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“Mind the gap. Mind the gap.’’ 

II a recent survey 111,27 researchers provided inputs con- 
cerning the state of research i n  systems and coiitrol and 
were asked to give their opinions on the m j o r  challenges 
facing thc control community. Among thc challenges 
identified was the need to bridge the gap between theory 

and practice. 
In Lhis article I speculate on sonic reasons for the exi~tcncc of 

the gap and provide concrete suggestions for bridging it. Spe- 
cifically, I alii inlerestcd i n  the Sollowing questions: 

1. What is the evidence for the existence 0 1  lhc gap’? 
2. What is lhe extent n i the  pip? 
3. What is the significance d t h e  gap Cor systems ;ind control 

4. What factors have contrihuled to the gap’! 
5. What technical research problems are pertinent to bridging 

6. Why is il important to bridge the gap? 
First, a few disclaimers are i n  order. My perspective on these 

questions is froin acruspace engincering and reflects my experi- 
ences in academia and industry. Furthermore. this nrliclc is not 
intended to he either a defense or a critique o l  “academic” rc- 
search in control technology for aerospace engineering or any 
other branch of enginccring. 

According to my dictioniiry, “acadeinic” incans “very 
learned hut inexperienced i n  the world of practical reality.” This 

research‘! 

the gap’? 

is not an accurate description oracademic researchers. Although 
:ill hut one of the survey respondents 11 J hold positions in acade- 
mia, many have exlcnsive industrial and governincnt experi- 
ence. Furtherinorc. several of the respondents in ( I  I are strongly 
in favor ol‘aggrcssive cfforts Lo bridge the gap. 1 am encouraged 
by their views lo  present some concrelc suggestions of my own. 

Pinally, the views I present arc intended to suggest how the 
academic side might contribute to bridging the gap hetwecn the- 
ory and practice. However, tlicrc is much the industriiil side can 
do as well to solve this problem. I helieve there is a correspond- 
ing burden on control proclitioners lo articulate their needs and 
provide guidance and feedback to the research communily. 

Evidence for the Gap 
1 will comment only hriecly on the lirst three questions. Al- 

though inany control rescarchers and practitioners would proha- 
bly agree that a Lheorylpracticc gap exists, the extent of the gap is 
the subject o i  inucli debate and call only be cstiinated by anec- 
dolal evidence. Chwacterizing and quantifying this gap would 
require nontrivial eflort and is bcyond the scope or this article. 
Although there w e  researchers who are quick to point out suc- 
cesses oE modern systems and control theory rescarch, 1 person- 
ally believe that lhc gip 011 the whole is large and warrants 
serious introspecliiin by thc research community. 

The significance of the gap Lor systems and control research 
is ii complex and sublle issue. Here I note that ( I )  basic research 
has always benefited from the influence of applications, while 
(2) in llic long run, the most important developments are those of 



hesic research that have deep and long-lasting inllueoce, leading 
to the conclusion that (3) a bdance between theory and applica- 
lions is essential. Unfortunately, the timc constants for basic se- 
search and useful applicalion are gciicrally quite different. In 
fact, new idcas can require a long time from conception to cx- 
ploitation, while the time pressures of applications can divert at- 
tcntion froin potentially valuablc long-term solutions. 

Next, I’ll discuss some factors that have contributed to thc 
gap’s existence (queslioo 4). Thcn I’ll exaiiiinc various systems 
and control issues and their relevance to bridging the gap (ques- 
tion 5 ) .  Finally, 1’11 end by commcnling on thc importiuice of 
closing the gap (question 6). 

Why Does the Gap Exist? 
To shed some light on the existence of tlie gap, it is wortli- 

while to spcculale on some of the reasons for its existence. 

1. Dn control citgineers need inndcrn sysiems a n d  
control thcory? 

Generally, new technology is used in practice only when 
there isaclearcostorpeifiirmance benefit.’lhcrc;irelwosides to 
technology development, namcly, lechnology push and market 
pull, whcre “market” can rcfcs to either commercial or military/ 
government applications. In  aerospace technology, the latter is 
usually the technology driver. Although necessity is often called 
the mother of invention, the extent lo  which necessity contrib- 
utes to bringing about truly new developments is a murky ques- 
tion. (Some inventors believe that neccssity is actually tlic 
daughterof invciitioii [21,p. 125.)Despileclearnecds, new tech- 
nologies often require a gcncration (or more) to mature to the 
poinl of practical uscfulness. The reality is surely a combination 
of both push and pull. 

