
Control Strategies for Multiplayer Target-Attacker-Defender
Differential Games with Double Integrator Dynamics

Mitchell Coon and Dimitra Panagou

Abstract— This paper presents a method for deriving optimal
controls and assigning attacker-defender pairs in a target-
attacker-defender differential game between an arbitrary num-
bers of attackers and defenders, all of which are modeled using
double integrator dynamics. It is assumed that each player has
perfect information about the states and controls of the players
within a certain range of themselves, but they are unaware of
any players outside of this range. Isochrones are created based
on the time-optimal trajectories needed for the players to reach
any point in the shortest possible time. The intersections of the
players’ isochrones are used to determine whether a defender
can intercept an attacker before the attacker reaches the target.
Sufficient conditions on the detection range of the defenders and
the guaranteed capture despite perturbations of the attackers
off the nominal trajectories are derived. Then, in simulations
with multiple players, attacker-defender pairs are assigned so
that the maximum number of attackers are intercepted in the
shortest possible time.

I. INTRODUCTION

Differential pursuit-evasion games is a classical research
topic in optimal control and game theory [1]–[3]. The target-
attacker-defender differential game involves one or more
attacking players who are seeking to reach a target, and
one or more defending players whose goal is to prevent
the attackers from reaching said target. In [4], the optimal
controls for each player in a single-attacker-single-defender
game are derived using constrained optimization, and the
critical speed above which the target can always escape is
determined analytically. The approach in [4] is extended to
a scenario with two defenders in [5]. In both papers, the
players are modeled as Dubins vehicles with constant linear
velocities and bounded turning rates.

Focusing on aircraft defense and missile guidance, line-
of-sight guidance for the defender is studied in [6], with
an additional cooperative guidance law for the target to
maximize the attacker-to-defender lateral acceleration ratio.
The three-body pursuit-evasion problem is also addressed in
[7] and [8], where the authors provide sufficient conditions
for the missile to hit the target while evading the defender.
Similarly, the authors in [9] and [10] study various guidance
laws based on the rate of change of the line-of-sight between
the players in aircraft defense games. Cooperative pursuit-
evasion guidance strategies are presented in [11] for the
target-attacker and the attacker-defender pairs, again for
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aircraft missile defense, as well as in [12]–[16]. In [17],
the effects of limiting the defender’s acceleration command
in a target-attacker-defender game are studied, while [18]
compares the performance of different guidance strategies,
including proportional navigation, command-to-line-of-sight,
and pure pursuit, for aerial defended targets.

The construction of barriers for differential games is
particularly relevant to target-attacker-defender games, see in
[19]–[21]. In these papers, barriers for two-player games that
provide sufficient conditions for each player’s victory, are
derived, along with the optimal controls that lead to victory
for each player in the game. The authors of [22] and [23]
derive barriers for visibility-based pursuit-evasion games.

Another significant research topic is that of control strate-
gies for differential games involving multiple players. In
[24], a method for determining controls for a game with
an arbitrary number of players is presented. In this method,
a solution is determined for each possible attacker-defender
pair, then a maximum matching algorithm is used to assign
pairings that prevent the maximum number of attackers from
reaching their target. The authors of [25] consider a game
where one evader is trying to escape through the gap between
two pursuers. In [26], the authors analyze the value function
level sets for a game involving one evader and two pursuers,
and present a method for constructing optimal feedback
controls. In [27], the authors use a decentralized control
scheme based on a Voronoi partition of a game involving
one evader and multiple pursuers in a plane. Similarly,
in [28], dynamic Voronoi diagrams are used to determine
optimal controls for a multi-agent game. In [29], an integral
cost function is used to capture the synergy between two
evaders trying to evade a single pursuer. In [30], a game is
simulated between two evaders and a single evader, where
the evaders must tradeoff between evading the pursuer and
herding together.

There are several other approaches to two-player pursuit-
evasion differential games, such as the use of approximate
dynamic programming in [31], and the use of a multistage
influence diagram game to model one-on-one air combat
[32]. In [33], the isochrones for Dubins vehicles are con-
structed, and the intersections of those isochrones are used
to determine the dominance regions of each player, as well as
the time-optimal controls which enable each player’s victory.

