 0.
ii) 8v,,(t) exhibits initial undershoot if and only if
AnD,, < 0.
iii) 8v,,(t) exhibits initial undershoot if and only if
Gss,,s00(s) has either exactly one or exactly three real
nonminimum-phase zeros.

Proposition 4
Assume that 7 satisfies (90) and By, # 0. Then the following
statements hold:
i) The relative degree of Gy, /si(s) is two, and thus
A, =0.

ii) 6v,,(t) exhibits initial undershoot if and only if
B.D, < 0.
iii) Svph(t) exhibits initial undershoot if and only if
Gsi,00(s) has exactly one real nonminimum-phase
Zero.
The following result is a special case of propositions 2
and 4, where we consider the response at the IACR.

Proposition 5
Assume that (€,m) = (£;acr, Macr), By # 0, and B, # 0.
Then the following statements hold:
i) The relative degrees of Gs; sss(s) and Gy, sasls) are
two. Thus, A, =0and A, =0.

ii) 8v,,(t) exhibits initial undershoot if and only if
B,D, < 0.

iii) vah(t) exhibits initial undershoot if and only if
B.D,, < 0.

iv) 8v,,(t) exhibits initial undershoot if and only if
Gss, s56(s) has exactly one real nonminimum-phase
zero.

v) 8v,,(t) exhibits initial undershoot if and only if
Gss,,50(s) has exactly one real nonminimum-phase
zero.

BUSINESS JET EXAMPLE

To illustrate the instantaneous acceleration center of rota-
tion, the initial slope of the vertical velocity and horizontal
velocity, and vanishing zeros, we consider a business jet in
cruise whose numerical data are given in Table 7, which is
a reproduction of data provided in [18, p. 330].

For all expressions below, the units of € and 7 are
feet. Using the data given in Table 7 as well as the
expressions given in Table 5 and Table 6, and (51), (52),
(53), and (57), the transfer functions from 8é(s) to i(s),
da(s), and O(s) are

Gﬁ/&é(s)
B — 378.85s% + 2.72¢5s + 2.40e5
675.99(s* + 2.01s® + 8.05s> + 0.085s + 0.068)

ft/(s-rad),

~ 42.208% +11939.025* + 88.5773s + 79.30
675.99(s* + 2.01s + 8.05s2 + 0.085s + 0.068)’

—11930.175* — 7652.06s5 — 78.52
675.99(s* + 2.01s> + 8.055% + 0.085s + 0.068)

Gsa/aé(s)

Gé/aé(s) =

Furthermore, the transfer functions from 8é(s) to Sf)pv and
80,, are shown in (96) and (97), found at the bottom of the
next page. Next, with U,=675.12 ft/s, A, = —42.20 1/s,
A,=0m/s*, E=67599 1/s, e =1 deg-s =0.017 rad-s, and
A, =11930.17 1/s?, it follows from (83) and (84) that

P (675.12)(42.20) o 23881 6t
IACR ™ 11930.17 - ’

0
Mack =~ 1793017 £~ Oft
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[ TABLE 7 Stability parameter values. These data for a
\ business jet are given in [18, p. 330].
Stability Parameter Value Units
(CN 0.0000 rad
Uy 400.0000 kt
X, —0.0074 1/s
X, 0.0000 1/s
X, 8.9782 ft-rad/s
Xse, 0.0000 ft-rad/s>
Zy 0.1390 1/s
Zey —445.7224 ft-rad/s?
Zy, —0.8705 ft-rad/s
Zg, —1.8598 ft-rad/s
Zse, —42.1968 ft-rad/s®
M,, 0.0011 rad/ft-s
M, —0.0002 1/ft-s
M,, —7.4416 1/s?
My, 0.0000 1/s?
M, —0.4062 1/s
M,, —-0.9397 1/s
Mse, —17.6737 1/s2
(&

Next, using (96), the initial vertical-velocity slope
response due to the 1-deg elevator step deflection de(t) =
(0.017)1(t — t7 ) is given by

Sty ) = 42.15 + 17.65¢.

It follows that, at € = €;zcr, 87,y (t; ) = 0, and the number of
zeros of the transfer function G&;pv /5:(s) decreases from three
to two.

Likewise, using (97), the initial horizontal-velocity slope
response due to the 1-deg step elevator deflection
de(t) = (0.017)1(t — t7 ) is given by

8oty ) = 17.65m.
It follows that 1 = niacr, 60pn(tg ) =0, and the number of

zeros of the transfer function Gy, /s:(s) decreases from
three to two.

