
©
S

O
T

H
E

B
Y

’S
 L

O
N

D
O

N
/S

U
P

E
R

S
T

O
C

K

F E A T U R EF E A T U R E

By Dennis S. Bernstein, N. Harris McClamroch, and Jinglai Shen

T
he dynamics and control of spacecraft have
been widely studied because of their techno-
logical significance [1]–[3]. For single-axis
rotation, a rigid spacecraft can sometimes be
viewed as a double integrator with torque
input [4]. Three-dimensional rotation is more

complex and involves three-axis torque inputs provided by
thrusters with attitude and rate sensing. The problem
becomes more difficult if fewer than three thrusters are
available [5]–[7]. It is usually assumed that the mass distri-
bution, and, thus, the inertia matrix, of the spacecraft is

known, although robust and adaptive methods can be
used when the inertia is uncertain [8].

Alternatively, control torques can be provided by reac-
tion and momentum wheels, in which case the spacecraft
mass distribution is constant despite the presence of mov-
ing components [9]. Many spacecraft use control moment
gyros, which involve momentum wheels spinning at a con-
stant rate and whose axis of rotation can be controlled
through a single- or double-gimbal mechanism [10].

Although both thrusters and wheels can be used to
apply control torques to the spacecraft, they play very dif-
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ferent roles. Specifically, thrusters can change the angular
momentum of the spacecraft, whereas wheels cannot,
since total angular momentum is conserved. On the other
hand, a momentum wheel can store momentum, whereas a
thruster cannot. This distinction is critical since external
disturbance torques must be counteracted through
momentum dumping, for which thrusters are often utilized.
However, thrusters require fuel, which must be brought
from Earth and is limited, while wheels require electric
power, which can be obtained from solar energy and, thus,
is unlimited. Besides thrusters and wheels, alternative atti-
tude control devices exploit gravity gradient and magnetic
torques for stabilization, momen-
tum dumping, and compensation of
atmospheric drag, solar pressure,
and other disturbance torques.

Returning to the dynamics of
the spacecraft, it is important to
keep in mind that most spacecraft
are not monolithic rigid bodies,
but rather consist of moving components such as spinning
rotors for stabilization (as in a dual-spin spacecraft with a
despun platform) and articulated appendages (solar pan-
els, robotic arms, antennas, and instrument booms). In
addition, the dynamics of large flexible appendages [11]
and on-board fuel [12] can be excited by control actuators,
thereby degrading the performance of the attitude control
system. Flexible dynamics can also be excited by environ-
mental disturbances such as heating and cooling.

This article focuses on an alternative technology for
attitude control called shape change actuation and control.
For a multibody spacecraft, that is, a spacecraft consisting
of multiple rigid bodies connected by hinge, rotary, or
prismatic joints, the spacecraft attitude dynamics are cou-
pled with the shape dynamics that arise due to changes in
the mass distribution. The objective is to control the
spacecraft attitude by purposefully changing the mass dis-
tribution of the spacecraft [11], [13], [14]. Shape change
actuation and control is not useful for momentum dump-
ing or storage. Rather, it is intended for efficient, low-
authority attitude control, possibly as a backup for
thrusters and reaction wheels.

We describe the development of a multibody attitude
control testbed for investigating and demonstrating shape
change actuation. This testbed is based on an air spindle
to allow low-friction, single-degree-of-freedom rotational
motion. The article emphasizes the conceptual formula-
tion of the problem, the design issues that were
addressed in the development of the testbed, and the
expected and unexpected issues that arose in the experi-
mental investigation. The theoretical background for
shape change actuation and control is not addressed, but
references are given to relevant publications where this
background is developed.

The attitude control problem for the platform support-
ed by the air spindle and the proof masses is expressed in
terms of a model that assumes conservation of angular
momentum about the air spindle axis. Assuming that the
angular momentum is exactly zero, a standard nonlinear
drift-free control model is obtained that relates the two
proof mass velocities, viewed as input variables, to the
rate of change of the three configuration variables, namely
the platform attitude and the positions of the proof mass-
es. This model has the form of a nonholonomic control
system. A survey of research on nonholonomic control
systems, prior to 1995, is available in [15]. With the

notable exception of control research on wheeled vehicles
[15], there have been relatively few practical assessments
of nonholonomic control approaches based on careful
experimentation. One of our objectives is to provide such
an assessment for spacecraft applications.

In the next section, we describe the design and devel-
opment of the hardware for the experimental testbed.
This section provides an experiment design case study in
terms of the rationale for various design decisions and
the constraints of time, money, physical limitations, and
incomplete information. We discuss the shape-change
attitude control problem for the air spindle testbed from a
conceptual point of view. We present the basic air spindle
testbed model, and we provide a description of several air
spindle control strategies including open-loop and feed-
back controllers.

In subsequent sections we describe the controllers
used in the experiments, and we report the results of con-
trol experiments using an open-loop controller and two
different feedback controllers. In the latter sections we dis-
cuss differences between the experimental results and the
expected results based on control analysis and simulation.
A key modeling assumption is that the air spindle platform
is level, and we describe our efforts to level the platform.
In these sections, we also summarize what we learned
from designing and operating the testbed from a hardware
point of view, and we discuss the ramifications of the
experiments for motivating new problems and research
questions in control theory.