In this paper, while we do not derive explicit barriers for
the games discussed, we provide a method for determining
the winner of a game based on the initial positions of
the players, as well as the controls that enable victory.
Our method builds upon the isochrones approach in [33],



and provides sufficient conditions on the minimum sensing
(detection) range for the defenders, and capture guarantees
despite a class of possible perturbations for the attacker.
In addition, and in contrast to all above mentioned papers,
here we consider double integrator dynamics for the agents.
The double integrator model is a better representation for
multi-copter aircraft compared to the Dubins model, since
it captures the aircraft’s ability to change direction quickly
without making wide turns.1 Furthermore, unlike to many
of the previously mentioned papers which only deal with
a small number of players, the method presented here is
applicable to differential games with arbitrary numbers of
players. The multi-player case is addressed by assigning
pairs of attackers and defenders using a minimum cost
bipartite matching algorithm similar to that of [24], where
the associated cost of each attacker-defender pair is the time
required for the defender to intercept the attacker.

The rest of the paper is structured as follows: Section II
describes the mathematical formulation of the problem while
Section III presents the adopted approach to the solution,
and outlines the algorithm used in simulations. Section IV
presents the results of the simulations. Finally, Section V
summarizes the paper and discusses future work.

II. PROBLEM FORMULATION

In this paper we consider a game between a team of M
defenders, a team of N attackers, and a single stationary
target. It is assumed that the players have perfect information
about the other players’ states and controls when they are
within a certain range R of each other, but they are otherwise
unaware of players outside of this range. Both the attackers
and defenders are modeled as point agents. The equations of
motion for players are as follows:

ẋ(t) = vx(t), (1a)
ẏ(t) = vy(t), (1b)

v̇x(t) = ux(t), (2a)
v̇y(t) = uy(t), (2b)√

ux(t)2 + uy(t)2 ≤ amax, (3)

where x and y are the position coordinates of an agent,
vx and vy are the velocity components, ux and uy are the
acceleration commands of the agent, all w.r.t. a Cartesian
inertial coordinate frame, t is the current time, and amax is
the maximum acceleration command possible for the agents.

Let rc denote a finite radius of capture. Then, the scenario
that any of the attackers reaches the target at some time t is
described as:

min
i

√
(xA,i(t)− xT (t))2 + (yA,i(t)− yT (t))2 ≤ rc, (4)

where xA,i and yA,i are the position coordinates of attacker
i, and xT and yT are the target’s coordinates.

1Note that in [34], optimal controls which drive a vehicle under double
integrator dynamics to rest at the origin are derived; however, in this
paper, we are concerned with the time-optimal controls that allow a double
integrator vehicle to reach a point as quickly as possible, instead of coming
to rest at that point.

Similarly, the scenario under which an attacker i is inter-
cepted by a defender j at some time t is described as:

min
j

√
(xA,i(t)− xD,j(t))2 + (yA,i(t)− yD,j(t))2 ≤ rc,

(5)
where xD,j and yD,j are the position coordinates of defender
j. Our goal for the single-attacker-single-defender game is
to determine sufficient conditions under which a defender
is guaranteed to be able to intercept an attacker before the
attacker reaches the target, as well as sufficient conditions
under which an attacker is guaranteed to reach the target
without being intercepted. Furthermore, we seek the time-
optimal control strategies for the players in each of these
cases. We then apply these strategies to games with multiple
attackers and defenders by considering defender-attacker
assignments based on bipartite graph matching, similar to
the approach of [24].

Let the payoff of the game be defined as the minimum
distance of all attackers to the target after either all targets
have been intercepted, or the target has been reached, i.e.,

dmin = min
i

√
(xA,i(T )− xT )2 + (yA,i(T )− yT )2, (6)

where T is the time at which the game ends, either in favor
of the attackers or the defenders. The goal of the defenders
is to maximize this payoff, while the attackers are seeking
to minimize it.

