
What Makes Some Control Problems Hard? By Dennis S. Bernstein

Success or Failure?

Control engineering has application to virtually all
other branches of engineering, yet it is independent
of any particular technology. There are numerous

control engineering successes, including applications in
electrical, mechanical, chemical, and aerospace engineer-
ing, in which control technology has significantly enhanced
the value of products, vehicles, and processes. In the most
outstanding cases, such as high-performance flight control,
the contribution of control technology is of such critical im-
portance that the system simply cannot operate without it.
In other cases, such as in the process industries, control
technology enhances the performance of the system, ren-
dering it more competitive and profitable.

On the other hand, there are emerging applications of
control technology for which successful implementation to
the point of feasibility and profitability has not yet occurred
(see, for example, [1]-[3]). With these and other applica-
tions in mind, the purpose of this article is to explore those
aspects of control engineering that stand as impediments to
successful control application. In a nutshell, I will ask: What
makes some control problems hard?

I explore this question in five phases: control strategy, con-
trol physics, control architecture, control hardware, and con-
trol tuning. The reader will quickly surmise that these phases
are deeply linked and that aspects of each one can have a
strong impact on the others. In practice, these phases are
visited iteratively. Nevertheless, I submit that in each phase
there are reasonably distinct issues that can render a con-
trol problem hard and that are worthy of careful and individ-
ual consideration.

The goal of this article is to suggest a framework for view-
ing control applications that will help the control practition-
er understand and articulate the nature of the engineering
challenge. My hope is that this framework will provide a use-
ful guide to approaching new control applications while in-
creasing the chances of success.

A related goal is to provide terminology and concepts to
help the control engineer communicate and collaborate
with specialists from other disciplines. Control engineers
recognize that the success of control technology often de-
pends on system-level concepts such as dimensionality,
nonlinearity, authority, and uncertainty. The ability to com-
municate these concepts to engineers who specialize in do-
main-specific technology can be valuable, if not essential,
for ensuring the success of an engineering project.

Some background for this article is provided by [4]-[6],
which this article complements and extends by providing a
broader perspective on control engineering.

Control Strategy
Control strategy is the initial phase of a control engineering
project in which the need for control is assessed. The use of
control technology in many engineering projects must be jus-
tified in terms of cost, performance, and risk. Therefore, it is
first necessary to exhaust other approaches that provide al-
ternatives to the use of control. For example, it might suffice
to upgrade the system in terms of component specifications
and tolerances. However, these upgrades may not be techni-
cally feasible, or they may simply be too expensive.

When system upgrade is not feasible, system redesign
may provide a solution. Such a redesign may entail mechani-
cal and electrical modifications, which again may be infeasi-
ble or expensive. If the engineering design has been done
with care, such modifications will have been exhausted in
the preliminary project stages.

A special case of system redesign involves passive con-
trol, which entails mechanical or electrical subsystems that
effectively perform a control function. In passive control, all
sensing and actuation functions are integrated within the
subsystem, and independent energy sources are usually not
needed. Classical examples of passive control include the
gain-setting circuit for an amplifier (Fig. 1) and the tuned
mass absorber (Fig. 2). These implementations can be
viewed and analyzed as feedback controllers (Figs. 3 and 4),
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Figure 1. Thefeedbackcircuitforan operationalamplifierisa
classicalexample ofa passive feedback controller.The feedback
resistanceRf is used to set the amplifier gain.



although they do not possess distinct components for sens-
ing and actuation.

Beyond passive control we can consider control strate-
gies that require distinct components, including actuators
and, in the case of feedback control, sensors. We now turn our
attention to the physical basis for sensing and actuation.

Control Physics
A critical aspect of control engineering applications is the
control physics, which refers to the physical phenomena that
determine the ability to influence the plant dynamics. The
control physics provides the physical basis for the design
and construction of actuators for applying control inputs
[7]. For example, forces and moments can be produced by
means of an electric motor, in which a current interacts with
a magnetic field to produce a torque (Fig. 5(a)), and the in-
ternal combustion engine, in which the burning of fuel in-
side a cylinder produces an increase in pressure (Fig. 5(b)).
As devices for producing forces and moments, the motor
and internal combustion engine can be viewed as actuators.
These devices are based on conventional control physics.

