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Abstract—In this paper we present a viability-based for- orientation is aligned with the direction of the current.eTh
mulgtion for the stgbilization of an underactuated underwaer sgme philosophy regarding the final orientation is adopted
vehicle under the influence of a known, constant current and i, 117] which addresses the station-keeping for a surface
state constraints. The stabilization problem is describedby . . . .
three problems in terms of viability theory. We present a yessel in the presence of wind q_|sturbances. In [18] a switch
solution to the first problem which addresses the safety of ta  ing feedback control law stabilizes an underactuated AUV
system, i.e. guarantees that there exists a control law sudchat around a small neighborhood of the origin, yielding input-
the vehicle always remains into the safe set of state constnés.  to-state practical stability in the presence of disturlesnc
In order to overcome the computational limitations due to the 54 measurement noise. Despite these contributions, it is
high dimension of the system we develop a two-stage approach e ’
based on forward reachability and game theory. The control generally acceF_’ted _that the Stab'l'zat'o_n of underactliate
law is thus the safety controller when the system viabilitys at  Underwater vehicles in the presence of disturbances hgs onl
stake, i.e. close to the boundary of the safe set. The vialtili been partially addressed and is still open in many respects.
kernel and the control law are numerically computed. In this paper we consider the motion of an underactuated
underwater vehicle on the horizontal plane, in the presefce
a constant, known current. Based on the remarks of [16] we

Control of underactuated underwater vehicles and surfagguld like to stabilize the vehicle within a desired set - the
vessels has received great interest over the past fiftees,yeqyoal set, rather than a single point. This choice is motivate
motivated by their extensive use in oil industry, scientifigyy the fact that both the vehicle’s position and orientation
eXplOfationS etc. The dESign of Stab|||Z|ng controllenstfos are critical for many app"ca’[ionsi e.g. during inspection
class of vehicles is challenging, since they usually exhibiasks. Thus we prefer not to specify the final orientation to
second-order nonholonomic constraints and therefore 6&n the depended on the current direction. Moreover, we take
be stabilized by continuous, time invariant state feedbagkto account that practical systems are usually subject to
control laws [1]. Furthermore, their dynamics include nongonstraints that can not be violated by any of the system
linear, complex hydrodynamic terms which should not bgrajectories. More specifically, we consider the problem of
neglected during the control design. Environmental distufegulating a low-weight underactuated ROV to a desired
bances should be also considered so that the C|Osed-|%| set with respect to a Specific target, in the presence
system performs efficiently in real environmental condiio of a known, constant current, so that this target is always

Various control strategies have been proposed for thgsible through the camera of the vehicle. This specificatio
stabilization of underactuated marine vehicles. In [2] 3 motivated by the fact that the resumng C|Osed-|oop@y5t
smooth state-feedback law stabilizes an underactuat@d sibuld be used, for example, for ship-hull inspections.
to an equilibrium manifold. Smooth, time-varying contes$ We propose an approach towards the solution of this
yielding asymptotic stability to the origin are proposed inproblem by formulating it within the framework of viability
[3]-[6] whereas discontinuous controllers in [7]-[11].btid  theory [19]. The stabilization problem is described by ¢hre
control schemes have been also presented in [12]-[14]. viability problems. We address the first one in this paper,

None of the aforementioned studies takes into account tk@own as the safety problem. Considering a safe set of
influence of environmental disturbances. To the best of OUftate constraints, resu|ting from the task Specificati(j]‘d; a
knowledge, pioneer work in this direction is presented ifhe limited sensing capability of the vehicle, we investiga
[15], which considers the dynamic positioning of a shipwhether there exists a control law that keeps the vehicle
The proposed time-varying control law provides semi-globan this safe set, despite the influence of the current. We
practical asymptotic stability. In [16] the dynamic positing  adopt the theoretical results of [20], which connect viapil
of an underactuated AUV in the presence of a constankith optimal control. The resulting "bang-bang” controhia
unknown current is considered. An adaptive controllerdsel guarantees that the vehicle will remain in the safe set.
convergence to a desired target point, whereas the fin@l order to overcome the computational limitations due to