III. APPROACH

A. Isochrone Equations

In order to determine the outcome of a game between a
single attacker-defender pair, we first find sets of isochrones
which determine how far the players can travel in a given
amount of time. Once these are known, we can find intersec-
tions of the attackers’ and defenders’ isochrones to determine
all possible interception points. These points represent a
terminal surface, and if the attacker cannot reach the target
without passing through this surface, the defender will be
able to intercept the attacker before it reaches the target.
These equations will not be explicitly derived here. The time-
optimal controls for the agents are given by:

ux = amax cos (θ), (7a)

uy = amax sin (θ), (7b)

where θ is the counterclockwise angle from the x-axis to the
acceleration vector. Since θ is constant in this case, given the
initial position and velocity of an agent, the final position is:

x(T ) = x0 + vx,0T +
1

2
amax cos (θ)T 2, (8a)

y(T ) = y0 + vy,0T +
1

2
amax sin (θ)T 2, (8b)

where x0 and y0 are the initial Cartesian coordinates of the
player, and vx,0 and vy,0 are the initial velocity components.

The equations derived above can be used to create
isochrones for a single player. Fig. 1 shows a set of



isochrones for an agent starting at the origin with an initial
velocity of 1 m/s in the y-direction, and a maximum accel-
eration of 1 m/s2 in any direction. The isochrones shown in
this figure represent the set of all possible locations where
the player could be at the indicated time, using the controls
described above. Prior to t = 2 seconds in this example,
some isochrones will overlap, since the agent may be moving
in the positive or negative y-direction at a single point,
but at different times. After t = 2 seconds, each point
on the isochrone corresponds to a unique control input. If
the player’s desired location is on one of the overlapping
isochrones, the player should choose the control that will
allow it to reach that point at the same time as an opposing
player. However, if the player is an attacker and it can reach
the target without being intercepted, it should simply choose
the control corresponding to the isochrone with the smallest
time value, in order to reach the target as quickly as possible.

B. Single Attacker - Single Defender Games

The intersection of the isochrones of two or more opposing
players can be used to determine the terminal surface where
the defenders may intercept the attackers. An attacker’s goal
is to minimize their distance to the target at the time of
interception, so its optimal control is the one that will bring
it either to the target, or to the closest point on the isochrones’
intersection surface to the target.

However, it should be noted that an attacker using a
certain control input may be intercepted at multiple different
locations at different times, depending on the defender’s
control input. Since the defender’s goal is to intercept the
attacker as far from the target as possible, it will choose
whichever control input allows them to intercept the attacker
at a location further from the target, unless the time required
to intercept the attacker at such a location is greater than the
time required for the attacker to reach the target.

The isochrones are only calculated for times up to the
amount of time required for an attacker to reach the target.
If the attacker cannot be intercepted before this time, there
is nothing the defenders can do, and there is no reason to

Fig. 1: Isochrones for an agent starting at the origin moving in the
positive y-direction; the outermost isochrone corresponds to t = 5s,
and the time difference between successive isochrones is 1 sec.

Fig. 2: Intersection of two players’ isochrones.

calculate the isochrones for later times. Furthermore, if an
attacker can be intercepted within this time period, a defender
will never attempt to intercept it at a later time, since doing
so would allow the attacker to reach the target.

1) Example: Fig. 2 shows the intersection of two players’
isochrones. In this example, the defender starts from rest at
the origin, while the attacker starts at (1, 1) with an initial
velocity of 1 m/s in the negative y-direction. Both players
have a maximum acceleration magnitude of 1 m/s2. Note that
the intersection surface is not closed, and in fact extends to
infinity in this case. In the simulations, the intersections are
only calculated over a finite amount of time equal to the time
that it would take for an attacker to reach the target.

Fig. 3 shows the trajectories taken by the players in
the scenario described in Fig. 2, if the target is located at
(0.5, 0.5). The isochrones are left out of this figure for clarity.
In this case, the defender is able to intercept the attacker
before it can reach the target, thus the attacker chooses the
closest point on the intersection surface to the target as its
goal. Note that the trajectory of the defender is a straight line
since it initiates from rest, while the attacker’s trajectory is
curved due to its non-zero initial velocity.

C. Performance Guarantees

1) Capture despite attacker deviation: We now consider
perturbations (i.e., deviations) of the attackers from their

Fig. 3: Trajectories in a two-player game; the red arrow represents
the attacker’s initial velocity.



nominal trajectories that would result from their attempt to
avoid the defenders. In order to guarantee that capture still
occurs regardless of deviations from the nominal path, it is
sufficient to show that the attackers’ deviations are within a
certain bound.

