\[\Delta U_{int} = \mathbf{W} \text{ friction} \]

\[k_1 + u_1 - \Delta U_{int} = k_2 + u_2 \]

\[\Delta k + \Delta u + \Delta U_{int} = 0 \]

\[\rightarrow \text{Energy is conserved} \]

\[\text{PE} \]

\[\text{KE} + \text{PE} = \Delta U_{int} \]

\[\text{KE} \rightarrow \text{PE} - \Delta U_{int} \]

"Momentum impulsive, + collisions"

What if we don't know anything about the forces involved when two bodies interact?

\[\mathbf{F} = m \frac{dv}{dt} = \frac{d}{dt}(mv) \]

"Rate of change of 'mv' equals the net force"
So define, \(\vec{p} = m \vec{v} \) momentum.

Unlike energy, Vector!

\[
\begin{align*}
E_1 & = E_2 \\
\Rightarrow & \quad E_1 > E_2 \\
\Rightarrow & \quad \frac{1}{2}v
\end{align*}
\]

\[
\begin{align*}
P_i & = P_e \\
\Rightarrow & \quad P_i = P_e
\end{align*}
\]

\[
\vec{P} = P_x \hat{i} + P_y \hat{j} + P_z \hat{k} \quad P_x = m v_x, \quad P_y = m v_y, \quad P_z = m v_z
\]

\[
L = \Sigma \vec{F} = \frac{d\vec{p}}{dt}
\]

The net force acting on a system equals the time rate of change of the momentum of the system.
Why is there $\frac{1}{2}mv^2 - mv^2$? What is the difference?

$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$

$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow$

$\tau = \int_0^\infty F dt \quad \text{(constant F)}$

Impulse

$\sum F = \frac{p_f - p_i}{t_2 - t_1} \quad \text{(again, F const)}$

$\Rightarrow \sum F(\tau_2 - \tau_1) = p_f - p_i \Rightarrow \tau = p_f - p_i$

- The change in momentum of a system equals the impulse of the net force that acts on the system.
- Impulse-momentum theorem

$L \Rightarrow \int_{t_1}^{t_2} \sum F dt = \int_{p_i}^{p_f} \frac{dp}{dt} dt = \int_{p_i}^{p_f} dp = p_f - p_i$

If F varies with time, still holds:

$\tau = p_f - p_i$

If not $\text{const } \vec{F}$

$\Rightarrow \sum F_{\text{net}} = F_{\text{avg}}(t_2 - t_1)$
In (1) and (2), \(J \) is the same since the area under the curves is equal.

So, \(J = \vec{F}_2 - \vec{F}_1 \) depends on how much time a force acts for.

\[W_{cm} = k_2 - k_1 \] depends on over how much distance a force acts.

Which is harder to catch?

- 0.5 kg ball @ 4.0 m/s \(\vec{p} = mv = 2.0 \text{ kg m/s} \)
- 0.1 kg ball @ 20.0 m/s \(\vec{p} = 2.0 \text{ kg m/s} \)

\[\text{but } KE_1 = \frac{1}{2} \cdot 5 \text{ kg} \cdot (4.0 \text{ m/s})^2 = 40 \text{ J} \]
\[KE_2 = \frac{1}{2} \cdot 1 \text{ kg} \cdot (20 \text{ m/s})^2 = 20 \text{ J} \]

Since \(p_1 = p_2 \), the impulse required to stop both balls is the same.
or, if \(F \) applied to stop the ball's is the same, then \(v \) is also.

However, it will take \(5 \) as much distance to bring the lighter ball to a stop! → Ouch!