Hardware Development
of the Air Spindle Testbed
In this section, we describe the hardware for the experi-
mental setup, including the air spindle testbed, the real-

The testbed is based on an air spindle to
allow low-friction single-degree-of-

freedom rotational motion.



time control and communication system, and the actuator
and power systems.

The testbed consists of a single-axis rotational platform
controlled by translational shape change actuation; a
schematic top-view diagram is shown in Figure 1. To satis-
fy the assumption that the total angular momentum is con-
served and is zero, the platform should not be influenced
by external moments, such as those due to friction and
gravity. To achieve this objective, the air spindle is sup-
ported by a precision air bearing that supports the rotat-
ing elements by a thin film of air.

To take full advantage of the low friction of the air spin-
dle, the control system should operate completely unteth-
ered to the room. This requirement implies that 1) all
power for the control system is located on the platform, 
2) all processing takes place on board the platform, and 
3) all communication with the control processor is wire-
less. A data link with sufficient speed so that the control
processor could be located off the platform was consid-
ered. However, this arrangement necessitates more com-
plicated signal interfaces on the platform. We thus opted
for an embedded processor with a relatively low-speed
data link, as described below.

Since air spindle components are separated by a film of
air, one might expect that the rotor and stator of the air
spindle are capable of relative motion in translation and
rotation along axes other than the desired rotation axis. In
fact, a typical air spindle is extremely stiff to stator/rotor
relative displacement in the presence of lateral forces as
well as tilt in the presence of moments. This stiffness
assures that the mounting platform does not tilt as the
location of the center of mass varies during the experi-
ment. However, as will be seen, the leveling of the platform
itself is a limiting factor in the experiments.

The air spindle we chose is the model 4R Block-Head
manufactured by Professional Instruments, Inc., Hopkins,

Minnesota. The 4R Block-Head is extremely stiff to lateral
forces and moments. To provide an experimental testbed,
we specified the following items: 1) a base with adjustable
tilt, 2) an encoder for measuring attitude, and 3) a mount-
ing platform. For leveling the base, we specified adjustable
feet, which are described later.

Professional Instruments, Inc., routinely uses optical
encoders for measuring the air spindle angle. However,
these encoders are typically mounted so that the encoder
signal is available in the nonrotating room frame. In our
case, though, we require that the encoder signal be avail-
able in the rotating frame so that the on-board processor
can use the rotation angle for feedback control. To this end
the encoder is mounted in a reverse manner so that the
wiring to the encoder rotates with the platform. Choosing a
Heidenhain Corp., Schaumburg, Illinois, encoder model
1384, a glass encoder disk is mounted to the air spindle sta-
tor, while the scanning unit is mounted to the rotor. These
components are noncontacting and thus frictionless. The
signal wire from the scanning unit passes through the air
spindle and through the center of the platform.

The encoder signal is processed by a multiplier circuit
to provide 200,000 points per revolution, for an effective
angular resolution of 6.5 arc s. Note that this specification
does not imply that the accuracy of the encoder is 6.5 arc
s; however, resolution and repeatability, which are fea-
tures of optical encoders, are the specifications of rele-
vance to our experiments [16].

Specification of the platform includes its shape, size,
and thickness. We opted for a square platform to simplify
the mounting of components. As to the size of the plat-
form, we realized that control authority increases as the
distance of the proof mass slots from the rotational cen-
ter increases. On the other hand, a larger platform has
greater inertia (in fact, the inertia increases as the fourth
power of its dimension, making this an extremely sensi-
tive specification), while increased inertia tends to de-
crease the authority of the shape change actuation. An
additional difficulty was the fact that the processor
dimensions and mass as well as the proof mass actuator
stroke, force, and mass were not yet determined.
Although it would have been desirable to design all sys-
tem components simultaneously, the lead times were
such that this was not possible. Using estimates of the
proof mass actuator properties, we arrived at a specifica-
tion of 15 in by 15 in for the platform.

To guarantee the performance of the air spindle, it is
extremely important that the platform not deform so that
the air spindle rotor does not deform. The least thickness
that guarantees air spindle performance is 3/8  in stainless
steel. Alternative designs involving a built-up platform of,
for example, a thicker, smaller platform supporting a thin
aluminum platform were also considered but not pursued.
Our platform was machined with 1/4-20 through holes in a
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Figure 1. Schematic of the top view of the air spindle test-
bed. Two proof masses are velocity-commanded to move
along fixed linear tracks. In the absence of  platform tilt,
total angular momentum is conserved.
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1-in grid to allow mounting of components above and
below the platform.