Since the effectiveness of a control strategy depends on
the control physics, it is important to determine limiting fac-
tors. One such factor is the physically allowable range of
variables. In practice, there are always constraints on
stroke, maximum current, and virtually all physical vari-
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Although I have spent virtually my entire profes-
sional career thinking about control engineer-
ing, I continue to be amazed at the subtlety

and complexity of the subject. This article is an attempt
to bring together diverse, interrelated ideas that under-
lie control engineering challenges. However, I admit
that I have barely scratched the surface of this intricate
subject. In any event, it is useful to keep in mind that
feedback is the bidirectional interaction of interacting
components, and it is this interaction that has powerful
implications. This should not be surprising. If you dis-
mantled your car piece by piece and put all the parts in
a pile, it wouldn’t function as a vehicle. But if you as-
semble its thousands of parts just right, it will run fine.
The same applies to you as a person, with even more
interacting components. The study of control is the
quintessential systems discipline, where our goal is to
understand how systems composed of interacting com-
ponents are able to function. This is a subject without
boundaries, with much to offer to virtually all other sci-
entific and engineering disciplines.
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Figure 2. The tuned mass absorber is a passive feedback
controller with integrated sensing and actuation. This controller is
often implemented as part of plant redesign for vibration
suppression.
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Figure 3. This block diagram representation of the amplifier
circuit in Fig. 1 shows its function as a feedback controller. Since
V V R Rf iout in/ /» when R KRf i<< , the feedback resistance Rf can
be chosen to set the amplifier gain to a high degree of precision
despite uncertainty in the gain K of the operational amplifier.
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Figure 4. This block diagram representation of the tuned mass
absorber in Fig. 2 illustrates its function as a feedback controller.
Specifically, the tuned mass absorber provides narrow-band
disturbance rejection by means of the feedback controller
G s m s kc a a( ) / ( )= +1 2 . By appropriately choosing the mass and
stiffness values ma and ka , this internal model controller can
asymptotically reject a sinusoidal disturbance of known frequency
w d a ak m= / but unknown amplitude and phase.



ables. These constraints arise from inherent physics as well
as design details.

The laws of physics, such as conservation of energy and
momentum, as well as the laws of thermodynamics, repre-
sent limitations to all control physics. Because of conserva-
tion of energy, every physical device must satisfy an energy
flow constraint, which means that the power (rate of en-
ergy) output of any device cannot exceed the total rate of en-
ergy input available from all internal and external energy
sources. Note that this power constraint does not entail sep-
arate constraints on force and velocity, which (ignoring the

range constraints mentioned earlier) can independently be
made arbitrarily large (for example, by gearing) without vio-
lating the laws of physics; it is their product that is con-
strained by the available power. Analogous remarks apply
to current and voltage.

In addition to input-output power constraints, the
achievable power output of any device is limited by its effi-
ciency, which reflects the loss of energy due to friction and
resistance. Energy is also lost when it is converted from one
form to another, such as when a current interacts with a
magnetic field to drive a motor. This transduction efficiency
is a material property. All energy loss is ultimately thermal,
taking the form of heat dissipation and governed by the laws
of thermodynamics.

Exotic control physics, which refers to control physics
that is not as widely used in commercial applications as con-
ventional control physics, is often based on material
transduction. Examples include piezoelectric materials,
which exhibit strain in response to an electric field (Fig.
5(c)), as well as shape memory alloys, which undergo large
strain at critical transition temperatures (Fig. 5(d)).

Control technology is most successful when it can exploit
high-leverage control physics. This refers to applications
where the control system takes advantage of existing condi-
tions to effect large amplitude control inputs with minimal
cost and effort. The classical example is the triode vacuum
tube [8], which is used to increase the amplitude of an infor-
mation-laden, time-dependent signal by extracting and con-
verting energy from an informationless dc source (Fig. 5(e)).
Another example is aircraft control systems, where the engine
produces thrust for forward velocity and, by means of the
wings, lift. Stability and attitude control are obtained inexpen-
sively by the small motion of aerodynamic surfaces, which
produce moments by interaction with the airflow (Fig. 5(f)).

In many applications, such as servo control of mechani-
cal systems, the leverage of the control physics is not a driv-
ing issue. What is most important in these applications is
the performance of the system, and expensive, high-power
devices can usually be justified to achieve performance ob-
jectives. On the other hand, in other applications, such as
flow control for drag reduction, the leverage of the control
physics is crucial; in fact, if a drag reduction flow control
system is “only” 100% efficient, then it is effectively worth-
less, since the applied power could presumably be applied
equally well to the vehicle’s engines. Consequently, it is the
leverage of the control physics that often determines the vi-
ability of new control technology and applications.