. . _ the high dimension of the system, we propose a two-stage
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gives the viability analysis and Section V the computationanatrix including added mas€(v) = —CT(V) e R¥>3 s
results. The conclusion and thoughts for further work arthe matrix of Coriolis terms including added maBgyv) >
summarized in Section VI. 0 € R®3 js the damping matrixT € R® is the vector of
control inputs andre € R is the vector of environmental
disturbances due to waves, currents and cable effects.
Viability theory [19] describes the evolution of systems The vehicle moves under the influence of a known, non-
under the consideration that for different reasons, not albtational, constant current, with velocit and direction
system evolutions are feasible. The system must obey stg8g with respect to the global fram&. The effect of
constraints, called viability constraints and system #ofis current-induced forces and moments is modeled in terms
should be viable in the sense that they must satisfy, at eaghthe body-fixed relative velocity, = v — v¢ [21], where

Il. PROBLEM FORMULATION INTO VIABILITY THEORY

instant, these constraints. ve =3 (Y)VE and V¢ = [VecosBe  Vesinpe O]T, The
The problem of stabilizing an underactuated underwatgt,omatics are written with respect toy = [ur Vr r}T
vehicle in a goal set under state constraints and current G X cosy —sing 07 ry
disturbances is described by the following viability predais: as N = J(@)vr + V¢ = [y} = {Sigw cosy ‘ﬂ {"g} +
1) Consider a control system described by VecosBe .
. . [VcsinBC:|, whereas the dynamics are [2Mv +Cgrg(V)V +
X(t) € F(x(t)) with F(x(t)) = {f(x(t),u)|uc U}, (1) 0 mx, 0 0
wherex(-) CR" is the state vectoye U CR™Mis the control Ca(vr)vr +D(Jvr|)vr = 7, whereM = 8 mBYV .Z,ONf '

vector,U C R™Mis compactf : R"x R™— R" is the bounded,

0 0 —nv 0 0 Yyv
uniformly continuous single-valued map of system dynamichB(V) - [,%, B S } Calve) =1

Yovr Xgur O
andF (x(t)) is the set of available velocities. Givena Saif r x o o Xyl 0 0
viability constraints, describing that the target mustajes [ 0 *mvv N ] D (Jve]) = 0 Yyl © b T=
- - 0 7Nrm r

be in the camera field of view, determine a set of initial state -,
K C S'such that for every initial stat € K there exists at | 0|, m is the mass and; is the moment of inertia with
least one solution to (1) starting x which remains for ever respect taz axis of the vehicleXy,Y;,N; are the added mass
in S, keeping the target in the camera field of view. We sayerms, X,,Y,,Y;,Ny,N; are linear drag termsXyju/» Yo Nrr|
that K is a viability domain of the system. We would like are nonlinear drag termg; and 1, are control inputs in
to determine the maximal viability domain containedSn surge and yaw DOF. Under the substitutg= v, + v, the

known as the viability kernel 0§, Viabg (S). kinematic and dynamic equations are rewritten as:
2) le_e_n the viability kerne_zK of (1) and a goal seG C K, Ur COS—Vi SINY-+Vo CoSBe

describing that the target is near to the center of the camer ; Ur SinQ-+Vvr cos-+Vesinfe

. . . g r

ﬂr?ld (r)]f V|ew,.detern|1|ne the setlof_ initial states= .K s;;;h 3, _ ok (M Xtk + Xl - XVesinBe—wr) |
that there exists at e_ast. one so ut|0|_'1 to (1) stgrtmg .t o @ (00 YUY Yo e [ — YoV COS o))
reaches the goal s& in finite time, without leavingS. This i

L - rvr r NI’ Nrr
set is called the capture basin of the g&aih K, Captf (G). g (M2~ Maa) UV NN+ N )

3) Finally, determine a control law such that the solutions

)

to (1) starting atxs € G remain for ever inG, i.e. once the 8 8
system reache§, it is then stabilized in it. In that cas&§ + i T+ 8 = X=f(X,Ve,Bc) + Z gt
is a viability domain of (1). s 2 i<T2
In this paper, we consider the first of the three parts, known 0 33
as the safety problem. wherex=[nT v]]" is the state vectorf (x, Ve, Bc) is the

drift vector field,g,,0, are the control vector fieldsm i =

m— Xg, Mpo = M—Y,, Mgz = I, — N;. Moreover, the thrust
We consider the 3-DOF motion on the horizontal plangjipcation implies thatr; = Fp+ Fsr and 1o = D (Fp — Fgr),

of an underwater vehicle with two back thrusters but n@uhere Fo ¢ [—Fp,Fpl, Fsr € [~Fg,Fg] are the port and

side thruster; this is a common configuration for maringtarhoard thrust forces and2s the distance between the

vehicles. Roll and pitch angles remain always very close tgyo thrusters. Thusy = [Fe FST]T cU c R? is the vector

zero,p ~ O_ande_z 0 respectn_/_ely, becaus_e of t_he vehicle’sof control inputs for (2), wheré) = [—Fp, Fp] x [—Fa, Fg].