To demonstrate the initial vertical-velocity perturba-
tion 6v,, and initial horizontal-velocity perturbation 6v,,
forward and aft of the IACR, we simulate §v,, and
dv,,  with  the 1-deg elevator step deflection
de(t) = (0.017)1(t — t; ) for several values of € and 7.
Figure 2 shows that, for { = =20 ft, §v,, experiences ini-
tial undershoot, whereas, for n =20 ft, v, experiences
initial undershoot, as defined in [1] and “Initial Under-
shoot.” This initial undershoot is a consequence of the
fact that, for all € < {jcg, the transfer function Gs;_s(s)
has one nonminimum-phase zero, while, for all § > nacg,
the transfer function Gy;,5(s) has one nonminimum-
phase zero. On the other hand, for all € > €;,cg, the ini-
tial slope 80,,(0%) is in the direction of the asymptotic
vertical velocity, while, for all n < macg, the initial slope
80,,(07) is in the direction of the asymptotic horizontal
velocity. Finally, for € = €;5cg, the initial slope 69,,,(0%) is
zero, and, for 1 = myscg, the initial slope 89,,(0%) is zero.
Note that, at pjacr, the initial slopes of both 60,,(0") and
BZ'JPV(0+) are zero, as a consequence of the definition of
the TACR. Simulations over a longer time interval are
shown in Figure 3.

Next, we apply the Routh test to determine the loca-
tions of the poles and zeros of (96); for details, see “Routh
Test for Third- and Fourth-Order Polynomials.” Follow-
ing the same procedure for the horizontal-velocity per-
turbation transfer function (97) yields similar results.
Thus, we analyze the vertical-velocity perturbation
transfer function (96) as an example. Writing the denomi-
nator of (96) as p(s), where p(s) = s* + a;5° + a,s> + a1 + a,
is defined by

p(s) =s* +2.01s° + 8.055> + 0.085s + 0.068,
it follows that
14,85 — agal — a3 = 1.23531/s° > 0,

where the units 1/s°reflect the assumption that the leading
coefficient of the monic polynomial p(s) is dimensionless.
Consequently, all of the poles of Gs; 5:(s) are in the open
left-half plane (OLHP).

To determine the zeros of the transfer function from the
elevator deflection 8é(s) to the vertical-velocity perturba-
tion 87,,(s), we apply the Routh test to the numerator of
(96). Defining the polynomial g(s) = s> + a,8* + a;5 + a, by

e N\
4215 + 17.65¢)s° + (23854.0 + 11.3¢)s> + (7740.6 + 0.1¢)s + 157.2
Gaﬁp\ /5@(5) = ( ) n ( 3 3 ) ( ) ft/(s-rad) (96)
s* +2.01s% + 8.0552 + 0.085s + 0.068
17.651s° + (11329 — 0.56)s? — (402.4 — 0.127)s + 355.0

Gss. ss(s) = — ft/(s-rad 97

s 2(5) s* +2.015° + 8.055% + 0.085s + 0.068 (s-rad) ©7)
N J
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The response of the vertical-velocity perturbation 8vpv(t) and the horizontal-velocity perturbation 8v,,(t) of a typical business
jet to the 1-deg elevator step deflection de(t) = 0.0171(t — t,) at t, = 0 based on the data given in [18]. In (a) and (b), for ¢ < {jacr = — 2.388 ft
and n € R, where {55 is the component of 7, . along RAC. the transfer function Ga‘;pv/éé(s) has one positive zero. For ¢ = {,,cg and all
1 € R, the initial slope of the vertical-velocity perturbation is zero, that is, the vertical-acceleration perturbation at t; is zero. In (c) and
(d), for ¢ € Rand 1 > miace = 0 ft, where macr is the component of 7, . along i,, the transfer function Gs;, ;55(s) has one positive zero.
For ¢ € R and n = macp, the initial slope of the horizontal-velocity perturbation is zero, that is, the horizontal-acceleration perturbation
is zero at t§, which indicates that (¢, 1) = (€,acr, macr) iS the location of the IACR. This point is characterized by the vanishing zero,
which, because of the increase in relative degree, yields zero initial velocity-perturbation slopes in both directions i,; and k,. Figure 3
shows the same simulations over a longer time interval.

5, 177307 + 84.13¢ , 57535.6 + 0.8608¢

A
1) 2 3115120 7 3133+ 13120 Routh Test for Third- and
1168.6 Fourth-Order Polynomials
313.3 + 131.2¢’ Il three roots of the cubic polynomial of p(s) = s®+
a,s? + a;s + a, are in the open left-half plane (OLHP)
it follows that if and only if
P (57535.6 + 0.86086’)(177307 + 84.136) % &y, 8; > 0
a0 313.3 + 131.2¢ 313.3 + 131.2¢ and
_ 1168.6 8y < aa,.
313.3 + 131.2¢ All four roots of the quartic polynomial p(s) = s*+
g(0) a,s° + a,82 + a,s + a, are in the OLHP if and only if
= ft/s,  (98)
(313.3 + 131.2¢)(0.11€ + 0.27) oy B Py iy 1)
where g(€) & €%+ 457.36¢ + 0.88 ft2. For ¢ > {j5cp, it fol- and
lows that 313.3 + 131.2¢,0.11¢ + 0.27, and g(¢) are positive, a8 + & < a13,a;.