Proposition 3.1: Let θA,i be the direction of attacker i’s
acceleration vector that would result in interception accord-
ing to the method above. Suppose in reality it acceler-
ates with its maximum possible acceleration in a direction
θA,i + ∆θ. In order for the defender to still be within the
desired capture radius at the expected interception time, it is
sufficient to show that the attacker’s deviation from the ideal
acceleration angle satisfies the following condition:

∆θ ≤ cos−1

(
1− 2r2c

T 4a2max

)
. (9)

Proof: If an attacker accelerates in the direction
θA,i + ∆θ, then assuming constant acceleration, the distance
between the positions of the two different trajectories at any
given time is:

∆d =
amaxt

2

2

√
∆x2 + ∆y2, (10a)

∆x = cos(θA,i + ∆θ)− cos(θA,i), (10b)

∆y = sin(θA,i + ∆θ)− sin(θA,i), (10c)

Without loss of generality, assume θA,i = 0. Then through
some simple algebra:

∆d =

√
2

2
amaxt

2
√

1− cos (∆θ). (11)

Substituting the capture radius rc for ∆d and the interception
time T for t, then solving for ∆θ yields:

∆θ = cos−1

(
1− 2r2c

T 4a2max

)
. (12)

This is the maximum deviation for the attacker that will
still result in the attacker being captured, assuming constant
acceleration for the defender in the same (i.e., its nominal)
direction. Therefore, as long as ∆θ is less than or equal to
this value for all t ≤ T , capture will still occur.

Remark 1: Note that as the time required to intercept an
attacker decreases, the allowable deviation increases, so it
is beneficial for the defenders to intercept the attackers as
quickly as possible.

Remark 2: If an attacker’s deviation exceeds this limit, the
defenders would need to recalculate their trajectories in order
to intercept that attacker. The frequency of recalculation
required to guarantee capture is a potential topic for future
research, but is not covered in this paper.

2) Limited sensing (detection) radius for guaranteed cap-
ture: We are now interested in obtaining bounds on the
limited sensing (detection) radii of the defenders, so that
interception of the detected attackers is guaranteed before
the attackers reach the target. Given the initial position of
a defender, if the initial velocity of an attacker is known, it
is possible to use the isochrone intersections to determine

the region in which the attacker is guaranteed to be able to
reach the target without being intercepted. In order to do this,
we first calculate the backwards isochrones from the target,
assumed to be at the origin. The x- and y-coordinates of the
backwards isochrones for attacker i are as follows:

xB,A,i(t) = (Vi(T − t)−
1

2
(T − t)2) cos(θA,i), (13a)

yB,A,i(t) = (Vi(T − t)−
1

2
(T − t)2) sin(θA,i), (13b)

Vi = v0,A,i + amaxT, (13c)

where v0,A,i is the magnitude of attacker i’s initial velocity.
The initial distance from an attacker to the target for a given
value of T is:

r0,A,i =
√
xB,A,i(0, T )2 + yB,A,i(0, T )2, (14)

Note that larger values of T correspond to starting positions
further away from the target. We then find the intersection
of the defender’s isochrones and the attacker’s backwards
isochrones using various starting positions r0,A,i.

Proposition 3.2: Given the initial position of a defender
and the initial velocity of an attacker, the outer edge of the
region within which an attacker is guaranteed to be able
to reach the target without being intercepted is defined by
the points where intersection occurs between the defender’s
isochrones and the attacker’s backwards isochrones for the
smallest possible value of r0,A,i.

Proof: The backwards isochrones represent the trajec-
tories of attackers coming from various directions that can
reach the target without being intercepted. The attackers are
assumed to be moving toward the target initially, and they
accelerate directly towards the target, because this results
in the shortest time to reach the target. Therefore, if an
attacker following such a trajectory can be intercepted before
reaching the target, any attacker starting further away from
the target with the same velocity, or starting at the same
location with a velocity not in the direction of the target will
also be able to be intercepted, since it will take a longer
time to reach the target. Therefore, for a given value of θA,i,
the point where the defender’s isochrones and the attacker’s
backwards isochrones intersect using the smallest value of
r0,A,i represents the furthest point from the target in the θA,i

direction that the attacker can start and still reach the target
without being intercepted.