I personally place the pointcr to the side of tcchnology pusb: 
Engineers oftcn invent the possiblc and look For opportunities 
they can develop and exploit. The most important and funda- 
mental developments areofteninwardly motivatcd. Aiter all, the 
Wright brothers were not funded by thc Air Force, and them was 
no pressing need for miinncd flight. Nor was the transislor devel- 
oped out of necessity. In fact, its potenlial wasn’t even recog- 
nized at firs1 in the U S .  (although il was in Japan). As another 
example, the mathematician G. I-Iardy took satisfaction in the 
uselessness of nuniber thcory, yet few technologies are hotter to- 
day than data encryption. On the other hand, some of the most 
important conceptual developmcnts have arisen from the desise 
to address real problems. Fourier analysis arose from heat flow 
problems for which Fourier was ridiculed, and thermodynamics 
arose from the boring of cannon [ 3 ] .  Yet physicists are often 
called on to contribute to revolutionary techiiologies such as ra- 
dar and nuclcar weapons. 

In control engineering practice, “need” is a nebulous concept. 
Rarely do engineers consciously design and build a system that 
truly cannot bc controlled with existing concepls. In many appli- 
cations, the plant can be redesigned and additional seiisors and 
actuators can be implemented to rcnder the control problem 
more manageable. Fully actuatedmechanicirl systems are agood 
exampleoftbis kindofdesign. Other brute force solutions can hc 
devised as well. Forexamplc, pcrfosmance specifications can be 
lowered, and hardwarc and manpower budgets can be increased 
(or, more commonly, projects can be canceled), thus eliminating 
opportunities for new and innovative, and tliercfore risky, ideas. 

At tlic same timc, the opporluiiities affiirded hy conceptual 
a d v ~ ~ ~ c c s  inconlrolasedifl‘icult togu~sp .  ltcim bedifficultforrc- 
searchers to demonstrate and quantify thc advantages o l  a new 
idea in control whese the dcsign proccss is complex and these ase 
tiumerous tr:idcoffs that inksact in intricate wiiys. 

2. W h a t  a r e  the risks ofncw control methods? 
In many ;ipplicetions. especially i n  aerospace, thc control sys- 

tem is critical to system operation. This is ii two-edged swosd. On 
the onc lnmtl, control system technology is essential and therefore 
will command high priority when it is required. On the other hand, 
i f  the control systcm fails, the system may be lost, and thus appli- 
cations in which human lives os grcat cost is at stake call for well- 
tested methods over novcl tcchniques. Risk reinforces the inestia 
assnciatctl with the acceptance of ncw contrul technology. 

Nevertheless, there are many potential applicalions of coiitsol 
technology that are not casily designed ;way. These include 
llight control with unusiial configurations (cantcd tail fins, 
oblique wings, tailless aircraft) and nontraditional control appli- 
cations (compressor and comhustor control, active vibration 
control, high angle of attack flight). However, each of these q -  
plications entails risk and thus, (lcspitc potential cost and perfor- 
inancc advantages, inust undergo cxtciisive development bcfore 
it caii be transitioncd to practice. 

3. How do publicatinns contribute to ihe  gap? 
Bridging tlic gap, fsnm tlie researcher’s pcrspective, requircs 

that new ideas becoinmuiiicatcd toengineers who are inaposilion 
lo apply them. I’lllbcus on publishing, whcre there are three main 
avenues, namely, journal papers, conference papers, and books. 

Much effort in acadctnia is devoted to publishing injournals, 
which are striclly limited to demonslfiibly new ideas. Consc- 
qucntly, journal papers arc extremely terse and arc generally 
writtcn Ens other researchers, not practitioners. Authors orjour- 
nal papers arc rarely given much spacc to provide background 
and sell-contained, pedagogical exposition that could render 
their papers inure readable by practitioners and nonspecialists. 
This avemie is also slow, typically taking thrcc ycars from 
submittal to puhlication 

Conference publicatinns are mose timcly hut are even inore 
tersc than journal papers (they o k n  serve as summaries o l  re- 
sults), and they arc not widely available to engineers who do not 
attend thc conrerence. Howcvcr, CD ROM proceedings are 
much more accessiblc than bulky hasd-copy versions and should 
allow larger distrihulion. I personally hope that once paper pro- 
ceedings are eliminated, authors can be allowed more publishing 
spacc to develop iicw idcas. 

Books provide an opportunity for researchers to expand and 
illustrate new concepts at great length, which is not possible i n  
journals. Few books written by academic rcscarchcrs, however, 
consider sufficient engineering detail to be directly usable to 
praclicing engineers. Some “how to”contso1 books are available 
on spccialized topics such as motor servos, but fcw of them truly 
advancetlieslaleoTtheast incontrolpractice(noris it theirintent 
to do so). 

4. How can publications bc  rendered mnrc  usable? 
A control enginccr considering ii new control algorithm lor a 

potential iipplication needs to know the answers to the following 
questions: 
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1. What problcms does the control algorilhm address (stahili- 

2. ’To what class of plants does the algorithm apply? 
3. What modeling information is needed to design and tunc 

4. What is the structure o l  the control algorithm? 
5 .  How is the controller tuned? 
6. What sensorlprocessorlactuator hardwarc is nccdcd to im- 

plement the controller? 
A satisfactory conlrol paper will provide answers to all these 

qucstions in a clear and accessible manner. If this inforination is 
buried in the paper, the reader may have to expend considerable 
cffort and thus may become discouraged rrom further consider- 
ing the method. For example, if lhe control law is given in trans- 
formed variables,  the  potential uscr must unravcl t hc  
traiisforniatioiis to determine the roles of the various parameters. 
Although this information may be a detail to the writer, it is vital 
to thc practitioner. 