Control Architecture
Control architecture refers to the spatial arrangement of sen-
sors and actuators as well as their interconnection with per-
formance, disturbance, and command signals through the
plant and controller. To understand the implications of vari-
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Figure 5. (a) An electric motor is the most widespread example of
conventional control physics. In this case, the interaction of a current
with amagnetic field results in a force or torque. (b)Another example of
conventional control physics is the internal combustion engine, which
applies force to a vehicle by burning fuel inside a cylinder,which causes
a gas to expandwith a resulting pressure increase. (c) As an example of
exotic control physics, a piezoelectric material undergoes strain when
subjected to an electric field. (d) Another example of exotic control
physics is a shape memory alloy, which undergoes large strain upon
reaching critical temperatures. (e) The triode is a classical example of
high-leverage control physics. By converting energy from a dc source
(such as a battery) to a time-dependent signal (such as a demodulated
radio signal), it forms the basis for the feedback amplifier. (f) The
aerodynamic surface is another example of high-leverage control
physics. Control moments are obtained inexpensively by the motion of
aerodynamic surfaces, which produce moments by interaction with the
ambient airflow produced by an engine whose primary function is to
provide thrust for lift.



ous control architectures, it is helpful to consider the gen-
eral control architecture shown in Fig. 6. The general control
architecture provides the framework for the standard prob-
lem; see [9].

The general control architecture involves four (possibly
vector) signals of fundamental significance in any control
problem (see Fig. 6). These are the exogenous inputw, which
can represent disturbances or commands, the controlled in-
put u, which is provided by actuators, the performance z,
which determines the performance of the system, and the
measurement y, which provides the input to the feedback
controller. Note that z need not be physically measured, al-
though there may be overlap between the signals that com-
prise z and the measured signals that comprise y so that z
may be partly or fully measured.

Using transfer function notation (although these transfer
functions can be replaced by nonlinear systems or opera-
tors), the input-output equations for the general control ar-
chitecture have the form

z G w G u

y G w G u

u G y

zw zu

yw yu

c

= +

= +

=

,

,

.

These signals may be scalar or vector, continuous or dis-
crete time, and the relationships that link them may be linear
or nonlinear, time invariant or time varying. In addition, the
feedback control algorithm may be linear or nonlinear, fixed
gain or adaptive. The general control architecture includes
all of the signal types that occur in control problems, and it
can be used to represent stabilization, command following,
tracking (command following with advance command signal
knowledge), and disturbance rejection problems.

In control problems involving input commands, it is
sometimes sufficient to consider an open-loop control archi-
tecture in which the command or disturbance measurement
is processed by means of feedforward control before plant
actuation and without employing feedback sensors (Fig. 7
with Gfb =0). Feedforward control is often effective in com-
mand-following and tracking problems where shaping filters
are used to modify or deadbeat the plant input [10], [11]; it is
also commonly used in disturbance rejection problems
when a measurement of the disturbance is available [12].
The feedforward control architecture is a special case of the
general control architecture, as shown in Fig. 8 withGfb =0.

In many applications, open-loop control is an adequate
architecture. Open-loop control requires actuators, but it
does not require sensors. When the system possesses a high
level of uncertainty in terms of its dynamics and distur-
bances, it may be necessary to use a feedback or closed-loop
control architecture. Feedback control is significantly more
sophisticated than open-loop control since it requires sen-
sors, actuators, and processing components in closed-loop
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Figure 6. The general control architecture involves four different
kinds of signals: exogenous input w, controlled input u, performance
z, and measurement y. The exogenous input w can represent a
command or disturbance signal. Special cases of the general control
architecture include virtually all control problems of interest.
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Figure 7. Feedback control requires a more sophisticated, costly,
and risky control architecture than open-loop control involving
sensing, actuation, and processing components in closed-loop
operation. In practice, feedback control must be justified over
open-loop control, and this justification is usually based on the
presence of uncertainty in plant dynamics or exogenous signals. This
block-diagram representation of the classical command-following
problem involves feedback and feedforward gains Gff and Gfb. Note
that e GG GG r= + --( ) ( )1 11fb ff . When Gfb = 0, th is control
architecture specializes to the open-loop control architecture for
feedforward control.
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Figure 8. This is the classical command-following architecture
shown in Fig. 7 recast in the general control architecture framework.



operation. In practice, feedback must be justified in view of
the cost of the necessary components and the risk due to
potential component failure. The classical command-follow-
ing problem is shown in Fig. 7 and recast in the general con-
trol architecture in Fig. 8. Note that, although passive
control involves feedback, distinct sensors and actuators
are not needed, and thus the implementation of passive con-
trollers is generally less expensive and more reliable.