For real-time on-board processing, we use an embedded
processor developed by Quanser Consulting, Toronto,
Canada. This processor is based on a 586 processor with 
a 4 GB solid-state hard disk and a multi-Q I/O board allow-
ing eight analog-to-digital (A/D) channels, eight digital-to-
analog (D/A) channels, and eight encoder channels. The
choice of processor was driven by the need to avoid a
cooling fan, which would have adversely affected the air
spindle dynamics. The A/D and D/A channels have a reso-
lution of 13 bits over a ±5 V range. The A/D sampling
occurs sequentially with an acquisition time of 20 µs per
channel, while the D/A latency is 5 µs per channel. The
operating system is based on the Quanser Consulting 
WinCon real-time controller, which is compatible with the
MathWorks Real-Time Workshop for implementing con-
trollers programmed in Simulink. Communication with the
host PC for experiment monitoring, parameter modifica-
tion, and data acquisition is accomplished through a wire-
less ethernet connection. Power for the processor is
provided by a 12 Vdc, 5 A-h notebook battery, which pro-
vides approximately one hour of operating time.

For shape change actuation, we use a pair of linear
proof-mass actuators custom built by Planning Systems,
Inc., Melbourne, Florida. Each actuator has a 1.73-lb mov-
ing magnet/linear bearing assembly as its proof mass with
5.5  in end-to-end travel. A U-channel linear motor made by
Aerotech, Inc., Pittsburgh, Pennsylvania, model BLMUC-79,
is the drive component of the actuator. An integrated Ren-
ishaw, Inc., Hoffman Estates, Illinois, linear encoder mea-
sures proof mass position with a resolution of 1 µm. Each
actuator is driven by a model ASP-180-10 Accelus amplifier
manufactured by Copley Controls Corp., Canton, Massa-
chusetts. The amplifier is capable of 6 A continuous and 18
A peak. The amplifier parameters can be fully programmed
by a PC through an RS-232 link and has self-tuning capabili-
ty. With these components each actuator is capable of 5 lb
continuous and 15 lb peak force. Power for the linear actu-
ators is provided at 36 VDC by three 12-V lead acid batter-
ies rated at 2.0 A-h. The 12-V batteries are mounted on the
linear actuators to increase the amount of moving mass;
the total moving mass is 0.16 slug. A photograph of the
testbed layout can be seen in Figure 2.

Formulation of the Shape-Change
Actuation and Control Problem 

Air Spindle Model
Since our goal is to investigate shape change actuation and
control, we consider the simplest problem involving a sin-
gle unactuated rotational degree of freedom of the platform
with two actuated proof masses that can translate along
fixed, straight tracks. As shown in Figure 1, the offset, that

is, the perpendicular distance from the platform axis to the
proof mass track of the first proof mass, is positive, while
the offset of the second proof mass track is zero, that is, the
second track is aligned to intersect the air spindle axis.
This layout for the proof masses characterizes the physical
setup in our laboratory; our subsequent analysis will be for
this particular case, although the results can be extended
to the case in which both proof mass offsets are positive.
This particular layout for the proof mass actuators was
selected to achieve a large change in the platform and
proof mass inertia about the air spindle axis, with the
expectation that this arrangement would lead to improved
control authority for the platform attitude. As shown subse-
quently, the angle between the proof mass tracks is irrele-
vant for control of the platform attitude.

The control objective is to use the two actuated proof
masses to induce a desired attitude change of the plat-
form. In particular, it is desired that a specified attitude
change be made in the platform while the two proof mass-
es eventually come to rest at specified locations. Thus,
simultaneous position control of the platform attitude and
the two proof masses is desired. The challenge of accom-
plishing this objective is due to the fact that there are only
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Figure  2. Photograph of the air spindle testbed. A pair of
proof mass actuators are mounted on a rectangular platform
in accordance with the arrangement shown in Figure 1.



two control inputs, namely, the two proof mass velocities,
while we seek to control three degrees of freedom.

Our subsequent analysis is based on the assumption
that there is no friction in the air bearing, air drag is negli-
gible, and the platform is exactly leveled so there is no
gravity moment about the air spindle axis. These assump-
tions imply that the total angular momentum is con-
served. Moreover, if the system is initially in equilibrium,
then the total angular momentum is identically zero.

Equations of Motion
In this section, we derive the equations of motion for the
air spindle with two proof mass actuators. We first intro-
duce the following notation:

I = the inertia of the platform including all

components rigidly mounted on the platform;

θ = the attitude angle of the platform;

mi = the mass of the ith proof mass, i = 1, 2;

zi = the relative position of the ith proof

mass with respect to a platform-fixed

rotating frame, i = 1, 2.

As shown in Figure 1, we choose z1 = 0 to correspond
to the position along the first actuator axis whose distance
to the rotation axis of the platform is minimized; this mini-
mal distance is l1. Since the offset of the second proof
mass is zero, z2 = 0 corresponds to the location of the
platform rotational axis.

Based on the assumption that the total angular momen-
tum is identically zero, it is shown in [17] that

θ̇ = m1l1ż1

J + m1z2
1 + m2z2

2

, (1)

where J = I + m1l2
1 . Let the control inputs ui be the proof

mass velocities żi , that is, żi = ui . Then (1) can be
expressed in a standard nonlinear form, affine in the con-
trols, given by

ż1 = u1, (2)

ż2 = u2, (3)

θ̇ = m1l1u1

J + m1z2
1 + m2z2

2

. (4)

The nonlinear control systems described in (2)–(4) have
no drift terms. It is easily seen that if the control variables
are identically zero, the air spindle testbed is in equilibri-
um for every value of the platform angle and proof mass
positions. It is easy to check that the linearized system is
not controllable at any equilibrium.

