SCALES OF COMPLEXITY AND THE COMPLEXITY OF SCALES:

MORTUARY ANALYSIS AND SOCIAL COMPLEXITY IN PREHISTORIC MESOAMERICA AND BEYOND

SOCIETY FOR AMERICAN ARCHAEOLOGY
SAN JUAN, PUERTO RICO
APRIL 29, 2006

SCOTT ZELEZNIK (wsz@umich.edu) AND DAVID M. REED (dmreed@umich.edu)

UNIVERSITY OF MICHIGAN
INTRODUCTION

A common goal of social science research is to understand social complexity – both in terms of social interaction and social distinction and status. Furthermore, many of our subsequent analyses and portrayals of society are based on assumptions garnered from models of social organization. Hence, we believe that accurate, reliable, and plausible measures of social complexity must be constructed before we can proceed with any analysis. Unfortunately, compared with our colleagues in sociology, political science or even cultural anthropology, we as archaeologists are disadvantaged by a lack of individual level data compounded by the fact that we cannot dialogue with our subjects. This precludes many forms of analysis commonly employed in other disciplines. But, skeletal and mortuary remains give us a unique opportunity to view society at the individual level instead of in the aggregate and as such we may still be able to take advantage of methods employed by other disciplines. We do not pretend that this statement is new to archaeologists. Data reduction techniques such as cluster, factor, and component analysis have been used for decades to partition the social world into neat, discrete groups and ranks. We think, however, it is time to move beyond these divide and conquer approaches to more rich and nuanced models that seek to accurately portray the social milieu and all of its complexity.

Here we explore one such technique commonly used in psychology, sociology, and political science known as reliability analysis. We have successfully employed this approach in previous presentations and publications with a database of nearly 700 burials from our own work in the Copán Valley, Honduras. We present these data and then demonstrate how this method is generalizable to mortuary data from other societies around the world and can be extrapolated to cases where data is limited. We also argue that this is a necessary first step in any attempt to address social complexity with the aid of mortuary data.

Having said this, we recognize that the world of human relationships is not made up of statistical equations and numerical results. We all know that mortuary ritual is complex, reflecting the values of the surviving group, not necessarily the individual. Moreover what is valued in a mortuary context is not necessarily what is valued in everyday life. Indeed, the advantage of the method we demonstrate is that it may allow us to see what the society in question valued instead of imposing our assumptions on that society. And, as we have shown elsewhere, this can then be compared to data from other contexts (household middens, bioarchaeology, etc.) to determine the distinctive nature of mortuary contexts.

THE PROBLEM

Let us briefly provide an example of the importance of devising accurate models of social organization and how partitioning the data according to a priori assumptions may lead us astray. These examples come from work in the Maya realm we know best, but we all have seen numerous examples in the literature that use a priori assumptions or use cluster or factor analysis to reduce the data to manageable ranks or classes.

To assign social status for the purpose of examining possible dietary differences, Lori Wright and John Gerry each approached their extensive analysis of ancient Maya burials differently. Gerry developed a four tier categorization based on a cluster analysis of rank coded variables for grave type, architecture type, settlement location, and presence or absence of grave offerings. Only the 178 individuals selected for isotopic analysis were included in the cluster analysis. Individuals were grouped as either commoner, junior elite, petty elite, or high elite. Wright performed cluster analysis on a sample of 286 individuals, rather than the subset of 121 subjects used for isotopic study. Wright used variables for sex, age, skeletal modification, structure type, grave type, skeletal position, and grave offerings to develop a five tier system. By happenstance, they analyzed some of the same
individuals at two sites Seibel (Figure 1) and Altar de Sacrificios (Figure 2), providing an opportunity to see if there is concordance between social assignment approaches.

By directly associating the two systems for these two sites we can see that there is considerable discordance in assignments to what should be the same burials (Figure 3). We found that 17% were assigned extremely different ranks with one method assigning a highest rank to a burial which the other method assigned the lowest rank and 27% differed by two ranks.

We do not mean to impugn the scientific merits of our friends, the authors, only to demonstrate the ramifications of using *a priori* assumptions of rank and status; if different approaches to Maya mortuary studies that yield such apparently opposing results are then applied as organization tools for other measurements like paleodietary differences, then we clearly need a better approach.