As a furlher example, a practitioner may he interested in a 
special case of a general procedure. The reader may not have 
time to rccognizc the applicability of thc proccdurc or to undcr- 
stand how the result specializes to useful, special cases. 1 person- 
ally likc the “closcd-loop” or “sandwich  model of paper 
writing: concrete, abstract, concrete. That is, motivate the paper 
with a concrcte or specific problem, work out thc thcory in an ab- 
slract or gcncral coiilexl, and, rinally, relurn to the concrete or 
spccific problem. In general, a paper is most useful to a control 
practitioner whcn it providcs and dcmonstrstcs operational pro- 
cedures for implementing the methods under conditions that arc 
explicitly stated 

The following remarks are intended to emphasizc the rcle- 
yBncc of various topics and issues that I believe have signifi- 
cance Tor bridging the gap hetween theory and practicc. Many of 
these topics and issues have been extensively studied by the sys- 
tems and control community, while others have not. My ohjcc- 
live is to emphasize those aspects that may have some bearing on 
the gap. 

zation, dislurhance rejection, tracking, ctc.)? 

the controller? 

Bridging the Gap: Modeling Issues 

5. Don’t trivialize stabilization. 
Although it sccms trivial to say so, unstable plants arc much 

more difficult to control than stable plants. Yet unstable plants 
are often viewed simply as linear plants with oiic or more open 
right-half-planc polcs. (A plant with a chain o l  integrators or 
imaginary poles is also onstable, hut less seriously,) 

1 helieve the distinctioii between stable and unstable plants is 
vastly imdercmphasized in the research literature. An unstable 
plant provides almost n o  opportonity for on-line identification 
and thcrcrorc niust rely heavily on analytical modcling and cx- 
trapolation from stahle regimes. Unstable plants are unforgiving 
in the sense [hat once large deviations occur, saturation limits 
inay prevent recovery. Furthermore, linearizing a nonlinear UII- 

stable plant may obscure the actual saturation rccovcry limits, 
which areinvariahly smaller than Lhoseofthe linearized model. 

6. Distingiiish between modeling for control architecture 
design and mndeling for controller implementation. 

Control architecture design and controller tuning are strongly 
interrelated, but they are effectivcly distinct t;uks i n  control en- 

gineering praclice. Control architecture dcsign rcfcrs to the se- 
lcction of sensors and actuators that need lo be specified to 
achieve a control objective. The dcsign of the control architec- 
ture and associated hardware usually depends nn a solid under- 
standing of the relevant physics along with detailed analytical 
modcling. In fact, analytical inodeling at this stage in the control 
engineering process is extrcmcly cost-cffcctive since it reduces 
the need to fahricate and test multiple prototypcs. 

On the other hand, control architecture design is often only 
loosely coupled with coiitrollcr implcmentation, that is, the 
choice of the coiitrol algorithm and its tuning (parameter sct- 
tings). In fact, modeling for controller implcmcntation usually 
requires information that is distinct from the information needed 
for control architecture design in both type and detail. Forcxam- 
ple, although finite-element modeling and compuiational fluid 
dynamics may provide important information fin sensor and ac- 
lnator design and placemcnt, thcse modeling techniques usually 
cannol provide lhc type of detail nccdcd for controller imple- 
mentation, such as plant phase at crossover. 

The distinction between modeling lor control architecture de- 
sign and modcling Cor controllcr implcmentation clarifies thc 
role of distributed parameter models in control design. Such 
models provide a starting point for the furnicr but havc littlc relc- 
vancc for the latter. 

None of tliesc remarks are intended to minimize the impor- 
tanceolcithcr analytical or data-based modeling in control cngi- 
neering. In fact, holh kinds ormodeling arc cxtrclncly important, 
and they arc thc responsibility of thc control enginccr. Howcvcr, 
it is important to recognize what modeling information is needed 
and knowable at each stage of the control engineering process. 
At early stagcs in control architccturc dcsign, thc modeling may 
he  largely analytical and hypothetical, wlrerci~s controller imple- 
mentation must be strongly linkcd to thc hchavior of a spccific 
hiirdwarc rcalization. 

7. Rediice the dependence of analytical and data-hased 
modeling for controller implemcntation. 

As discusscd above, analytical modeling is essential and 
valuable for control architecture design, hut il has serious short- 
comings for controllcr implcmcntation. Although control archi- 
lecture design often consumes the bulk of coiitrol engineering 
effort, advances i n  control algorithms can rednce the need for 
both analytical and data-based modeling for controller imple- 
menlalion. 