The physical values of the parameters in the model 
are obtained from direct measurement or system identi-
fication:

m1 = m2 = 0.16 slug, l1 = 6 in,

J = 45.8 slug-in2.

Control Problems
Controllability at an equilibrium of (2)–(4) is assessed by
checking the Lie algebraic rank condition [18]. It can be
verified that the two control vector fields and the first
order Lie bracket of these two control vector fields span
R

3 when evaluated at an equilibrium that does not satisfy
z2 = 0. Stroke limits on the testbed constrain the position
of the second proof mass to be positive, that is, z2 > 0.
Thus, the air spindle testbed, based on the above analysis,
is locally controllable in a neighborhood of every physical-
ly feasible equilibrium. See [17] and [19] for more details
about the controllability analysis.

Three different controllers, one open loop and two feed-
back, were constructed and tested experimentally. Theo-
retical analysis of these controllers follows standard
techniques for nonholonomic systems. Since it is not our
objective to treat the theoretical issues here, we only
briefly describe the conceptual basis for these controllers. 

We first develop and test an open-loop controller. In this
case, the proof mass velocity controls are selected to transfer
the configuration variables from a specified initial equilibrium
configuration (z1d, z2d, θ0) to a desired equilibrium configura-
tion (z1d, z2d, θd); these controls are computed as explicit
time functions that achieve the desired platform rotation. The
open-loop controllers are based on standard geometric phase
ideas; details of this controller are given in [17].

For the two feedback controllers, the control inputs
depend on measurements of the configuration variables.
The control objective is to transfer an initial equilibrium
configuration (z1(0),z2(0), θ(0)) to a desired equilibrium
configuration (z1d, z2d, θd). The air spindle, described by
(2)–(4), does not satisfy the Brockett necessary condi-
tions for the existence of a smooth stabilizing controller.
Various types of nonsmooth feedback controllers could
be utilized; see [15] for a review of different control
approaches. In our experiments, we used two different
nonsmooth feedback controllers. The first is based on a
hybrid switching scheme [20]. The second nonsmooth
feedback control is based on a time and state transforma-
tion approach, introduced in [21].

As described previously, the proof mass velocities are
viewed as control inputs. However, the physically imple-
mentable controls are the voltages to the proof mass
amplifiers, which provide regulated currents to the linear
proof mass actuators. Thus a nonlinear PD regulation con-
troller is designed so that each proof mass actuator tracks
the desired velocity commands. These regulators define an
inner control loop for each actuator.

Experiments have demonstrated that each proof mass
actuator acceleration can be adequately described by a
deadzone type equation
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z̈ =
{ 105(v − vd), v > vd,

0, −vd ≤ v ≤ vd,

105(v + vd), v < −vd,

(5)

where z̈ is the acceleration of the proof mass in  in/s2, v is
the control voltage to the proof mass amplifier, which can
vary from –5 V to +5 V, and vd specifies the deadzone
parameter. The deadzone effect is due to static friction
between the proof mass actuator and its track. However,
the deadzone width changes with proof mass position,
varying from 0.2 V to 0.27 V. A feedback regulation con-
troller has been designed for each proof mass actuator.
The regulator control consists of a proportional-derivative
part dependent on the proof mass command error and a
deadzone compensator. Define the proof mass position
error ez = z − zd , where zd is the proof mass position
command. The controller has the form

v = vdzc + vpd,

where vdzc is the dead-zone compensation part given by

vdzc =
{ 0.24, 50ez < −0.24,

−50ez, −0.24 ≤ 50ez ≤ 0.24,

−0.24, 50ez > 0.24,

and vpd is the proportional and derivative part that regu-
lates the closed-loop transient dynamics given by

vpd = 1
105

(
kpez + kdėz

)
.

Here kp and kd are control parameters defining the closed-
loop dynamics. Experiments have demonstrated that this
proof mass regulation controller works well for a variety of
proof mass position commands.

Experimental Protocol
We briefly describe our experimental protocol. First, we
place each proof mass at its initial position. We then level
the air spindle platform as accurately as possible by man-
ually adjusting the three legs on the air spindle base. This
leveling is crucial to the experiments since an unleveled
platform is strongly affected by gravity. The platform is
brought to rest, which initializes the experiment.

In the following sections, we describe the controllers
that have been experimentally tested. Experimental
results are presented for each control strategy. In the
subsequent sections, the experimental results are inter-
preted, especially in terms of the residual effects of
imperfect leveling.

Geometric Phase Open-Loop Controller
and Experimental Results
An open-loop controller is proposed, and experimental
results are presented. The proof mass velocities are 
specified as an explicit time function that transfers an ini-

tial equilibrium configuration (z1d, z2d, θ0) to a desired
equilibrium configuration (z1d, z2d, θd) in a specified time 
period T . Note that the platform attitude changes but
there is no net change in the proof mass positions.

The open-loop controllers are based on standard geo-
metric phase ideas. An integration of (4) shows that period-
ic motions of the proof masses lead to a change in the
platform angle; the proof mass periodic motions can be
selected to achieve the desired change in the platform. The
details for this controller construction are given in [17].