COPÁN DATA

Now we turn briefly to our previous work to demonstrate our approach. The site of Copán, Honduras is well known to Mesoamerican Archaeologists due to its long and storied history of excavations (Figure 4). Based on our own excavations and the numerous excavations that preceded us, we constructed a database of 683 individuals from all locations and contexts throughout the Copán Valley (Figure 5). We attempted to code 51 variables, although the completeness of the information for each case varies considerably. These variables constituted associated artifacts, placement of the individual in the grave space, nature of the interred space, physical characteristics of the individual, such as age–at–death, sex, and isotopic composition, and characteristics of the associated site and structure.

The following slides show some of the descriptive information for the sample (Figures 6-11). We have presented earlier versions of this elsewhere so we will not spend time discussing this other than to say there is a remarkably normal ratio of 51% women to 49% men in the sample. The age distribution shows an inordinate number of children and infants, as noted by various researchers, but otherwise appears relatively normal. The distribution of sex by relative age, shows significantly more men than women in the young adult category, and more women than men in the older adult category. Also, of note is the distribution of grave types in which individuals were interred. With the exception of burials lacking any kind of treatment, the distribution monotonically decreases, commensurate with the assumed increasing complexity and labor involved in creating the grave space.

As we saw in the work of Gerry and Wright, the most traditional measures of wealth and status in Maya mortuary studies have been grave type and grave goods (namely jade and fine ware ceramics). Intuitively, these indicators make sense because they reflect, on the part of the people preparing the grave, some degree of control over surplus production and labor, and access to rare, presumably valuable materials. However, contrary to preconceived notions, we find great variety in the grave goods. There does not seem to have been one, single mortuary program, or a compact set of items that distinguished status among individuals. Moreover, the location and context of the burial seem to have played an integral part in defining status.

Principal components analysis (Figure 12) brings these features of the correlation structure of the data to the forefront. Several components are differentiated according to different variable classes. Grave type and grave goods including ceremonial ceramics, ornamental artifacts, fine wares, shell, and glyph representations load highly on the first principal component. Context and structure specific location variables load highly on the second and third components (Figure 13). Temporal phase and extended and flexed burials define a fourth component. A fifth component is defined by the valley–wide location variables of site type, urban or rural location, and distance to the royal
acropolis. Utilitarian grave goods and obsidian and stone materials, generally used in making utilitarian artifacts, load highly on a sixth component.

These findings are interesting, but we must remember that such exploratory techniques cannot be the end of an analysis because they are designed to reduce and partition the data. Instead, we need a technique that helps us to identify one underlying dimension—one latent variable—that is not entirely dependent on an a priori selection of a few variables. Latent variable models are often used in survey research or psychological testing where researchers intend to construct a measure or scale of a certain behavior or attitude. Since the measurement of variables is such a central concern, we turned to reliability analysis—a measurement modeling technique for identifying a latent dimension and for constructing scales—in our case scales of wealth and status. It is used to convey the information contained in the interrelationships of the measured variables in a linear structural model. It is based on the structure of the correlation matrix, but has the aim of determining if the correlation structure allows a set of variables to be sensibly added. If not, we know that, either a poor choice of variables has been made, or that there is no single dimension defining the data.

Our reliability analysis yielded a large alpha value of 0.75 (Figure 14), which can be considered an overall correlation with the included variables suited for combining into a scale. They can be grouped according to their positive contribution to the scale (correlation with the overall scale) and their inherent similarities. These include grave type, principal grave goods (fine ware ceramics, ceremonial ceramics, ornamental objects, and jade), two sets of interrelated context and location variables (burials found in structure fill and within structures, and conversely burials not coming from middens or the backs of structures), age—at—death, and a set of lesser grave goods or those that marginally contribute to the scale (glyph and effigy representations, imported ceramics, utilitarian items and stone, shell, bone and obsidian artifacts). Note that location and context, fine ceramics, and ornamental items all contribute more to the scale than jade. Surprisingly, other factors commonly used in mortuary studies, such as the orientation of the body, the side on which it was placed, and flexed and extended positions do not distinguish individuals in this context.

Instead of the discontinuous, ad hoc social status typologies typically employed, we have a continuous scale of mortuary scores for each individual based on the relative contribution of variables found to be statistically relevant to the scale. The mortuary scores for our scale ranged from 0 to 0.2839. They were calculated by normalizing the values for each variable included in the scale, weighting the normalized value by the variable's contribution to the scale, and then summing them for each individual (Figure 15).