Examples of these regions are shown in Fig. 4: The blue
region corresponds to a stationary defender, while the red
region corresponds to a defender moving away from the
target.

The above analysis on the regions determining victory
assumes infinite sensing radius for the defenders, i.e., that
the attackers can be detected at any time and anywhere on
the plane. A sufficient bound on the sensing radii R of the
defenders so that attackers can be detected and intercepted
prior to reaching the target is then obtained as follows:



Proposition 3.3: If the defenders’ sensing radii R are such
that R ≥ Rmin, where:

Rmin = rDT + rAT , (15a)

rAT = v0,A,itDT +
1

2
amaxt

2
DT , (15b)

where rDT is the distance from defender j to the target, tDT

is the minimum time it would take the defender to reach the
target, and rAT is the distance that the attacker can travel
over time tDT , with tDT given as the positive solution to
the following set of equations:

x0,D,j + vx,0,D,jtDT +
1

2
amaxt

2
DT cos θD,j = 0 (16a)

y0,D,j + vy,0,D,jtDT +
1

2
amaxt

2
DT sin θD,j = 0 (16b)

where: x0,D,j and y0,D,j are defender j’s initial position
coordinates, vx,0,D,j and vy,0,D,j the defender j’s initial
velocity components, and θD,j is defender j’s acceleration
angle, then: the defenders are guaranteed to be able to
intercept any attackers first detected outside of the regions
described above.

Proof: A defender will never be able to intercept an
attacker that can reach the target before t = tDT . Therefore,
the boundary of the region described above will be at most
rAT from the target. Furthermore, in order for the defender
to detect an attacker at such a point on the boundary, it is
necessary for the defender’s sensing radius to satisfy R ≥
Rmin, where Rmin = rDT + rAT .

Remark 3: Note that the region for which an attacker is
guaranteed to reach the target is larger if the defender is
moving away from the target. Therefore, it is beneficial for
a defender to come to a stop after intercepting a target in
case any additional attackers come within its sensing radius.

D. Assignment of Attacker-Defender Pairs

When multiple attackers and defenders are present, the
defenders must consider not only where to intercept an
attacker, but also which attacker they should pursue. In
this paper we assume all defenders communicate with each
other to collectively decide which attacker each defender

Fig. 4: Comparison of barriers for a stationary and moving
defender. The solid lines show the minimum sensing radius required
for the defender to intercept all defenders outside of the barriers.

will pursue. The process for assigning pairs of attackers and
defenders is as follows [24]:

1) Construct a bipartite graph with two sets of nodes,
{Dj}Mj and {Ai}Ni , where each node represents one
of the defenders or attackers, respectively

2) For each Dj , determine for each Ai within the sensing
range of Dj whether or not Dj can intercept Ai before
Ai reaches the target using the isochrone method
described in the previous sections.

3) Draw an edge in the bipartite graph from Dj to Ai if
Dj can intercept Ai before Ai reaches the target. If
interception is possible, let the time required for Dj to
intercept Ai be the cost of this edge.

4) Run any minimum-cost matching algorithm to find a
maximum matching in the graph that minimizes the
associated cost. This can be done using the Hungarian
matching algorithm [35], for example.

Remark 4: Note that while this matching guarantees that
the defenders will intercept as many attackers within their
range as possible, it does not guarantee that any attackers
outside of this range will be intercepted. Because of this, the
defenders will slow to a stop, i.e. they will accelerate in the
direction opposite of their current velocity, after intercepting
an attacker if there are no other nearby attackers that need
to be intercepted.

Remark 5: If the agents only shared information about a
small subgroup of nearby agents, this would reduce compu-
tation time, but possibly result in suboptimal pairings.

E. Implementation in Simulation

In the simulations presented in this paper, the defenders
are initially at rest near the target, while the attackers start
further away with some initial cruise speed v in the direction
of the target. The simulation runs until either one of the
attackers reaches the target, or until all attackers have been
intercepted. If any attackers are within a distance R of
any defenders at the beginning of the game, the optimal
trajectories will be calculated as described above for those
players. The trajectories will be recalculated every time a
new player comes within range of an opposing player that
was previously out of range.