The particular controller used in the experiments is
given by

u1(t) =|α| sin
(

2π t
T

)
, u2(t) = α cos

(
2π t
T

)
, (6)

where t ∈ [0, T] The resulting change of θ can be expand-
ed as a series [22]

�θ = θ(T) − θ02π

[
sign(α)

∞∑
n=1

Cn

(
T |α|
2π

)n+1
]
, (7)

where (T |α|/2π) is assumed to be chosen such that this
series is convergent, and the coefficients Cn are given by

Cn =
{∑

i=0,2,··· ,n−1 �F (n,i) Ai
n, if n is odd,∑

i=1,3,··· ,n−1 �F (n,i) Ai
n, if n is even,

and

�F (n,i) = ∂n f1(z)

∂zi
1∂zn−i

2

∣∣∣
z=(z10,z20)

,

Ai
n =




(n + i)(n + i − 2) · · · 1
(n + 1)!i!

, if i = n − 1,

(n + i)(n + i − 2) · · · 1
(n + 1)!i!(n − i − 1)(n − i − 3) · · · 2

, if i ≤ n − 3,

where f1(z) = (m1l1/ J + m1z2
1 + m2z2

2) and (z10, z20) is the
initial condition of (z1, z2).

The scalar parameter α is determined to achieve the
desired platform attitude change in the specified time peri-
od. As shown in [22], α can be determined by numerically
solving a root-finding problem for the desired platform atti-
tude change.

The initial angle is θ0 = 0◦, and the desired platform atti-
tude in one period is θd = 1◦ . The frequency of 
the proof mass motions is chosen as 0.25 Hz (or equiva-
lently T = 4 s). Experiments are performed with
z1(0) = z1d = 0 in and z2(0) = z2d = 7 in. The control para-
meter is α = π , which corresponds to sinusoidal proof
mass motions with an amplitude of 2 in.
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Experimental results are shown in Figures 3 and 4,
which show typical time responses for the platform rota-
tion. The control inputs are repeated over several peri-
ods to show the drift in the average value of the platform
attitude. Experimental results and simulation results (not
shown) are in close agreement. This agreement provides
good evidence that the constructed control model and
the control strategies are accurate representations of the
controlled air spindle testbed, at least for a time interval
of operation of 50 s.

Hybrid Feedback Controller
and Experimental Results
We now present a feedback controller that asymptoti-
cally transfers an initial equilibrium configuration
(z1(0),z2(0), θ(0)) to a desired equilibrium configuration
(z1d, z2d, θd). This feedback controller is based on an itera-
tive application of the geometric phase open-loop controller
given in (6). This approach, which was originally developed
for a class of nonlinear cascade systems in [20], leads to a
hybrid control structure that involves continuous feedback
of the proof mass position errors, periodically sampled feed-
back of the platform angle error, and gain adaptation.
Details of the controller design procedure are given in [20].

The particular hybrid controller structure used in the
experiments is given by

u1(t) = −k1
(
z1 − z1d

) + |αk| sin
(2π t

T

)
,

kT ≤ t ≤ (k + 1)T, z (8)

u2(t) = −k1
(
z2 − z2d

) + αk cos
(2π t

T

)
,

kT ≤ t ≤ (k + 1)T, (9)

where αk is a constant parameter during kT < t ≤ (k + 1)T
that can be changed at t = kT . Let 0 < γ < 1 and
�θ(t) = θ(t) − θd . The choice of the parameter αk is deter-
mined by the following algorithm:

i) If z1(0) = z1d, z2(0) = z2d, θ(0) = θd , set α0 = 0; oth-
erwise, choose α0 �= 0;

ii) If �θ(kT) = 0 or αk�θ(kT) > 0, set αk = αk−1;
iii) If αk�θ(kT) ≤ 0 and �θ(kT) �= 0, then set

αk = γ |αk−1|sign(�θ(kT)).

This hybrid feedback controller achieves
asymptotic convergence of the closed-loop
state errors to zero [20].

For the experiment, the desired equilibrium is

z1d = 0 in, z2d = 7 in, θd = 0◦,

while the initial conditions are chosen as

z1(0) = 0 in, z2(0) = 7 in, θ(0) = −1◦.

We choose the control gain k1 = 1 s−1, the peri-
od T = 2 s, that is, ω = π , the initial gain para-
meter α0 = 2π in/s and γ = 0.5. Experimental
results are shown in Figures 5 and 6. It can be
seen in Figure 5 that the gain parameter α
changes at t = 2, 18, 32 s, respectively. After 35
s, the states are very close to the desired equi-
librium. The platform attitude gradually drifts
away from the equilibrium, for reasons that are
explained later.
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Figure  3. Platform attitude response using the geometric
phase open-loop controller. These experimental results illus-
trate the rotational drift due to periodic proof mass motion.