mass configuration. The position and orientation vector of

the vehicle with respect to a global coordinate fradés A Modeling of Viability Constraints

defined asn = [x y L,U]T whereas the linear and angular We consider the set of state constraints that result from

velocity vector is defined in the body-fixed coordinate frame vision-based sensor system, which employs the onboard

Basv={[u v r}T, Following [21] the 3-DOF kinematic camera and two laser pointers mounted on the ROV [22].
. . X cosy —siny 0] ru The sensor system provides the vehicle’s pose ventor

equations aren = J(¢)v < h’,] - {S'g"’ oo i] M and  iith respect to the global framé on the center of a

the 3-DOF dynamic equations of motion aMv +C(v)v+ target, which is assumed to lay on a vertical surfacsee

D(v)v = T+ 1g, whereM =MT > 0 R®3 s the inertia Fig. 1. The target and the two laser dots projected on the
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exists a control inputi(-) € %jg.) such thatx(t) € S for all
t € [0,T], i.e. the viability kerneViab(S). Moreover, using
Fig. 1. Modeling of the State Constraints imposed by the @eSystem dynamic programming, it can be also shown [20] tdk,t)
is the unique, bounded and uniformly continuous viscosity
i oV i v _ i
surface are tracked using computer vision algorithms anséjlutIon 10 (xt) +min O’ESUpW(X’t)f (u) p =0, with
this information is used to estimate the pose veetor V (x,T)=£(x) over (x,t) € R" x [0,T], where the Hamilto-
We define the safe set of the system as theSsrich that hian function is defined as#i = supp' f (x,u). Thus, in our

- U
1. The target and the laser dots must always be in the cametge we encode the viability constraints as the cost fumctio
field of view, i.e.[—yr,yr]| € [f2,f1] and Iz, 1] € [f2,f]. £(-) : R® — R such that(n) > 0 for n € Sand£(n) <0 for
2. The ranged, L, must be less than a critical range ¢ 5 An illustration of(n) for orientation angley =0 is
3. The distance between the laser dots on the image plaﬁ'ﬁen in Fig. 2. The region in black color is whet, y) > 0,

must be greater than a minimum distarzzeso that they do ¢ the safe state space on #yeplane fory = 0. Substituting
not overlap and are effectively detected. (2) into the Hamiltonian yields:

4. The width of the target on the image plane must be greater’ _
than a critical value, so that the target is sufficiently visible. 1= fgup( P1 (ur cosy—ve sing-+Vecosfic ) +-
These specifications impode nonlinear inequality con-

straintsc;(x,y, @) <0, j =1,...,k determining the safe s& + P2 (v sing-vr cosyrVesing ) + par +

The vectorn must always remain i for the sensor system + Pa (g (Mo2ver+Xatr Xy |ur [Ur-+XaVesin(Be—g)r ) ) 4
to be effective. The analytical expression@fx,y, ) <0, + p5(%(fmllurr+Y\,vr+Yrr+Y\,|V|\v,\vrfY\-,Vccos(Brw)r)) 4
j=1,...,k is omitted here in the interest of space. + Do (b (M- mez) v+ Nove N+ N )

IV. VIABILITY ANALYSIS + (Pam; + Pomez )01+ (Pamy — Pe g )02)

We are interested in determining the viability kernelSf wherepi = &Y i=1,....6, u; = Fp andu, = Fr. From this,

Viab(S) under (2) and a control law which guarantees thae can conclude that the optimal controls which ensure that

the system trajectories starting in the kernel will remain f e yiability constraints are met whenever possible are:
ever in it. We adopt the approach presented in [20] which

L . .. : . if P4 PeD if P4 _ PeD
relates viability with minimum-cost optimal control, cogi g, — { Fp rr;)fﬁfiagzo = { Fa rgfl ?2332 3)
the viability kernel as the level set of the value function of TR —Fs it -mg <0

an appropriate optimal control problem. whereas the viability kerneViab(S) is given as the set of

A. An Optimal Control Problem related to Viability states for whictW (n,t) > 0. However, the existing compu-
i tational tools for time-dependent Hamilton-Jacobi PDEs ar
Consider the control system (1) and l&tgy; denote