The general control architecture can also be used to cap-
ture adaptive control algorithms. Adaptive controllers often

require that the performance z be measured so that the
measured signals that comprise y include those that com-
prise z. A special class of adaptive controllers involves in-
stantaneously (frozen-time) linear controllers that are
periodically updated (that is, adapted) based on measure-
ments of the performance. This adaptive control architec-
ture is a special case of the general control architecture,
which is illustrated by means of the modified general con-
trol architecture shown in Fig. 9. This adaptive architecture
is used for adaptive disturbance rejection in applications
such as active noise control (see [12], [13], and Fig. 10).

Control Architecture
and Achievable Performance
The general control architecture can be helpful in under-
standing the effect of sensor and actuator placement on
achievable performance. Consider, for example, a tradi-
tional home heating system, as shown in Fig. 11(a), wherew
denotes the outside temperature and weather conditions,u
denotes the heat input from the furnace, z represents the
performance variable (for example, temperature at a central
location), and y represents a temperature measurement. To
appreciate the advantages of the traditional heating system
architecture, it is helpful to consider alternative architec-
tures. For example, consider the case in which the control
inputu is moved outside of the house (see Fig. 11(b)). In this
case, the heat output u of the furnace can directly counter-
act the cold and windy weather w, but the control physics
has extremely low leverage since attempting to heat the out-
doors is a hopeless task (global warming notwithstanding).

Next, consider an alternative heating system architec-
ture in which the measurement y is colocated with the dis-
turbance w outside the house (see Fig. 11(c)). In this case,
there is an advantage in having a direct measurement of the
disturbance, and it can be shown that achievable perfor-
mance is improved. However, no measurement is available
at the location where the performance is determined (recall
that z is not a measurement per se); hence, this architecture
may require a model ofGzw andGzu and thus a more complex,
possibly model-based (and thus model-dependent), control
algorithm. In contrast to the alternative heating system ar-
chitecture in Fig. 11(c), the traditional architecture in Fig.
11(a) employs colocated y and z, which permits model-free
control with virtually no control tuning. Including z as an ad-
ditional measurement, y z2 = in Fig. 11(d) increases the
hardware cost but reduces model dependence. Hence the
control architecture has implications for the leverage of the
control physics, modeling requirements, control algorithm
complexity, and achievable performance.

To further illustrate the implications of the control archi-
tecture, consider the classical command-following problem
given by Fig. 7 with Gff =0. The error e is given by
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Figure 9. This adaptive control architecture involves an
instantaneously (frozen-time) linear feedback controller adapted by
using measurements of the performance z. This architecture can be
recast in terms of the general control architecture shown in Fig. 6.
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e Sr= ,

where

S
L

=
+

1
1

is the sensitivity function and

L GG= fb

is the loop transfer function. Note that open-loop operation
with Gfb =0 always yields e r= . On the other hand, if Gfb „0
and | ( )|S jw >1 holds for some value of w, then| | | |e r> and
thus amplification occurs relative to open loop. Similarly, if
Gfb „0 and | ( )|S jw <1holds for somew, then| | | |e r< and thus
attenuation occurs relative to open loop. When amplifica-
tion occurs, the system experiences spillover; that is, unde-
sirable amplification relative to open-loop operation.

To understand when spillover can occur, it is useful to re-
call an important property of the sensitivity function,
namely, that if S is stable and L has relative degree 2 or
greater, then the Bode sensitivity constraint (see [14]-[17]) is
given by

log ( )
0

¥

= ·S j dw w p sum of the right-half-plane poles of L.

To illustrate this result, consider the stable loop transfer
function

L s
s s

( ) =
+ +

1
2 32

,

which yields the stable sensit ivity function
S s s s s s( ) ( ) / ( )= + + + +2 22 3 2 4 . Hence

log ( )
0

0
¥

=S j dw w ,

which shows that the log sensitivity curve provides equal
areas of amplification and attenuation (see Fig. 12).