Figure  4. Proof mass position responses using the geometric phase
open-loop controller. The experimental results are based on sinusoidal
proof mass motion.
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Time-State Feedback Controller
and Experimental Results
We now consider a feedback controller that asymptoti-
cally transfers an initial equilibrium configuration
(z1(0),z2(0), θ(0)) to a neighborhood of a desired equilibri-
um configuration (z1d, z2d, θd). This feedback controller is a
time-state controller based on a
control method for nonholonomic
control systems developed in
[23]–[27]. The key idea in this
method is that a transformation is
made to obtain time and state equa-
tions, with one of the original state
variables serving as the indepen-
dent variable (pseudo-time) for the
state part. Controllers can be devel-
oped for the mode corresponding
to increasing pseudotime and for
the mode corresponding to decreasing pseudotime. Appro-
priate switching between these modes, and the introduction
of a convergence mode, guarantees that the proof mass
position and platform attitude errors asymptotically
approach a small neighborhood of the origin.

The particular time-state controller used in the experi-
ments is summarized as follows. Let zi min, zi max, i = 1, 2,

denote the limits of the proof mass positions, and define

z2s = z2 max − z2 min, z2c = z2 max + z2 min

2
.

The subsequent controller is expressed in terms of the
functions

Vf = 1
2
ξ2

3 + 1
2k2

3f

(ξ2 + k3fξ)2, (10)

Vb = 1
2
ξ2

3 + 1
2k2

3b

(ξ2 − k3bξ3)
2, (11)

where k3f and k3b are positive constants, and

ξ2 = z2s

π

(
tan

π(z2 − z2c)

z2s
− tan

π(z2d − z2c)

z2s

)
, (12)

ξ3 = θd − θ + m1l1√
m1( J + m2z2

2d)

×
{

tan−1

(√
m1

J + m2z2
2d

z1

)
−tan−1

(√
c

m1

J + m2z2
2d

z1d

)}
.

(13)

Next, let ε, εs be small positive constants and let
k1 > 0,k2 > 0. Choose z1 as pseudo-time variable. There
are three control modes for which switching logic is given
by the following algorithm:

i) If t = 0 or z1 − z1 min < εs, then use
u1 = −k1(z1 − z1 max), u2 = −k2(ξ2 + k3fξ3),

until z1 − z1 max > −εs.
ii) If z1 − z1 max > −εs, then use

u1 = −k1(z1 − z1 min), u2 = −k2(ξ2 − k3bξ3),

until z1 − z1 min < εs.

iii) If either of the following cases holds

z1 > z1d, Vb < ε or z1 < z1d, Vf < ε,

then

u1 = −k4
(
z1 − z1d

)
, u2 = −k4

(
z2 − z2d

)
.

This control strategy achieves convergence to a sufficient-
ly small neighborhood of the desired equilibrium
(z1d, z2d, θd) defined by the constant ε. 

The time-state controller has been implemented on the
air spindle testbed. The desired equilibrium is
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Figure  5. Platform attitude response using the hybrid 
controller. These experimental results involve iterative
application of the geometric  phase controller with varying
amplitude. The residual  drift is due to imperfect leveling of
the platform.

Our control experiments confirm the
feasibility of using two proof mass

actuators (shape-change actuation) to
achieve platform attitude maneuvers.
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z1d = 0 in, z2d = 7 in, θd = 0◦

and the initial conditions are

z1(0) = 0 in, z2(0) = 7 in, θ(0) = 1◦.

The proof mass stroke parameters for our experimental
tests are

z1 max =2 in, z1 min = −2 in,

z2s = 4 in, z2c = 7 in

and

k1 = 1 s−1, k2 = 10 s−1,

k3f = k3b = 50 in, k4 = 1 s−1,

ε = 10−6, εs = 0.5 in.

Experimental results are shown in Figures 7
and 8. It can be seen that, after 30 s, the
states are close to the desired equilibrium.
The platform attitude gradually drifts away
from the equilibrium; this behavior is
explained in a later section.

Interpretation of the
Experimental Results
We now interpret the experimental results
obtained in light of the relevant nonlinear con-
trol theory. We first compare the open-loop

control responses with the feedback control responses
and then compare the two sets of feedback responses.
Limitations of the results are indicated, and suggestions
are made about open research issues.

It is clear that the responses for the open-loop con-
troller are much faster than the responses for the feed-
back controller. The open-loop controller is designed for
the specific initial conditions used in the experiment. For
that initial condition, the control input is designed to
have high control authority. On the other hand, the two
feedback controllers are designed for a range of initial
conditions of which experimental results are shown only
for the indicated initial conditions. This difference in
design specifications leads to the differences in the
open-loop responses and the feedback responses.

The experimental responses for the two feedback
controllers are comparable, with the time-state con-
troller providing slightly faster response than the
hybrid controller. In each case, the errors are reduced
to near zero, for the selected initial conditions, in
approximately 30 s. Each method requires the selection
of gain parameters. The controllers that we used in the
experiments have not been optimally tuned for the
fastest possible responses. Rather, the experimental
results are suggestive of the time response properties
for this particular experimental setup. 

There are two important sets of constraints that are rel-
evant in this experiment. There are state constraints due to
stroke limits on the proof masses and control constraints
that arise from bandwidth limitations of the proof mass
actuators. The controllers used in the experiments were
designed in an ad hoc way to satisfy these constraints.
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Figure  6. Proof mass position responses using the hybrid controller. The
proof mass motion corresponds to the platform rotation shown in Figure 5.