X effective for low-dimensional problems (1-4 dimensions).
the set of Lebesgue measurable functiards) : [0,T] —

U, with T > 0 an arbitrary time horizon. Given a set ofB. Reachability Analysis

state constraint§, the control inputu(-) € %jg) should be In order to overcome the computational limitations due to
selected so that the viability constraints are met at eacé ti the high dimension of the system, we split (2) into:
instantt € [0, T]. Let us define a cost functiof{-) : R" — R % Ve cosfe cosy 0 _sing
of the statex, over the time horizo0, T], such that(x) > 0 [Y} = |:Vc5inﬁc:| + [Sinw} Ur + M r+ [ cosy ] Vi (4)
for xe Sand{(x) <0 for x¢ S. Then, the objective for the 0 0 0
control inputu(-) is to maximize the minimum value attained . r _
by the cost function/(-) along the state trajectory(t) gl lmTl(m22"'r+X“”'+XUIU\‘”"”’*X“VCS'”(BC"’“)’)
over the horizon0, T]. The value function of this optimal | v | = | gz (-t YW £¥r+ Yy Ve v —YoVecose—w)r) |
control problem $uPMIN problem) is defined a¥ (x,t) = ' g ((M12=M22)Ur Ve -+ NV +Ner=+Ne e I )

sup min ¢(x(t)). One can show [20] that the séx ¢ 0 0
u(-)e%ﬁ),nte[oﬂ ) 120] ¢ |V g | M ] Fer (5)
R"V (x,t) > 0} is precisely the set of states for which there D/ma3 ~D/mg3




At this point, the consideration of (4) and (5) inspires us i = 1,....4 and f, the drift vector field of (5), we can
1. to investigate the forward reachability of subsystem (5¢onclude that the optimal control inputs for the forward
over the time horizorf0,T], i.e. to compute the se# of reachability computation are:

statesxo = [, ur,Vr,r]" which the system trajectories can

reach starting from an initial set”. In this way, we acquire Oy = { Fp if %ﬁ%DZO i { Fe f %*%DZO

an estimation for the bounds of,v;,r that can be reached —Fp 2P0 2T Ry if 2P0

from an initial set during the system evolution, so that ] . ] )

2. further on, to investigate the viability of subsystem (4),1"e computational results are given in Section IV.
considering the relative velocitiag,r as the control inputs

along the two actuated DOF and the relative velogjtyas C. Mability Analysis using a Differential Game Formulation

a disturbance along the unactuated DOF.

The concept of reachability is mostly used for the safeti Given the estimation for the bounds of, v, r as
t

analysis of continuous and hybrid systems. Given an initig]l [Urm, U], Ve = [Vrm, Vi), T = [rm, "m] we investigate

set of states 4, the forward reachable se¥ is the set e_V|ab|I|ty of %he I;g pS);Etemt (t4) n tthe Sfe &tthere
of states that can be reached at time [0,T] by the Xi=[x y Y] €R%is the state vectomy = [ur ]’ €

2 . .
system trajectories starting from”, whereas the backward Ui CR are cons!dered as the boundeq control mputs,
reachable setZ is the set of states from which start the'" €V CR is considered as a bounded disturbance in the

system trajectories that can reach the sgt at timet € funac.tuated DQ';?{I_”QT] LIJS thz;et Of. Ler? esguefTegsurable
[—T,0], T >0 is an arbitrary time horizon. unctionsuy (-) : [0,T] — Uz and %o is the set of Lebesgue

We consider the relation between reachability anfreasurable functiong () : _[O’T] —>Vf'_ _ ]
minimum-cost optimal control [20]. Given the control syste Ve follow the formulation of a differential game with
(1) and a set of stated’, the reachable set Reach(t,.#) = WO players [24]. The control inpu(-) is the first player
{xeR"3u() € Uor) € [0,T] x(1) € A}, This defini- who tries to keep the vehicle into the safe Sgtwhereas
tion coincides which the one for the backward reachable sté disturbancev;(-) is the second player who tries to
2, taking into account thate [T, 0]. Furthermore, one can drive the vehicle out ofS. Furthermore, it is important
show the connection between the reachability problem arffl define what information the players know about each
the invariance problem. The invariant set of (1) is defined &hers decisions. A state feedback strategy, i.e. allowing
Inv(t, /) = {xeR"|vu(-) € W) Tt € [0,T] x(t) e}, both players to choose their actions based on the current
ie. as the set of initial states from whiail the system State, is the most appropriate for the problem considered
trajectories remain for ever in/. It is easily verified that here. However, state feedback is not easily formulated into