and thus (98) is positive. Therefore, for all € > €;,cg, all of
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FIGURE 3 The responses of the vertical-velocity perturbation 5v,,(t), the vertical-acceleration perturbation 8i,(t), the horizontal-velocity per-
turbation Svph(t), and the horizontal-acceleration perturbation Svph(t) of a typical business jet to the 1-deg elevator step deflection
de(t) =0.0171(t— t7) at t, = 0 based on the aircraft parameters given in [18]. The asymptotic values are denoted by the dotted lines. Note
that, for all values of (¢, ), the poles in (96) and (97) are close to the imaginary axis. Thus, 8V, (1), 8,,(1), 8Vi(t), and 8V,,(t) reach their
asymptotic values slowly. As shown in Figure 2, the initial curvatures of 6v,,(f) and 8v,(f) are different for different values of (¢, n). However,
for all values of (¢, n), the vertical-velocity perturbation and the horizontal-velocity perturbation approach nonzero constants, while both accel-
eration perturbations approach zero. Note that, due to the magnitude of the transients, the traces in each plot are indistinguishable.
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0 b—+—

Real Zero (rad/s)

-500 (

-1000 ‘

-1500
—25-20-15-10 -5 0 5
€(ft)

10 15 20 25

FIGURE 4 The real zero of a business jet based on data given in
[18]. This plot shows the location of one of the real zeros of the
numerator of the transfer function G&;pv/aé(s) from the elevator input
deto the vertical velocity 8, of the aircraft at p as a function of the
component ¢ of the location of p along the direction k, .. Note that
negative values of ¢ correspond to locations of p aft of the air-
craft’s center of mass, that is, toward the tail of the aircraft. As ¢ is
increased from —25 ft to €|,cg = —2.3 ft, the zero moves along the
real axis from 59.383 rad/s to «. This zero vanishes at €,scg. As ¢
is increased from {|,cg to 25 ft, the zero reappears at —« and
moves along the real axis to —49.606 rad/s. Figure 5 shows the
locations of the remaining real zeros.
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the roots of q(s) are in the OLHP. On the other hand, for all
€ < fiacr, one zero of G s5:(s) is in the ORHP and two
zeros are in the OLHP. This result follows from the first row
of the Routh table, where one sign change appears.

Figure 4 shows that a real zero approaches « as ¢
increases toward {15cr, whereas a real zero approaches — %
as ¢ decreases toward €5cg- This zero thus vanishes at the
IACR. For ¢ € [—25, 25] ft, Figure 5 shows the locations of
the two remaining zeros of G s(s), which are real and do
not vanish at the TACR.

For the horizontal-velocity perturbation 0vyy, Figure
6(a) and (b) shows that, as i increases toward m5cg, One
zero approaches —, one zero approaches 717.7 rad/s,
and the remaining zero approaches 0.88 rad/s. Figure
6(c) and (d) shows that, as n decreases toward mscg, One
zero approaches «, one zero approaches 717.7 rad/s, and
the remaining zero approaches 0.88 rad/s. In Figure 6,
(b) and (d) are zoom-in views near the origins of (a) and
(c), respectively.

CONCLUSIONS

In this article, we used transfer function techniques to ana-
lyze the response of an aircraft to an elevator step deflec-
tion. We showed that the aircraft’s initial response to an
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Zeros of the transfer function Gs;_ /5 (9). (@) and (b) show the locations of the zeros of Gy, 06 (s) for each location of p along ka. param-
eterized by n € [—10 ft, O ft), where n,5cr = Oft. The circles denote the zeros for n = —10 ft, while the crosses denote the asymptotic locations
of the finite zeros as n increases toward macg. As 1 increases toward m,5cg, One of the zeros approaches — o, while the finite zeros approach 0.88
rad/s and 717.7 rad/s. (c) and (d) show the locations of the zeros of Gj;, () for each location of p along kas parameterized by € [ 0 ft,—10ft),
where miacr = Oft. The circles denote the zeros for » = 10 ft, while the crosses denote the asymptotic locations of the finite zeros as n decreases
toward nacr. As 1 decreases toward macg, One of the zeros approaches «, while the finite zeros approach 0.88 rad/s and 717.7 rad/s.

elevator step command is characterized by the IACR, which  deriving the linearized longitudinal equations of motion
is the point at which the acceleration relative to O,c with  and evaluating the location of the IACR to first order. The
respect to Fg is zero. This point, which depends on the iner-  initial vertical-velocity and horizontal-velocity response at
tia and aerodynamics of the aircraft, is determined by the IACR to an elevator step deflection corresponds to an
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increase in relative degree of the associated transfer func-
tions at the IACR. This increase in relative degree reflects,
in turn, the fact that zeros vanish at the IACR.
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