As another example, consider the loop transfer function

L s
s s

( )
( )( )

=
- +

4
1 2

,

which yields the stable sensit ivity function
S s s s s s( ) ( ) / ( )= + - + +4 2 22 2 . In this case

log ( )
0

¥

=S j dw w p,
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Figure 11. (a) In the traditional home heating system architecture,
the control input u (heat), measurement y (temperature), and
performance z (temperature) are colocated, and these signals are
separated from the exogenous input w, which represents the outside
weather disturbance. (b) In this alternative heating system
architecture, the control input u is colocated with the disturbance w,
resulting in extremely low-leverage physics. (c) In this alternative
heating system architecture, the measurement y is colocated with the
disturbance w, resulting in better achievable performance than the
traditional architecture in (a). In this case, the indoor temperature z
is not measured, necessitating greater reliance on plant modeling.
(d) In this architecture, both the indoor temperature y2 and the
outdoor temperature y1 are measured, providing measurements of
both the performance variable z and disturbance w. This
architecture yields better performance with reduced reliance on
plant modeling as compared to (c), although at greater hardware
expense.
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which shows that the log sensitivity function provides a
greater area of amplification than attenuation. In fact, for
this loop transfer function, the sensitivity function indicates
spillover at all frequencies (Fig. 13). It can also be shown
that the peak magnitude of the sensitivity increases (so that
the performance degrades) when the loop transfer function
has right-half-plane zeros (see [18]).

In place of the classical command-following architecture,
let us now return to the general control architecture and use
the Bode integral constraint to investigate the effect of each
of the four transfer functions on robustness and achievable
performance. For simplicity, we assume that the system is
linear time invariant and all signals are scalar. In this case,
the performance z is given by

z G wzw=
~

,

where the closed-loop transfer function
~
Gzw is given by

~
( )G F G Szw = c ,

the architecture function F G( )c is given by

F G G G G G G Gc zw zu yw zw yu c( ) ( )= + - ,

and the sensitivity function S now has the form

S
G Gyu c

=
-

1
1

.

For the general control architecture, the Bode integral
constraint provides insight into the achievable perfor-
mance resulting from sensor and actuator placement. For
example, suppose z and y are colocated, that is, z y= , which
occurs in the command-following problem with Gff =0. It
then follows that

F G Gzw( )c = ,

and thus

~
G G Szw zw= .

However, since S j( )w >1 for somew , it follows that

~
( ) ( )G j G jzw zww w>

for somew . Therefore, colocation of y and z causes spillover.
Likewise, it can be shown that colocation of u and w causes
spillover. Hence, the signal pairs ( , )z y and ( , )u z must be
separated to avoid spillover. For further details, see [19].
Note that colocating y and z has the advantage that z is auto-
matically measured.

As discussed earlier, the availability of a measurement of z
reduces the dependence on models ofGzw andGzu for control-
ler tuning. On the other hand, if y and z are separated, then a
measurement of z is available only when an additional sensor
is implemented. For example, the home heating architecture
in Fig. 11(d) requires two temperature sensors since z y= 2 is
measured. While the use of a second sensor incurs greater
cost, the achievable performance is enhanced relative to the
traditional architecture in Fig. 11(a).

In addition to spillover ramifications, it follows from linear
quadratic Gaussian (LQG) theory that if Gzu is minimum
phase, then the regulation cost can be surpressed; likewise, if
Gyw is minimum phase, then the observation cost can be
surpressed; for details, see [20]-[22]. For passive systems
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(that is, stable systems without energy-generating sources), a
transfer function involving colocated input and output sig-
nals is positive real and thus minimum phase (see [19]). Note
that colocating z and u entails physically placing the control
input u at the location of the performance signal z, whereas
colocating y andw is achieved by physically placing the mea-
surement sensor y at the location of the disturbance signalw.
If colocation is not possible, then it is desirable to place the
sensors and actuators so thatGzu andGyw are minimum phase.

Furthermore, placing y andu to avoid right-half-plane ze-
ros in Gyu (for example, by colocating y and u) yields high
gain margins. In fact, ifGyu is minimum phase, y is noise free,
and there is no disturbance noise, then perfect state recon-
struction is feasible, which thereby permits full-state feed-
back control and its associated advantage of unconditional
stabilization, which is discussed later. However, if full-state
feedback is not feasible butGyu is minimum phase and its rel-
ative degree is not greater than two, with root locus asymp-
totes in the open left-half plane, then Gyu can be
unconditionally (high-gain) stabilized; that is, the
closed-loop system will have infinite gain margin. This prop-
erty holds for multi-input, multi-output (MIMO) positive real
systems, which are minimum phase and have relative de-
gree 1, with strictly positive real feedback. In contrast,
plants having either right-half-plane zeros or relative degree
3 or higher cannot be unconditionally stabilized. Hence,
placement of u and y has implications for robustness.

These observations suggest that colocation of the pairs
( , )y w and ( , )z u along with separation of the pairs ( , )z y and
( , )u w represents the ideal control architecture for passive
systems (see Fig. 14). This placement of sensors and actua-
tors is typical for active noise and vibration control applica-
tions (Fig. 15). Experimental results (see [23] and Fig. 16)
confirm that this arrangement of sensors and actuators can
be effective in avoiding spillover.

