Errata to: Kundu, Cohen, and Dowling, Fluid Mechanics, 6" Ed. (Academic Press, 2016).

- Page 49. Last line of the OUTLINE. Add commas after "Vector" and "Dot"
- Page 106. On the second to last line of Exercise 3.21, replace \mathbf{e}^{\prime} with \mathbf{e}_{x}^{\prime}
- Page 138. In the last two integrals of Eq. (4.51), the differential should be $d V$ (not $d A$)
- Page 223. In Exercise 5.4, replace " $\sigma_{\pi}, \sigma_{\theta}$, and $\sigma_{\theta \theta}$," with " τ_{m}, τ_{θ}, and $\tau_{\theta \theta}$,"
- Page 278. The first two terms on the right side of (6.141) should be grouped together inside parentheses with a coefficient of $1 / 2: \quad \hat{\mathbf{F}}_{j+1 / 2}^{n}=\frac{1}{2}\left(\mathbf{F}\left(\mathbf{f}_{j+1}^{n}\right)+\mathbf{F}\left(\mathbf{f}_{j}^{n}\right)\right)-\ldots$
- Page 289. Within Exercise 6.10. Replace the instruction "Set the value of the stream function at the top to $\psi=1$. ." with "Set the value of the vorticity and the stream function at the top and bottom to zero."
- Page 338. In the figure for Exercise 7.21, the vertical lines indicating the locations of $\pm q_{s}$ need to be spread farther from the y-axis to correctly indicate the singularity locations.
- Page 377 . Fourth line of ordinary text. Replace "... occurs at $\beta^{\prime \prime}$ with "... occurs as β ".
- Page 631. First line of the last paragraph. Replace $\frac{1}{2} u_{i}^{2}$ with $\frac{1}{2} \overline{u_{i}^{2}}$.
- Page 631. Second line of the last paragraph. Remove the overbar from $S_{i j}^{\prime}$.
- Page 646. In Equation (12.75), drop the factor of $1 / 2$ in front of $\overline{e v}$.
- Page 859. The exponent in Equation (15.51) should be $2 /(\gamma-1)$.
- Page 866. The factor in parentheses in Equation (15.64) should be $\gamma+\cos 2 \sigma$
- Page 876. Exercise 15.14 par a), the temperature ratio should be: $[(\gamma-1) /(\gamma+1)]\left(p_{2} / p_{1}\right)$.
- Page 897. In spherical coordinates, the gradient of a scalar should be:

$$
\nabla \psi=\mathbf{e}_{r} \frac{\partial \psi}{\partial r}+\mathbf{e}_{\theta} \frac{1}{r} \frac{\partial \psi}{\partial \theta}+\mathbf{e}_{\varphi} \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \varphi}
$$

(the subscript of the second unit vector should be θ).