The latent variable can be explored further by rank ordering the scores and noting how groups of individuals are distributed along the scale. Five hundred and fifty–two of the burials had sufficient data to be given scores. The most striking feature of the distribution is its linearity. We conclude that when a complex of factors or variables is considered, it is difficult to demarcate specific status groups or classes in the society—any attempt to do so would be highly arbitrary. There appears to have been considerable variability in access to a wide variety of grave goods, including jade and fine ware ceramics. The significance and the import that the Copán Maya placed upon each of these objects is a more difficult question to answer.

Another important advantage of this approach is that we can return to the individual level data to examine each individual’s relationship to the latent burial wealth and status scale. A fitted trend line was used to indicate exceptional cases. The deviation from the lower portion of the distribution is comprised mostly of children and infants (66%). The remaining adults (34%) were predominantly female (60%). Males were middle–aged and younger while females were middle–aged and older. Individuals were distributed across all locations and site types in similar proportion to the overall sample. Almost 90% of all individuals in the lower portion of the distribution were buried
without grave goods, although there were a few individuals who were indeed buried with jade and fine ware ceramics.

Conversely, 94% of the upper end are adults and 67% are males. Men are middle-aged and older, while women are middle-aged and younger. Nearly two-thirds were interred in tombs. More than 80% had jade, fine ceramics, and ornamental items, while only 51% had utilitarian items. But, significantly, they are found at all types of sites except for the smallest type 1 sites and in locations roughly equal to the proportions of the overall sample.

COMPARATIVE DATA

So is this method and its result an artifact of our particular dataset or is it applicable to any and all mortuary data around the world? To answer that question we went in search of extant, published mortuary datasets once again from Mesoamerica which we know best. The mortuary data presented by Sempkowski, Spence and Storey from Teotihuacan presented a dataset similar to our own in size and scope. The mortuary data from the Mayan site of Chiapa de Corzo reported on by Agrinier offered a smaller dataset with varied information.

Teotihuacan

Teotihuacan in the Basin of Mexico is another well-known site (Figure 16). With a relatively long and very intensive occupation history, it became one of the most densely populated cities in the Americas. The authors were able to compile a dataset of over 500 individuals of which 470 had data sufficient to be included in the final analyses, coming mostly from residential compounds but also from the Pyramid of the Sun and the Temple of Quetzalcoatl (Figures 17, 18). We were able to code 26 variables for these data, including burial location, site type, age, sex, modifications to the body, artifacts, primary and secondary interments, multiple burials, temporal phase and grave types. The great majority of the burials come from the height of occupation in the Early to Middle Classic period providing a relatively homogeneous temporal sample.

Rene Millon was one of the first to use the extensive mortuary data from the site to construct a hierarchy of wealth and status (Figures 19, 20). His typology has served as the basis for many subsequent researchers in portraying social complexity at Teotihuacan. But how accurate is this?

A review of sex and grave type show a preponderance of unlined pit burials common to the residential compounds but still significant variation and a relatively equal distribution of females and males by grave type with the exception of a larger number of males in the more elaborate graves (Figure 21). Principal component analysis demonstrates that grave type and grave goods are most closely associated in the first component (Figure 22). The second component comprises variables dealing with site type and location, shell ornaments and treatment of the body. A third component unites grave type and ritual context of the burial location and bone grave goods. Interesting, but how does this relate to wealth and status in the Prehispanic Teotihuacan population?

The initial reliability analysis with all variables produced an alpha of 0.29, but only included 53 cases due to missing data (Figure 23). Unfortunately, sex had the most missing information, and removing that variable increased considerably the sample size, but actually lowered the alpha. As described previously, we removed variables with little correlation with the overall scale (in this case burial position and orientation), and cases where the alpha would be greatly increased if the variable were deleted from the scale. The result is a scale composed of 14 variables and a remarkably high alpha of 0.77. The scale is composed of three types of variables. Artifacts, in particular ceramics, obsidian, and odd artifacts contribute the most to the scale. Notably jade is lower along with the type of grave which may be due to large number of pit burials in the sample. Treatment of the
remains in the form of pigment and fire is next and type of site in which the burial was located is the smallest contributor to the scale.