Control Hardware
Now let’s take a closer look at the effect of sensor and actua-
tor hardware on achievable system performance. Achiev-
able performance is determined by sensor and actuator
specifications such as bandwidth and authority, as well as
sensor and actuator placement.

Sensor authority includes input range and other specifi-
cations [24], [25], whereas, for actuators, authority includes
the achievable amplitude and slew rate of the control input.
Amplitude saturation is unavoidable due to stroke, current,
force, and power constraints, which limit the recoverable
region for unstable plants [26]. Similarly, rate saturation lim-
its the bandwidth of the controller by introducing prema-
ture rolloff and additional phase lag.

To understand the implications of sensor and actuator
placement, consider a linear time-invariant system in state-
space form

& ,x Ax Bu

y Cx

= +

=

with corresponding transfer function

G s C sI A B( ) ( )= - -1 .

The poles of G and the associated time constants, modal
frequencies, and damping ratios depend on the plant dy-
namics matrix A but are independent of sensor and actuator
placement, which determine the input and output matrices
B and C. The achievable performance depends on both the
number of sensors and actuators and their placement rela-
tive to the plant dynamics.

To demonstrate the effect of B and C on achievable per-
formance, note that

G s
sI A

H s( )
( )

( )=
-

1
det

,

where the polynomial matrix H, which is a polynomial in the
case of a single-input, single-output (SISO) system, is given by

H s B sI A C( ) ( )= -adj

and adj det( ) [ ( )]( )sI A sI A sI A- = - - -1 is the adjugate of
sI A- . Consequently, the zeros ofG are determined by B and
C, and thus by the placement of the sensors and actuators.
The type of sensors and actuators (force, velocity, position,
etc.) affects the zeros as well, whereas the order of each en-
try ofG is determined by pole-zero cancellation. In addition,
for MIMO systems, the placement of sensors and actuators
determines the coupling between inputs and outputs.

To determine the relative degree of the entries of G, note
that, for large| |s ,
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Figure 15. The arrangement of disturbance, control input,
measurement, and performance signals for this acoustic duct
disturbance rejection problem corresponds to the ideal architecture
shown in Fig. 14.
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which shows that the nonzero entries of CB correspond to
the entries ofG that have relative degree 1. As already noted,
a minimum-phase SISO transfer function with relative de-
gree 2 or less and open left-half-plane asymptotes can be un-
conditionally stabilized. Unconditional stabilizability in the
MIMO case is more complex; however, in certain cases dis-
cussed below, it can readily be guaranteed.

Accessibility refers to the extent to which sensors and ac-
tuators are able to effect control over the plant dynamics.
There are two extreme cases of interest. In terms of the state
space model, full-state sensing occurs when the number of
sensors is equal to the number of states and C is
nonsingular, which implies direct sensing of each state. This
is equivalent to the assumption C I= in a suitable basis.

On the other hand, full-state actuation occurs when the
number of control inputs is equal to the number of states
and B is nonsingular, which implies direct control of each
state. This is equivalent to the assumption B I= in a suitable
basis. Full-state actuation occurs in fully actuated force-to-
velocity control. A nonlinear example is Euler’s equation for
spacecraft angular velocity with three-axis torque inputs
given by

J J u&w w w= · + .

An important result in modern control theory is that every
linear system with full-state sensing can be unconditionally
stabilized. This property is achieved by the linear quadratic
regulator (LQR), which has infinite upward gain margin. This
property is nontrivial since it is not obvious how to achieve
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Figure 16. These plots show simulated and experimental data for an acoustic duct active noise suppression experiment. The data for the
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this property using pole placement techniques. In contrast,
SISO plants with relative degree 3 or greater or right-half-
plane zeros cannot be unconditionally stabilized.

On the other hand, suppose that a plant is fully actuated
with B I= but not fully sensed. Then an unconditionally sta-
bilizing controller can be obtained by applying LQR synthe-
sis to the dual plant( , )A CT T and implementing the resulting
LQR gain K in the control law u K y K CxT T= = to obtain the
closed-loop dynamics matrix A K CT+ , which is asymptoti-
cally stable since it has the same eigenvalues as the asymp-
totically stable matrix A C KT T+ . Although the solution
obtained by this dual procedure is not optimal, it does repre-
sent an unconditionally stabilizing controller for the
full-state-actuation output feedback problem.