The ob,jective of robust control is to achieve perlormalice for 
a givcn lcvcl of modcling unccrtainty; huwcvcr, robust control 
Fails to rednce the dependence on eilher analytical or data-based 
modcling significantly. Although robust control methods do not 
require a precise model of the nominal plant dynamics, they do 
require that all uncertainty be quantified, and thc construction 
andverificationofsnch adetailed uncertaintymodel may require 
substantial analysis of prcdiction modcls and test data. 

The main drawback of robust conlrol is that il treats uncer- 
tainty as a static qnantity, which forces the control cnginecr to 
sacrificc pcrformancc for robustness. Ultimatcly, robust control 
requires that the controller gains be decreased to account for un- 
certainty, thus reducing performance. The inability of a robust 
conlroller lo learn makes this tradeoffunavoidahle. 

Finally, control engineering must accept the possibility that 
any givcn phot  can change in an unexpected and unpredictable 
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manner during operation. In fact, seemingly small physical 
changes can have a large effect on plant response. For exeiiiple, 
as luhrication dissipates, bolts loosen, mass distribution 
changes, and components wear, the plant dynamics inay changc 
significantly. Thesc unprediclable changes are the responsihility 
of the control engineer. lndccd, a major reason Cor implemcnling 
a feedback control system i s  to achieve performance i n  the pres- 
ence of nnccrtainty, and not all unccrtainty caii be characteri7.ed 
or predicted. 

8. Exploit identification for controller implementation. 
No matter how well analytical modeling can he pcrSorined, 

some identification is  always needed. Real hardware abounds 
with unmodelablc effects and high sensitivities. In addilion, 
modeling a systcm iiipieceiiiealfarhion i s  of limited use for con- 
lrollcr implemcnl&m. since components can interact dynanii- 
cally in complicated ways due to spurious fecdhack paths and 
unexpectcd interactions. The need Cor idcntification and hard- 
ware testing i s  crucial, and end-to-end identification i s  desirahle 
whenever possible. Obviously, identification i s  only meaningful 
after the systcm has been construcled and data are obtained. 

The ability to perform identification depends on the natiirc cif 

the plant as well as on thc environment. Idcntificalion uf the un- 
controlled plant i s  generally not feasible if the plant i s  opcn-loop 
unstable. Tn that case, a stabilizing controller i s  needed, which 
inay require analylical modeling or adaptive methods. In addi- 
tion, the presence of ambient dislurbances can liinil lhc ability to 
identify and adapt. Io this case, idcntilication accuracy may be 
low and the results of  the idcntif'ication may bc nonrepcalablc. IS 
ambient disturbances can be climinated, idcntirication i s  much 
casier. (Engines can be turned off, whereas turbulent wind noise 
around a flying aircraft caiinot.) Identificalion and adaptive sta- 
bilizalion in the prescnce of exogenous disturbances presents a 
severc challenge to control engineering. For this problcm, the 
control engineer i s  forced to rely more heavily on analytical 
modeling. 

Numerous issues of theoretical and practical significance are 
associated with identification. Since identification i s  difficull in 
the prescnce of fast and slow dynamics, ii delta-operator identifi- 
cation theory would bc useEul 141. Choosing good identificalion 
signals, especially i n  the presence of ambient disturbances, i s  a 
problcm of practical interest. In  some sciise a good identilicetion 
signal i s  "far" from a disturbance signal. Coding ideas may be 
useful in this regard. 

Nonlinear identification i s  largely an open area o f  research 
with considerable practical importance. Since a l l  rcal systems 
are nonlinear, i t  i s  overly simplistic to apply linear idenlil'icaiion 
methods and expect that any such method will produce a man- 
ingl'ul linear model. I suspcct that difficulties observed with lin- 
ear identification methods are due lo unniodeled nonlincarities 
as muchas sensor anddisturbance noise. We must also recognize 
and admit the possibility o f  systems that have nonrcpeatablc be- 
haviorduc lo sensitive depcndence on initial conditions, ambient 
disturbances, and complex dyoainics. 

Finally, slatistics has been underutilir,ed by (he conlrol com- 
munity a s  a whole for analyzing identification and pcrformancc 
data, although statistical malysis his  been sccing increasing in- 
terest i n  processconlrol. The analysis olany data withoutcarcful 
statistical analysis i s  naive at bcst. 

Bridging the Gap: Control Issues 

9. Respect the distinction between continuous time and 
discrete timc. 

A cruel fact ofcontrol engineering life i s  that m o s l  of the sys- 
tems we need to conlrol operate in coiltinunus time whilc the 
controllers we implement on digital computcrs operatc in dis- 
crcle time. It can be dirficult to reconcile the continuous and the 
discrete; sometiincs lhey behave like oil and waler. Conse- 
qncntly, the inlerfacc helwecn contiimous- and discrete-time 
systcms i s  a lricky business, and i t  can liave a significant cffect 
on control syslein performance. Tlrc literature abounds with 
transformations betwecn coiititiuous-time and discrete-timc dy- 
namics such a s  lustin's, exponcntinl, and hilinear. However, 
lhcse are increly convciiienccs that don't address stahility and 
pcrformancc in a reliable manncr. 