Reach(t, /) = (Inv(t,.#®))°, where.#© is the complement Hamilton-Jac_obi PDEs [25]._ Besides, it is preferable to
of .#. The invariance problem is formulated as an optitnderapproximate the viability kernel rather than overap-
mal control problem INFMIN problem) [20]. The control Proximate it. Thgrefor_e we give the ad.vantage to the dis-
objective is to minimize the minimum value of the costurbancev(-), which tries to make the viable set larger, by
function ¢(-) defined such that(x) > 0 for x € .4 and allowing the control |nput_.|1(-) to use only non-anticipative
£(x) < 0 for x ¢ ¥, over the time horizon0,T]. The Strategies, as presented in [24]. Consequently, compthiig
value functionV, (x,t) = inf  min £(x(t)) is proven to V|ab|I|ty I_(_ernel for (4) is _equwalent Wlth_computlng the
u(-)€%p tel0,T] set of initial states for which the control inpu(-) wins
be the unique, bounded and uniformly continuous viscoshe game. This set is called the discriminating kernel of
ity solution to &2 (x,t) +minJ 0, inf 22(x,t)f (x,u) ¢ =0, S, Disc(t,S) = {x1 € R3|3 nonant/vey(-) Vv € KRB
. uey [t,T] X1(t1) € S}. One can show [24] thaDisc(t,S) =
with Va2 (>_(’T) = E(x) over (,X’t) €R X,[O’T]T’ where the {x1 € R3|V1(x1,t) > 0} whereVy(xy,t) is the value func-
Hamiltonian function is defined a%? :JQG p' f(x,u). The tion Vq(Xq,t) = sup inf min £(x1(t1)) of a
invariant set of (1) isinv(t,.#") = {x€R"|Vo(x,t) > 0}. nonantiveuy () Vr ()€1 et T) , .
Consequently, if the cost function of theFmIN problem SUPMIN problem with cost functiorf(-) : R* — R defined
is defined as/(x) > 0 for x € #¢ and £(x) < O for x¢ N Section IV-A. MoreO\_/er,Vl(xl,t)_ is shovyn to be the_
¢, the solution of the above PDE yields the invariant sefn'que, bounded and umformly@sontmuous viscosity sohuti
Inv(t, #¢) = {x€ R"|Va(x,t) > 0}. Then, the (backward) © " (X1,t) +min{0, Sup V:Q\f/r T (X1, 0) Fy(Xg, U, v} =
reachable set iBeach(t,.#') = {x € R"|Vz(xt) <0}. 0 overt € [0,T] with V1(xy, T) = £(xy). Thus, the solution
Therefore, by considering theiFMIN problem for (5) we ¢ this PDE yields the discriminating kernel of (4) and an
determine the packward reachable set for an initial set %fptimal control law which guarantees that the trajectooies
statesxo € 4. Finally, we conS|d_e_r the conne_ct|on betwee 4) starting inDisc(t,S) will remain for ever inS, despite
forward and backward reachability [23], Wh'_Ch states e effect of the current disturbance. In order to derive the
the forward reachable set of a control systeinis the same  ,ima| control law we consider the Hamiltonian:
with the backward reachable set of the systdmwith inverse
dynamics. Thus, by substituting (5) with inverse dyng\r/rzm:si 5= sup inf

( P1Ve cOSBe+ PV Sinfe+Paf+ )
) RS T e +
the Hamiltonian 7% = dgﬁ (—p" fo(x2,u)), wherep; = X Uy Uy VrEVr (

P1COSY+pP2Siny) Ur +(— Py Siny+p2 cosy)ve



Vv,

wherep; = oo
|

i =1...3. The optimal control inputs are: Time Horizon T =5 sec Time Horizen T = 8 séc

