Worksheet 1

Dondi Ellis
January 13, 2015

In Exercises 4-7, use Figure 1.37 to graph the functions.

Figure 1.37
4. $n(t)=m(t)+2$
5. $p(t)=m(t-1)$
6. $k(t)=m(t+1.5)$
7. $w(t)=m(t-0.5)-2.5$

18. Let p be the price of an item and q be the number of items sold at that price, where $q=f(p)$. What do the following quantities mean in terms of prices and quantities sold?
(a) $f(25)$
(b) $f^{-1}(30)$

For the functions f and g in Exercises 8-11, find
(a) $\quad f(g(1))$
(b) $\quad g(f(1))$
(c) $\quad f(g(x))$
(d) $g(f(x))$
(e) $f(t) g(t)$
8. $f(x)=x^{2}, g(x)=x+1$
9. $f(x)=\sqrt{x+4}, g(x)=x^{2}$
10. $f(x)=e^{x}, g(x)=x^{2}$
11. $f(x)=1 / x, g(x)=3 x+4$
64. A tree of height y meters has, on average, B branches, where $B=y-1$. Each branch has, on average, n leaves, where $n=2 B^{2}-B$. Find the average number of leaves of a tree as a function of height.
46. $f(n)$ is the number of students in your calculus class whose birthday is on the $n^{\text {th }}$ day of the year.