The continuous/discreteiousI(liscrete gip is  hcrc to stay, sincc lherc i s  no 
revolution in analog controller technology oil the horison. Fur- 
llierniore, even i l  we could implcmcnl continuous-time coiitrol- 
leis, our identification incthods opcrale on discrete-timc data to 
produce discrete-time models. Identification in continuoils lime 
is  not a scrious prospcct. So willi analytical modeling and classi- 
cal control in conliimous time and with idcnlilication in discrete 
timc, it's n o  surprisc that thc control literaturc often appears 
schizophrenic. 

It i s  lernpting to believe lhat for sul'ficicntly fast computers, 
discrete-timc systems am be treated as continuous-time systcms. 
Howcvcr, there arc fundamental distinctions bctween discretc- 
time and conlinuous-lime systems. For example, discrctc-timc 
control has an inhcrenl hindwidth limitation iiiiposcd by the 
sample rate. A delay in continuous timc is  an irrational exponen- 
tial function, whereas in discrctc time i t  i s  riitinnal (one nice hen- 
c l i i  of discrete-time models). In addilioii, a nilpotent linear 
discrctc-limc syslem has finite scttling lime behavior, whereas 21 

linear conlinuous-time syslem cannot settlc in linitc time. (A  
lime-invariant conlinuous-lime syslein that seltles in Sinite time 
necessarily has non-l.ipschitzian dynamics IS].) Finally, the bc- 
havior o f  the systcm betwccn sample instants can affect closed- 
loop pcrlhmancc. Il'the sample interval i s  short, the intersample 
behavior should be henign Whether this effect can be ignored in 
practice i s  an open question. 

There arc Suiidaincnlal obstacles in sampled-data control lliat 
must he treated carefully. First o f  all, sampling and rcconstruc- 
tion devices, which provide thc interfacc between the continu- 
ous-time and discrete-time worlds, have time-varying dynamics 
with inherent limitations. Arbitrarily fast sampling i s  an unrea- 
sonahle expectation since faster hardware merely encourages 
cnginccrs lo consider ever iaster planls or morc coiiiputalionally 
intensive conlrol algorithms. Furthermore, Cast sampling can 
cause numcrical prohlems with poles aggregating near I, The 
dclta operator provides a praclical solulion to this problcm [4]. 
Similarly, zcro-ordcr-hold signal recon~truction is  a timc-vary- 
ing operation lhat produccs spurious harmonics. Suppressing 
thcse effects i s  oftcn required lhrough addition;il Ciltering. 

Aliasing i s  aproblcm that arises duc to sampling. Folding of 
signals and noise i s  an unavoidable cfSect of aliasing, and i t  i s  
rarely nccounled for explicitly in control theories. Aliasing dso  
causes phasc shifts iit lowcr frequencies that caii destahilim a 
system It is important in practice to dcterininc sample rates and 

Ilecember 1999 67 



design anti-alinsing filters with niiiiiinal phase lag to supprcss 
thcsc effects. 

Nonlinear systcms are difCicull lo  trmslate clcanly into dis- 
crete time. For example, finite escape time can occur in continu- 
ous time, but i t has no direct countcrparl in discrcte time. 
Capturing nonlincar physics in discrctc time i s  a iiontri\,ial chal- 
Icnge, especially sincc our training and iiitiiitioii are based in 
continunus time. Exacl di etization of some coiitiiiiious-tiiiie 
Inodcls i s  discussed in 161. 

10. Distinguish roal-time computing from off-line computing. 
Many of the rcspondcnts polled in thc survey [I I discussed 

the ondcrutilization and potenlial cxploitation of  rcccnt ad- 
vances in computational power. One application of powerful 
computers is  to solve very largc order Lyapunov and Riccxti 
equations. This i s  reminiscciit ofthc "big drum"approach: Prim- 
itivc tribes wishing to communicate with l l ic uutside world 
might conceivcof ever largcrdrums. These arc examples ulmis- 
guitlcd technology scaling. 

The usefulness of any computation must bc cvalualed in l igli l  
of the accuracy of the underlyiiig data. Most nicasiircnicnls arc 
good to only ahnut 0. I W ,  nnd mxny paramelers (not to mcntion 
physical cffccts) are significanlly more uiiccrtiiiii. (A stein werii- 
ing on the unrcliability of tlatii i s  given in Chapter 27 of 171.) 
M, dssive ..' 
models may havc qualitativc valuc for insight, but the actilal 
numbers produced wil l likely havc little cnnncctioii with reality. 
(Ifinsight i s  the goal, this i s  not n problem; it'siust inipnrtant lo  
keep thesc goals distinct.) Computing with unccrlain data hi is 
been largely a neglected tupic in the scientific community, al- 
lhough tlie robust control community (to its crcdit) has given it 
serious allention. 