Figure 7. Platform attitude response using the time-state 
controller. The controller uses the position z1 of the first
proof mass actuator as  the pseudo-time variable.
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It is easy to make arbitrary changes in the equilibrium
values of the two proof mass positions, since these are
directly actuated. It is much more difficult, as we have
shown, to change the platform attitude with zero net
change in the proof mass positions. In each of the experi-
ments, a 1◦ change in the platform is commanded, and the
experimental results demonstrate that such changes can
be achieved. If a larger change in the platform attitude is
commanded, then a sequence of successive incremental
changes can be commanded using the same controllers in
a repetitive fashion.

The experimental responses demonstrate that the feed-
back controllers can compensate for an initial platform
attitude error. The nonlinear control theory suggests, and
our experiments confirm, that the controllers are not sen-
sitive to small errors in the platform inertia or in the proof
mass values. However, the feedback controllers cannot
compensate for persistent moment disturbances since
these disturbances destroy the equilibria of the platform.
In our experiments, the most important disturbance, or
model error, arises from the fact that the platform is not
exactly horizontal so that small gravity moments in fact
act on the platform.

Effects of Gravity on the 
Experimental Results
In this section, we describe our investigation of experi-
mental errors that are evident from the differences in the
experimental responses and the responses that we
expect based on theoretical analysis and simulations. We
show that platform tilt, and the associated gravity effects,
is the most important source of experimental
error. Since it is not our goal to control a tilt-
ed air spindle, we have to eliminate gravity
effects due to the tilt as much as possible.
However, in spite of our efforts to level the
platform, the experimental results reflect the
fact that the platform is not perfectly level.
We point out how these effects influence the
controlled responses of the platform angle.

Although there is generally good agree-
ment between the experimental platform
angle responses and the simulated platform
angle responses, this agreement is restrict-
ed to relatively short time periods on the
order of a minute. For longer time periods,
there is divergence between the responses.
We undertook a systematic investigation to
explain and reduce the sources responsible
for the theoretical  and experimental
response differences. Several possibilities
were suggested, namely, 1) ambient floor
vibrations, 2) ambient room air currents,
and 3) air spindle tilt. Although air spindle

tilt was the most obvious source, it was clear that
other effects were present. Specifically, we observed
that the platform tended to oscillate with increasing
amplitude, suggesting forcing from sources other than
gravity.

The air spindle was originally mounted on a low-mass
optical table that vibrated due to ambient floor vibra-
tions. We thus relocated the testbed to a high-mass
table, and air spindle accelerations were significantly
reduced. Nevertheless, oscillations of increasing magni-
tude continued to be observed, suggesting forcing from
air currents. To address this problem, we built an acrylic
box to house the entire experiment. Nevertheless, the
effects persisted, and we conjectured that the distur-
bance was due to asymmetric air flow inside the air spin-
dle itself. However, engineers at Professional Instru-
ments assured us that the air spindle was designed so
that the internal air flow produced virtually zero net
moment, to the extent that a carefully mounted, undis-
turbed air spindle could detect the rotation of the Earth.
We soon discovered that the vented air outflow from the
air spindle was forcing the air spindle; routing the out-
flow eliminated that disturbance source.

Having reduced ambient vibrations and internal and
external air flow as major disturbance sources, the key
remaining source of disturbance was the moment due to
gravity. Of course, the effect of gravity is zero if the center
of mass is precisely located at the rotational center, and
this is true even if there were runout between the plat-
form and spindle. However, proof mass actuation necessi-
tated that the center of mass not be fixed, and thus we
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Figure 8. Proof mass position responses using the time-state controller.
Both proof mass actuators come to rest at the prescribed equilibrium
positions.
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could at best hope to move the (variable) center of mass
within the vicinity of the rotational center. Nonzero tilt of
the air spindle platform gives rise to oscillatory pendulum
dynamics of long period [28].

Our high-mass optical table has rigid legs, while the
base of the air spindle is supported by three adjustable
legs; see Figure 9. To reduce the tilt of the air spindle

platform, we use a high sensitivity leveling mechanism.
The three shafts were machined with threads of 1/2-13
on one end and threads of 1/2-20 on the opposite end.
The lower end of each shaft is inserted into a tapped
support block. By turning each shaft by means of a 12-
in arm with an adjustment resolution of approximately
1◦ , the differential displacement provided by the shaft
can be used to tilt the air spindle with a differential
resolution of approximately 0.013◦ . This mechanism is
crucial in reducing the platform tilt.

The air spindle model presented in (1) has been gener-
alized by assuming that the platform is not exactly level,
so there is a gravity moment that acts about the air spin-
dle axis. Such a generalized model has been constructed
and simulations have been developed. Experiments have
been carried out to identify the parameters in this model;
a typical estimated tilt angle is 0.015◦. The details of the
model and experimental results are given in [28]. This
model demonstrates that the long-term experimental
effects, which are not explained by the zero-tilt model

used in this article, are explained by including gravity in
the presence of platform tilt in the generalized model. For
example, once the proof mass actuators are fixed, the tilt-
ed air spindle has pendulum-like dynamics around a sta-
ble equilibrium [28].