(6)

whereas the disturbance input is selected such that it h
the worst possible impact on the system,\as="vi, if
(—p1sing + pecosy) > 0 and Vi = vy if (—pising +
pacosy) < 0. Thus we have a robust estimation of the
discriminating kernelDisc(S), since at each time instance
t we consider the effect of the worst-case disturbange
i.e. of the worst-case linear velocity in the unactuatedyswa
DOF. The computational results are given in Section V.
So far we have assumed that the current has know
constant directionB;. In order to determine viability in
a more robust manner, we would like to characterize th
discriminating kernel of (4) which is irrelevant to the cemt
direction 8. Thus, we consider the angliz as an additional
disturbance input, which is trying to minimize the Hamil-
tonian /73, i.e. minimize the termhz(B:) = p1VccosB: + o b s
p2Vesinfe. The minimum value ofiz(f3;) is attained foif; = pusiﬁn“v[g:]\;__ﬁ ]
arctan?py, p1)+ mif p2 <0, and forB; = arctanZpy, p1) — ’
it P2 = 0. Thus, for the compgtatlpn dbisc(t, S) we Fig. 4. Safe SeS and Discriminating KerneDisc(S) at t=3 sec
consider the worst-case current directifsips, p2) at each
iteration. The computational results are given in Section V
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V. COMPUTATIONAL RESULTS Bc € [—m, 1] and velocityV, = 0.5 m/sec is depicted in Fig.

The forward reachability computation for the system (5§ This is the set of ini_t[al states fc_)rwhich the control Ieﬁry(
was performed on a 2626 x 26 26 grid of the state space eNSUres t.hat t_he viability constraints are m.et. for all guesi
using the Level Set Methods Toolbox [26]. The initial sét current directions. As one would expect, it is sm_aller than
was defined as a cube centered at the origin. The velocify® On€ computed for fixed ang|&. The vector field of
and direction of the current were selectedvas- 0.5 m/sec  SyStém (4) under (6) foc = 71/2 andy = 0 is given in Fig.
and i = 11/2. The dynamic parameters in (5) were chosef/)- It verifies thgt the syste.m is forced into tiesc(S) .
to resemble the vehicle properties. The computations we¥d'en the state is close to its boundary, see the velocity
performed for different values of the time horizdpsee Fig. vectors on the bound parallelycax_|s. Moreover, the veIo_C|ty
3. We found out that for each time horizon and for all value¥€ctors close to the other two sides Disc(S), along with
of angle @, the resulting reachable sets of, vi, r were the corresponding control input see Fig. 8, imply that the
practically the same. This is justified since tfiedependent
terms are negligible compared to the other dynamic term~
Furthermore, after a time horizon the state vector satsirat
and the reachable set does not expand any more, since o
damping forces counterbalance thrust. Since the reachalz s
sets forT =5 sec andl = 8 sec are practically the same, it = 4 &
is safe to choose the bounds wf, v, r. To further justify \
this, we performed computations for various angigsvhich _2’ Yoo
verified that the reachable sets do not diffelTat 5 sec. * " positiony [m]

The viability computation for system (4) was performea
on a 51x 51x 51 grid of the state space witly = 0.5 m/sec Fig. 5. Projection ofS and Disc(S) on thex—y plane for; = /2
and B; = /2 rad. The safe se8 is given in Fig. 4 on the
left side. As it was expected is shrinking ast increases . Discriminating Kernel (¢ =3 sec)
until a time horizonT =~ 2.5 sec. The discriminating kernel
Disc(S) at timet = 3 sec is given in Fig. 4, on the right.
Their projections on they plane are given in Fig. 5. The
shape ofDisc(S) is consistent with physical intuition, i.e.
Disc(S) depends on the current directig®. The lack of
symmetry means that there is no control input (6) that can * ! ,,.,smoi y [m] ! ’
prevent the current to drive the states on the right side out
of the Disc(S). Moreover, theDisc(S) for current direction Fig. 6. Discriminating KerneDisc(S) at t=3 sec forf. € [-7,71
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Fig. 7. Vector field of closed-loop system fgr=0 [e]
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Fig. 8. Control inputr > 0 in Red Area and < 0 in Blue Area [12]
state remains int®isc(S) with ¢ # 0, sinceDisc(S) either  [13]
expands to the left withp > 0 (red boundaryy > 0) or to
the right with y < 0 (green boundaryy < 0).
(14]

VI. CONCLUSIONS

In this paper, we present a viability formulation for the
problem of controlling an underactuated underwater vehiclis)
with respect to a target, in the presence of a known, constant
current disturbance and under state constraints. Cotirsiger
a safe set of state constraints resulting from the task $peciie)
cations and sensor limitations, we investigated whetheneth
exists a control law such that the vehicle remains for ever i
this set, despite the influence of the current. This analysis
based on an approach connecting viability and optimal
control, yields the viability kernel and an optimal control, o
law that maintains viability. To overcome the computationa
limitations due to the high dimension of the system, we
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