In control engineering, large-scale computing i s  relevant Ibr 
plant tilid control architecture design, which i s  largely a qualita- 
tive and hypothetical process. Such computing i s  pcrforined olT 
line and uftcii occurs before the plant and control system arc con- 
structed. This computing i s  usually performed fur the sake (if 

modeling, hut i t  i s  suspect as a viable approach to controller im- 
plementation. On the other hand, controller implementation caii 
he enhanced by the capability Tor rea-time, on-line computing. 
ldentification and performance assessment during control sys- 
tem operation for adaplivc control i s  one of  the main hencfici;i- 
ries of significant tcal-time computing ciipability. 

There i s  no real tradeofrhetwecn on-line and off-line comput- 
ing. They are distinct tasks that use different kinds of informa- 
tion for different purposes. Off-line computing i s  based oii static 
and usually limiled inlormation about the system, wlicr~as on- 
line computation has continual access tu data from the truc sys- 
tcm and its infinitely rich physics as it behaves in possibly unprc- 
dictable ways. 

11. Always recognize saturation. 
Often thc first nonlinearity encountcrcd by tlie control engi- 

nccr is saturation. (Here I am rcferring to amplitude saturation. 
The second nonlinearity encountcred i s  rate satoration.) 11 i s  a 
universal nonlinearity that wi l l  ncver be circuinvciited by any 
tcchnological developmcnt. Saturation i s  a lincarizable IIOII- 

linearity that has a global impact on tlic system but has little cf- 
fect on the local behavior of the systcm. 

computation based 011 erroneous data or hypolhclical 

A control cngirieer who has invested in control systcm herd- 
ware i s  nftcn inlercslcd in achieving tlie bcst possible perfor- 
inaiice from (he chosen h;irdwarc. Whether or not fuel or cnergy 
constraints arc presenl, this goal may require that the acluittors 
opcratc at or near saturation Icvels. Hcncc saluratiun limits arc 

wily reginns to he avoided, but rather may bc songht 
so as to iiiiixiiiiizc use of  l l ic available control input. 

The dislinclion between stable and unstable systems i s  im- 
portanl when addrcssing saturation issues. If the plan1 is  open- 
loop slahlc, saturation i s  only an issuc when performance is  
quantified, siticc the zero crmtrol i s  unsaturxled and stabilizing. 
On the othcr Iiand, glr,hal st;rbiliz;ition of plants with right-half- 
pliiiic poles i s  impossible in lhc prcsence of saturation. Thcrc- 
Core, inaxiinising thc domain of iittriiction i s  the primary objec- 
live Tor tilistable plants. Sincc the domain nf attraction i s  
ieccssarily boundcd, a rare disturbance or high magnitude can 
perlurh ll ic state and rendcr the equilibriuin unrecoverable. (Big 

ships.) This problem i s  critical when consid- 
ilback on imsl;tblc syslems. 
rcndcr linearization misleading for unstable 

pliints. Specifically, linearizing a nonlinear iinstablc plant may 
obscure the aclual satoralion recovery limits, which arc invari- 
ably smaller than those of lhc linearized model. 

12. Reeogniac limitations due to sensor noise. 
I t  i s  important to stress that a11 real signals are corrupted by 

noisc, and this noisc limits tlic ;ichievabic performance. Noise 
caii arise Irom the sensurs and al l  associatcd electronics, and its 

e rarely known prior to implementing thc cnn- 
trol system hardware. 111 particular, lhc noise may be due to de- 
l a i l s  o f  grounding and shielding, whose efkcts are difficult to 
predict bciitrc the plant and controllcr have been constructed. 

I%eding back conlrol signills feeds back tlie sensor nuke as 
well. Therefore, i C  thc disturbance is  narrow band but its spcc- 
trum i s  nnt kiiown in advence, a control engineer might be in- 
clined to u s e  a controller with broadband gain. Howcvcr, 
feedhack in a frequency range where the plant disturbance i s  no1 
prcsent wil l amplify sensor noisc. Thus, lhc presence o l  sensor 
noise forces tlic control engineer to l imi l  control gains and bend- 
width. This design issue i s  o k n  ignored in control design theu- 
ries since the sensor noise spectrum i s  rarely known from 
analytical modeling. Purthermorc, in LQG theory, (his con- 
straintisdifficult tolian(llcbecausenarrow-band noiscgivesrise 
tu ii singular estimation problcm. 111 any cveiit, real noisc i s  
surely more iiisidious than idealized noise mudcls. 