The controllers used in the experiments are designed
based on the assumption that there is no platform tilt, but

our experiments make clear that
even a small tilt angle of 0.015◦ sig-
nificantly affects the control per-
formance. For example, unlike the
leveled model for which arbitrary
platform attitude and proof mass
positions can be an equilibrium,
there exists only one stable plat-
form attitude equilibrium for fixed

proof mass positions when the platform is tilted. In the
control design and experimental tests, more than 80% of
the laboratory setup time is spent on leveling the plat-
form, locating an equilibrium, and choosing appropriate
initial conditions and control parameters to achieve satis-
factory performance under the influence of gravity effects.
We summarize our laboratory experiences in the subse-
quent paragraphs.

Due to the presence of platform tilt, our choice of con-
trollers, control parameters, and initial conditions is
restricted. A controller designed on the basis of the lev-
eled model is effective for only a relatively short time peri-
od, about 50 s in the experimental platform attitude
responses already presented. Thus convergence of the
closed-loop responses, within this time period, is essen-
tial. As a consequence of this experimental constraint, we
were unable to consider control methods, such as time-
varying controllers, that have slower convergence rate.
Furthermore, initial conditions were chosen to be close to
an equilibrium to reduce gravity effects on platform atti-
tude response.

Two issues were found to be important in the control
experiments. First, fast convergence requires proof
mass motions of large magnitude, but this may lead to
difficulties in satisfying proof mass stroke and velocity
limits. For example, the gains in the hybrid controller
must be carefully selected to achieve fast convergence
while not violating the stroke and velocity limits. Sec-
ond, there is a tradeoff between convergence speed and
control precision. For example, in the time-state con-
troller, the tolerance parameter that determines when
the terminal convergence mode is activated must be
carefully selected. If this parameter is too small, conver-
gence is slow and the platform tilt effects may dominate.
On the other hand, control precision requires that this
parameter should not be large.

We now summarize our evaluation of the two feed-
back control methods based on our laboratory experi-
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Unlike linear control systems, the class
of systems studied in this article can be
controlled only in a weak sense.

Figure 9. Photograph of the air spindle supports. The 12-in
arms are used to rotate the support shafts, which have 
differential screw threads for precise adjustments.



ences. The hybrid controller is easy to design and
implement. It is simple, depending on only three con-
trol gains and a frequency parameter. Our experiments
indicate that it is robust to uncertainties in the platform
inertia and proof mass values. But it is, of course, not
robust to platform tilt. The control gains monotonically
decrease, which provides guaranteed convergence, at
least in the ideal case of a leveled platform. However, it
also leads to slightly slower convergence, compared
with the responses for the time-state controller.

The time-state controller is somewhat more complicat-
ed to design and implement. It involves seven control
gains, and the switching logic is somewhat complex. Our
experiments indicate that it is also robust to uncertainties
in the platform inertia and proof mass values. But it is, of
course, not robust to platform tilt. If the control gains are
carefully chosen, the full stroke of the proof masses can be
utilized resulting in relatively fast closed-loop responses.

Conclusions
We provided a summary of our experiences in develop-
ing and utilizing the air spindle testbed as an experimen-
tal facility for studying a physical implementation of a
nonholonomic control system. Our original concept was
that we could easily evaluate a variety of nonlinear con-
trollers that have been proposed in the literature. In fact,
the hardware acquisition and development time far
exceeded what we had originally anticipated. More inter-
estingly, we found that standard nonlinear controllers
for nonholonomic systems, in the forms that appear in
the published literature, could not be easily adapted to
the experiments.

We spent much time on hardware development,
attempts to level the platform to eliminate the effects of
gravity, and on control design and redesign. We did not
anticipate the difficulties in control design and experimen-
tal tests caused by gravity effects due to platform tilt.
Experiments show that these effects are so crucial that
they must be taken into account and handled in a careful
way. Another practical design issue is the stroke and
velocity limits on these proof mass actuators. The con-
trollers that we evaluated in this article were tuned in an
ad hoc way to include the effects of constraints, but we
have subsequently developed systematic procedures for
including these constraint effects in the controller design
process [29].

It should also be mentioned that, unlike linear control
systems, the class of systems studied in this article can be
controlled only in a weak sense. In other words, the control
authority for this class of nonlinear systems is intrinsically
low. This feature is reflected in the nonlinear control analy-
sis, and it is the source of many of the challenges that we
faced in carrying out good control experiments.

The issues just described have motivated further
work on the design of nonlinear controllers, of both the
hybrid type and the time-state type. In particular, modi-
fications have been made to those controllers to obtain
higher controller authority using the full range of state
and control constraints without violating the con-
straints. These modifications are beyond the scope of
the present article.

Our reported control experiments clearly confirm the
feasibility of using two proof mass actuators (shape-
change actuation) to achieve platform attitude maneu-
vers, at least in the absence of gravity or gravity gradient
effects. These results should not be viewed as definitive
evaluations of the hybrid controller or the time-state
controller methods. Although our experimental results
are consistent with the available theory and with exten-
sive computer simulations that we performed, the exper-
iments did make clear to us that issues that we initially
ignored, such as gravity effects due to platform tilt and
proof mass stroke and velocity limits, are critical. The
experiments raised these and other questions that pro-
vide motivation for continued research on dynamics and
control via shape change actuation. 
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