After an attacker is intercepted, it will stop moving and
no longer be considered in calculations of the trajectories.
However, the defenders can still move after intercepting an
attacker, and potentially intercept additional attackers. If the
defenders have not been assigned to any attackers, they will
simply slow to a stop and wait in case another attacker
comes in range of them. Since the defenders do not know the
locations of the attackers outside of their sensing range, it is
best for them to remain at rest, because as mentioned above,
stationary defenders are guaranteed to be able to intercept
attackers in a larger area than defenders moving away from
the target.

IV. SIMULATION RESULTS

1) Equal Number of Attackers and Defenders: In the case
where M = N , the end outcome of the game is largely



Fig. 5: Trajectories in a 4 defender vs. 4 attacker game; defenders
win.

determined by the initial placement of the players. In the
simulations presented here, the defenders are positioned in a
diamond formation around the target, while the attackers are
placed randomly in the space further away from the target.

Fig. 5 shows the trajectories of the players in a game
between four attackers and four defenders. The attackers are
not initially in range of the defenders, so they simply move
towards the target at a constant cruise speed. When they get
close enough to the defenders, they plan their trajectories
using the method described in the previous sections. It is
interesting to note that whenever the attackers recalculate
their trajectories, even though they are still moving towards
the same defender, they tend to start accelerating in a
different direction, causing them to swerve back and forth
slightly. In this case, the defenders are still able to intercept
them.

Fig. 6 shows a similar game where the attackers win
instead. Because the attackers are initially much closer to
each other, they are able to overwhelm the defenders. While
the first two attackers are intercepted, the defenders simply
aren’t close enough to perceive and intercept both of the
remaining attackers in time. This situation could easily be
prevented by having more defenders on one side of the
target, but since the defenders don’t know what direction the
attackers will come from in this scenario, they are placed
evenly around the target, making them unable to respond
effectively to a concentrated assault such as this. Because
of the lack of communication and cooperation between
defenders, this example effectively reduces to the case where
there are more attackers than defenders.

2) More Attackers than Defenders: In the case where
M < N , it is much more difficult for the defenders to
intercept all attackers. Unlike the case where there are
equal numbers of defenders and attackers, and the target is
guarded evenly on all sides, it is more advantageous for the
attackers to start far from each other and come from opposite
directions in this case. Since there are not enough defenders
to intercept the attackers simultaneously, at least one of the
attackers has a good chance of reaching the target.

Fig. 7 shows a game between a single defender and three
attackers. In this game, the three attackers all come from a

Fig. 6: Trajectories in a 4 defender vs. 4 attacker game; attackers
win.

Fig. 7: Trajectories in a 1 defender vs. 3 attacker game; defender
wins.

similar direction, and they don’t all come at the same time,
so the defender is able to intercept each of them as they
come. This is one of the few cases where a large group
of attackers would not be able to succeed against a smaller
group of defenders. This is because the attackers are first
detected outside of the regions specified in Section III.C,
and the defender’s sensing radius is large enough for it to
respond in time.

3) Fewer Attackers than Defenders: In the case where
M > N , the defenders have a clear advantage and are
usually able to intercept all attackers with ease. Even if an
attacker managed to get past a handful of defenders, there are
still more ready to intercept it should the need arise. As with
the case where M = N , the best chance that the attackers
have is to group up and approach the target simultaneously
in an attempt to overwhelm the defenders.

Fig. 8 shows a game between 8 defenders and 4 attackers.
In this game, most of the defenders do not even need to move
from their initial positions before all of the attackers have
been intercepted. In cases where the integrity of the target
is critical, it would be beneficial to have more defenders
than necessary, but otherwise the additional defenders are
redundant.



Fig. 8: Trajectories in a 8 defender vs. 4 attacker game; defenders
win.

V. CONCLUSIONS

This paper presents a method for calculating optimal con-
trols and assigning attacker-defender pairs for target-attacker
differential games between agents with double integrator
dynamics. The isochrone intersections of opposing players
are used to determine the optimal trajectories for different
attacker-defender pairs, then pairs are assigned using a
minimum cost bipartite graph matching algorithm so that
the maximum number of attackers are intercepted in the
shortest possible time. Future work will focus on extending
the methods used in this paper to games involving both
players using Dubins vehicle dynamics and players using
double integrator dynamics. We would also like to investigate
scenarios where the defenders cooperate with each other to
intercept the attackers more quickly.
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