13. Emphasize the distilletion hetween smooth and 
nonsmnoth nonlincarities. 

Although linearity over a range i s  an oxymoron. i t  i s  never- 
theless useCu1. However, nonlinear effccts assume greatcr im- 
portancc a s  perlormance requirements become morc stringent. 
Many control methods considcr smooth nonlinearities. which 
are lincarizahle ncarcquilihriaand haveanincrcasing effect over 
a larger raiigc o f  operalion. Geometric nonlinearities in robotics 
are thc prototypical cxeinples olsuch nonlinearitics. Control the- 
mists tend lo think of lhcsc nnnlinearitics a s  being well known 
and iimeiiable tu global translormation techniqucs. 

On the other hand, many control applications arc of a prcci- 
sion iialurc where lhe objective i s  to produce highly accnrale mo- 
tionover small amplitudes. I n  this regime, the nonlincarities tend 
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to be nonsinooth (thal is, not linearizablc) and possibly discon- 
tinuous. Friction i s  ii cnininoii cx;imple of ii nmsinooth nrin- 
linearity. In additiun, nonsinooth iioiiliiicarilies inay possess 
memory as well, forcxamplc, sliction and backlash or hysteresis. 
Hysteretic inonliiicaritics are usually semistable subsystem [ R I  
with multiple equilibria where subsystem convcrgcnce i s  fast 
relalive to the remaining system dyniimics. The incmory charac- 
tcrislic i s  inerely the lrajectury-dependent set o f  equilibria thal 
lhe subsystem converges lo  during quasi-slatic upcralioii. Thc 
phase lag nature of such nonliiiearitics renders theiii polentially 
destabilizing eveii iil low sigiial :impliludes. 

Cliissical control theory discusses both smooth and non- 
smooth nonlincarities with iiii emphasis on the lormcr through 
absolute stability theory. However, nonsinootli nonlinearities 
seem lo be iiiorc prcvalenl in applictitions. In Pact, while largc- 
iimplilude motions can often bc slowed down without major loss 
of performance (and this is  oflcn done i n  practice), lack ulpreci- 
sion in small-ainplitudc applications can serioosly degrade the 
v~i luc of the system. In other words, large robols can bc opcrated 
more slowly if ncccssary (although it may iiot be desirablc to do 
this), but alack nf precision in it inwhining task illay not he tolcr- 
able at any speed of  operation. 

In general, nun~mootli nonlinciiri~ies arc casier to idcnlify be- 
cause the amplilude range i s  smaller. However, thcsc non- 
linearities come in a wide variety of types, they iiiay bc hidden, 
and thcy inay changc draslically and uncxpectedly over differcnt 
operating ranges. On the other hand, smooth nunlinearitics arc 
dil'licult to identify because of the riingc of opcration rcquired to 
collcct data. Control theorists lend to view siicli nonlinearilies as 
well known because of thc analytical nature ofclassical nicchaii- 
ics. I n  applicalions such as [light control over a largc envelope, 
identification of global nonliiiearitics can he extremely difficult. 

16. Tlicre are no details in control engineering. 
Tlicrc arc no "details" iii control engineering, since cvcn the 

inmt insigniliceiit "detail" niay prove lo be important. All cngi- 
nccring ultimately hinges on dctails, because real systems intist 
he built from rcal, iiiiperfcct (no1 mathematic;il) components and 
int ist opcrale under real (nonideal) conditions. This point holds 
all the inure kir cuntrol enginccring, a complex technology that 
depends on many intcrrclatcd aspects. Thc smallcsl "details" 
such 21s noise, quantiziition. drift, bias, crosslalk, roundi~ff, 
aliasing, nonlinearities (local or global, smooth o r  ~ion~mouth,  
mcmorylcss or noninemorylcss). saluration (amplitude or rate), 
delays (known or unknown, fixedor variable), inotlcl errors, scii- 
sorlactualor dynamics, state cuiislraints, and system changes can 
adversely tifScct conlrol system operation. Tlic gap belween thc- 
ory and praclice can be narrowed by systems and conlrol theory 
that recognizes the iinportancc of  lhese issues (and surely inany 
others) ancl addrcsscs them in a meaningful and usefill way. 

17. Reduce the dependence on modeling. 
I bclicve that one cif the inain culprits i n  the theorylpraclice 

gap i s  the modcling dependence imposed by many control mclh- 
o d s .  111 fact, the modeling requircmenls iniposcd by model-based 
control mctliods constitiitc a severe iinpcdimcnl to the applica- 
bil ity uf modern control thcury. Analytical modeling i s  esscntial 
for control architcclure design, but i t  intist he used with care for 
Ihe purposc OS controller implemeiitation. 

The success o f  PlD tuning inclhods relative to moderncontrol 
mcthods is  ii remindcr of this dependence, while inodel predic- 
tive control bascd on identificatioii i s  cqually successful for the 
same reason. Therelore, i t  scciiis that tlie extcnt to which a con- 
trol inethod i s  used in practice i s  proportional to its iiirxleling re- 
quircmcnts, making this issiiea key factor i n  llieexistencc ofthe 
gap. Tlic first slep toward remedying this prublein i s  to distin- 
guish between modeling for control architecture design beforc 
syslem construction and iiiodcling lor controller implcmentation 
(usually thrnogh identification) after system construction. 