When full-state actuation is not possible, we can consider
an accessible degree of freedom, which has the form

mq c q q k q q u&& ( ) & ( )+ + =

corresponding to force-to-position control. This plant may
be unstable and nonlinear with position-dependent damp-
ing and stiffness. A classical example is the van der Pol oscil-
lator, which has limit cycle dynamics. An accessible degree
of freedom has low dimensionality and limited phase varia-
tion; in the linear case with position measurement, it has rel-
ative degree 2.

An accessible degree of freedom is fundamentally easy to
control under full-state (position and velocity) sensing by
implementing high-gain SISO position and rate loops. Adap-
tive PD or PID controllers are highly effective, even in the
nonlinear case, which shows the power of full-state sensing
(but not necessarily PID control per se) (see [27]-[29] and
Fig. 17). Consequently, it may be desirable to render each de-
gree of freedom accessible through sensor/actuator place-
ment or through control algorithm decoupling. However,
both of these approaches depend on accurate modeling.

Multiple sensors and actuators provide greater accessi-
bility to the plant dynamics. In fact, the extreme case of SISO
control provides the smallest number of sensors and actua-
tors relative to the plant dynamics, which is precisely the
case considered in classical control. From an achievable
performance point of view, SISO control is the most chal-
lenging, whereas multiple sensors and actuators provide
the potential for improved achievable performance. The dif-
ficulty of MIMO control (except in the extreme cases of
full-state sensing and full-state actuation) lies in synthesiz-
ing high-performance yet nonconservatively robust
multiloop controllers, an often challenging problem in prac-
tice despite 50 years of linear state-space control theory.

Control Tuning
There are numerous impediments to control tuning, which
refers to the choice of a suitable algorithm and tuning pa-
rameters to achieve desired performance and robustness.

Accessibility and authority issues have a severe impact on
tunability through the presence of phase variation and satu-
ration. In addition, open-loop instability, modeling uncer-
tainty, and nonlinearity also play a critical role.

Open-loop instability exacerbates virtually every aspect
of control tuning. For example, empirical modeling, that is,
identification, requires extrapolation from stable regimes so
that control tuning must rely to a greater extent on analyti-
cal modeling. In addition, stabilization itself is impeded by
excessive phase variation, plant dimensionality, zeros, rela-
tive degree, delays, and authority limitations.

Modeling uncertainty impedes control tuning by reduc-
ing the ability to perform model-based synthesis. In analyti-
cal modeling, uncertainty arises from unknown physics,
high sensitivities, and unmodeled subsystem interaction. In
empirical modeling, uncertainty results from lack of repeat-
ability, ambient disturbances, unknown model structure,
and risk and cost impediments to detailed testing.

It is important to stress that analytical modeling is valu-
able for the development of a suitable control architecture
and associated control hardware. These phases of control
engineering often occur before the system hardware is avail-
able for component-wise or end-to-end empirical modeling.
On the other hand, empirical modeling is desirable for con-
trol tuning, which may depend on modeling details that are
difficult to obtain from first principles. Most importantly, in
each phase of control engineering, it is necessary to deter-
mine which modeling information is needed to achieve per-
formance specifications and robustness guarantees.

Nonlinearities impede control tuning when they are diffi-
cult to model and identify, and, even when they are well
modeled, they may be difficult to account for in control syn-
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single-degree-of-freedom plant with position-dependent damping.
Under full-state (position and velocity) sensing, this plant can be
adaptively stabilized without knowledge of the damping coefficient.
For details, see [29].



thesis. Although some uncontrolled plants have reasonably
linear dynamics, sensors and actuators invariably intro-
duce nonlinearities. For example, saturation is unavoidable.
Global nonlinearities are generally smooth (linearizable)
and have an increasing effect over a large range of motion.
These nonlinearities are often geometric and kinematic in
origin, involving trigonometric and polynomial functions.
On the other hand, local nonlinearities are often nonsmooth
(not linearizable) and have a predominant effect over a
small range of motion. Typical local nonlinearities include
dead zone, quantization, and backlash.

A classical example illustrating difficulties in control tun-
ing and performance limitations is the inverted pendulum
on a cart (see Fig. 18); for details, see [17]. This plant is espe-
cially difficult to control when the control inputu is the cart
forcing, the measurement y is the cart position, the distur-
bance w is the pendulum torque, and the performance z is
the pendulum angle. In this case, the linearized transfer
functions fromw to z, fromw to y, fromu to z, and fromu to y
are given by

G
m M

mML s p s p

G G
ML s p s p

G

zw

yw zu

yu

=
+

- +

= =
-

- +

2
0 0

0 0

1

( )( )

( )( )

=
- +

- +

( )( )
( )( )

,
s z s z

Ms s p s p
0 0

2
0 0

where the pole p0 and zero z 0 are given by

p
g
L

mg
ML

z
g
L0 0= + =, .