Final Observations 

14. Kemembcr the transients. 
Control theorists lhave afixation with cquilibrioin-related bc- 

havior. Wc seek the steady stale because i t  i s  easy to chariicleri%e 
and provides a safe Ihaven. Lyapunov stabilily lhenry, whiclicoii- 
tinucs to provide arich hiinling ground [ X I ,  191, lids spoilediis. In 
engineering practice, il i s  often Ihc transients that matter. Colli- 
sion avuidaiice i s  a good motivating cxample. But dcaling with 
transienls i s  not easy. As S .  Ulainonccsaid, "The infinite wccan 
do immcdiatcly; tlic finite takes a little longer." 

15. Feedback entails risk. 
Most engineering disciplines are open loop i n  tlic sense that 

errors are iiot amplified. A 20% error in the strength of a strtic- 
tiifill membcr rcmiiins j u s t  hat, and a 50% inargin wil l cumpco- 
sate for the error quite nicely. (The Hoover Dam was designed 
wilh a3x safety faclor fortlioscofyou livingdownstreain. Asfiir 
as 1 know, i t  i s  not stahilized by Sccdback loops.) 111 contrast, 
feedback affccts dynamic behavior, and " s i i i ~ i l l "  errors ciin pro- 
duce arbitrarily largc iindesirahle cffccts (such iis inslahility). 
Attempts Lo guard against this scnsilivity assume that modeling 
unccrteinly i s  known, yct lhe cuntrol system n i i i s t  havc tlie abil- 
ity to copc with unexpcctcd changes iis well. Sincc control sys- 
tenis are often critiail lo operalion with significenl losses in thc 
event o f  failure, tlie ability to cnpe with unexpected changes i s  
the responsibility of the control engineer. 

18. Why bridge the gap? 
I have left this qiieslion for last because i t  i s  the inusl funda- 

incnlal and most dillicult. Thus iar, I have suggested that tlicrc 
arc pragmatic rcasons for closing the gip between theory and 
practice. Thc triinsilion of new idcas and techniqucs Lo applica- 
Lions ultimately justifies the cost of basic rcsc:irch Although 
tlicre certainly have bccn succcsscs in tlie application of inoclern 
idcas lo technology, the penetration of modern idcas in many ap- 
plications seems to he fairly l imited. Serious attcntion to techno- 
logical nccds and constriiinls i s  esseiitial for understanding and 
correcting this state of affairs. 

Ontlieotlicrhand,itisiinportantto keepinmindthatb a m  ,' re- 
search i s  ii icanl to be high risk in terms ofp;iyofl'. Control cngi- 
iiccrs with prujcct deadlines rarely have the luxury of  pursuing 
uncoiiveiitiuiiiil idcas with uncertain return. 1h;it i s  the d e  ofac- 
aileinia, whcrc rcscarchers can instantaneously shin research di- 
rcctioiis mil pursue new idcas without management approval 
(unlike the usual case i n  induslry), or pursue ii novel idea for 
years until i t  i s  sufficiently dcvcloped to havc tcchnological 
v~iluc. What i s  largely lacking i n  the academic setling i s  mutiva- 
tion from reiil applicalions. I believe that exposure to such moti- 
vation, even lo a limited cxtcnl, can havc a significant impact on 



Author's Note 
I'dliketosnytliatiny Ihinkingonthisissur 

was inlluenced by my cxperience i n  industry 
(Harris Corporation, Aerospace Systems Di- 
vision, 1984-9 I )  aiid academia (University of 
Michigan, Aerospace Engineering Depart- 
iiiciit, 1991-present). But I think it would be 
more accurate lo say thiit thc greatcst ioflu- 
ciiccs on my carcer were ( I )  the Erector Set 1 

got when I was seveii years old and (2) [lie tiinc I spent fixing my 
car wlicn I was in college. 

Although tinkering can be valuable, what aiiiales iiie most is 
the ability of the human intcllccl to solve rea-world problerns 
IIir(iugh abstraction, and yet I see that much of what cnginccrs do 
is ruotcd in cmpiricisni. L think that a lo1 ol'enginecring is actu- 
ally an art, hut today's art oRen bccoincs tomorrow's science. 
And what is surprising about this knowledge is its comprcssibil- 
ity. An insight os br~ikthr(iugh that t ~ i k  a lifetime to achieve 
inay heconie common knowlcdgc fur the next generation. The 
greatest iiitelleclual achievcmcnt of al l  limc (the alphabet) is 
kniglit to prcschoolcrs, while the second-grealcst ([he calculus) 
is kiught to high school studciits. 

My latest [avorite qoole is by Thomas Hdison: "Wc don't 
know a millionth of one percent about anything." I th ink  this is 
worlh keeping in iiiiiitl at tlic closc of the inilleiiiiium. 
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