It is shown in [17] that, because of the presence of the
right-half-plane pole and zero inGyu , only small stability mar-
gins are achievable under linear time-invariant control. The
achievability of limited stability margins implies that model-

ing uncertainty is an impediment to control tuning for ro-
bust stability. Although alternative sensor/actuator ar-
rangements can alleviate this difficulty, this example shows
that the placement of sensors and actuators has implica-
tions for model accuracy requirements. The additional pres-
ence of nonlinearities and authority limitations further
exacerbates the difficulty of control tuning. Therefore, it is
the presence of multiple factors involving accessibility, au-
thority, instability, uncertainty, and nonlinearity that render
the control tuning problem difficult.

An additional impediment to control tuning is sensor
noise. As discussed earlier, there is a crucial distinction be-
tween full-state feedback and output feedback in terms of
achievable performance and robust stability. However,
full-state sensing per se is not as strong a requirement when
sensor and disturbance noise are absent. This point has al-
ready been made in terms of singular estimation theory
[20]-[22]. Alternatively, consider the discrete-time system

x k Ax k Bu k

y k Cx k

( ) ( ) ( )

( ) ( ).

+ = +

=

1

Assuming( , )A C is observable, it is possible to solve exactly
for x k( ) using a window of past measurements
y k y k n( ), , ( )K - and control inputsu k u k n( ), , ( )- -1 K . With
these data, the state x k( ) can be reconstructed exactly, and
full-state feedback control can be used just as in the case of
full-state sensing; that is, C I= . The technique of solving for
x k( ) in terms of a window of measurements is equivalent to
implementing a deadbeat observer. Thus, the availability of
noise-free measurements is ultimately equivalent to a
full-state-feedback control architecture. However, noise-free
measurements are not available in practice. The analogous
approach in continuous time requires differentiating y mul-
tiple times, which is not feasible in the presence of plant and
sensor noise. These observations imply that noise is a major
impediment to achievable performance.

So What Makes Some Control Problems Hard?
The above discussion shows that each phase of control en-
gineering presents impediments to the effectiveness of con-
trol technology and suggests that success depends on
multiple critical aspects. In the control strategy phase, it is
important to assess the need for control in terms of perfor-
mance, cost, and risk. In the control physics phase, it is es-
sential to exploit high-leverage control physics. In the
control architecture phase, it is important to design a sen-
sor/actuator/disturbance/performance architecture that
balances robustness, performance, and hardware require-
ments. In the control hardware phase, it is essential to pro-
vide adequate accessibility and authority. And, finally, in the
control tuning phase, it is necessary to account for instabil-
ity, nonlinearity, control-loop coupling, and uncertainty, as
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Figure 18. The inverted pendulum on a cart with cart control
forcing, cart position measurement, pendulum torque disturbance,
and pendulum angle performance involves linearized transfer
functions that are both unstable and nonminimum phase, rendering
the system difficult to control.



well as their mutual interaction. In addition to these five
phases, there are many important subissues, such as soft-
ware engineering, fault tolerance, and hardware maintain-
ability, which I have not addressed here.

The control engineer must be aware of engineering trade-
offs throughout all of these phases. In contrast, academi-
cally oriented research papers typically focus on a limited
range of issues. The ability of the research community to ad-
dress the full range of issues that arise in control engineer-
ing is crucial to making theoretical control research more
relevant to technology, thereby closing the gap between the-
ory and practice.

So, what makes some control problems hard? Our holis-
tic point of view is that a control problem is hard when multi-
ple impediments occur simultaneously. Constraints on
physics, architecture, accessibility, authority, nonlinearity,
instability, dimensionality, uncertainty, and noise can often
be overcome without much difficulty when they are effec-
tively the only operative constraint. However, when multiple
constraints are present, the control problem suddenly be-
comes vastly more difficult. Fortunately, engineers are often
able to circumvent this situation by designing out the diffi-
culties through plant redesign, improved hardware, benign
architecture, and more detailed modeling. In other cases,
however, the control problem is intrinsically difficult, and
no amount of redesign or expenditure of effort can make the
difficulties disappear. It is in these cases that we look toward
innovative basic control research to extend the capabilities
of systems and control theory to overcome the challenges of
truly difficult control problems.
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