With this scale, we devised mortuary scores for each individual (Figure 24). The resulting distribution of these individuals shows a different pattern that what we saw with the Copán data. This distribution is less continuous with visible demarcation of levels. Indeed 5 levels may be observed, supporting to some degree, Millon’s delineation. Also, of note is the extreme upturn at the upper end of the scale which we take to be evidence of a well-formed, high-status group represented in the data.

Chiapa de Corzo

Finally, Chiapa de Corzo (Figures 25, 26) is a Mayan site in the Chiapas Highlands with a long history of occupation dating from the Early Preclassic (1400 B.C.) to the Early Late Classic (A.D. 950). The authors compiled data on 168 individuals for which we coded 18 variables for analysis (temporal, orientation of the body, grave type (Figure 27), age, sex, and various artifact types). Of those, unfortunately sex of the individual proved too sparse to be of use. But remember the advantage of the reliability analysis is that once we have constructed the scale we can return to the individual level data to see any possible sex specific trends in the distribution as we did with the Copán Data above.

Principle component analysis of the Chiapa de Corzo report provides some preliminary associations among the variables available for analysis (Figure 28). Phase, period, shell, grave type, and jade artifacts all load highest on the first axis. On the second axis grave type, jade, ceramics, and extended have high positive loadings while flexed skeletal position has a high negative loading. The loadings for extended and flexed reverse for the third axis with high loadings for multiple burials, primary and obsidian grave goods. The cardinal orientation of a burial or the age of an individual are poorly associated with the other variables under a principal component analysis.

The initial reliability analysis produced an alpha of 0.39 and showed us that the position and orientation of the body (with the exception of those oriented to the South) and the variable of primary and multiple interments had little to do with one underlying scale, agreeing with the principal components result (Figure 29). Hence, the final analysis retained 9 variables with an overall alpha of 0.44 – admittedly not as high as above but still good enough to produce a credible scale (Figure 30). In constructing the final scale, one has to weigh both the effect of deleting the variable on the overall alpha which would lose information and variation and the correlation of the variable with the scale. Deleting ceramics would have greatly increased the alpha, but considerable information would have been lost and it does show marked correlation with the scale. Not surprisingly, grave type shows the greatest correlation with the scale, followed by the artifacts and one of the temporal variables. Age of the individual and another of the temporal variables are the least correlated, but still are significant contributors to the scale. Given the makeup of the scale we do believe it represents an underlying dimension of wealth and status in the mortuary data.

Reliability analysis-based mortuary scores show a relatively, undifferentiated flat line with 14 individuals at the upper end that are considerably different than all others. Interestingly, these individuals are ones with inordinate numbers of ceramics. The results suggest to us some moderate increase in the wealth of burials over time, but given the long period of occupation the differentiation in the sample is remarkably minimal. It appears to be in comparison to the previous examples a relatively homogeneous population with the exception of a very few wealthy, high status individuals.
CONCLUSIONS

What we hope to have demonstrated here is that devising scales of social hierarchy and complexity in general and in particular those based on mortuary remains is, well, a complex issue and one not to be made on *a priori* assumptions (Figure 31). We suspect that any society would show great variation like the aforementioned ones. But, certainly the degree of variation of variables used in constructing the scale, slope of the line and the skewness in the tails can provide insights into how demarcated social distinctions are within the society. Indeed, our examples showed different patterns which we take to indicate differences in the organization and the hierarchical complexity of the society.

REFERENCES

Agrinier, Pierre

Gerry, John

Reed, D. M.

Sempowski, Martha L. and Spence, Michael W.

Storey, Rebecca

Wright, Lori E.

Comparison of Altar de Sacrificios ranks

Two different analytical approaches to determine social ranks of burials for Altar show some concordance.
Comparison of Seibal ranks

However, the same two analytical approaches for determining social ranks of the Seibal burials show poor concordance.
If the two mortuary analysis approaches were comparable, we would expect to see parallel lines. Instead, a burial’s ranking in one analysis is often completely different in the other.
Copan: Main Group

Hieroglyphic Staircase Plaza and Ball Court

Figure 6
Copan: Urban Burials

8N-11: pit, flexed

9N-8: looted tomb

Figure 7
Copan: Rural Excavations

34C-4-2 (Type I)
Copan: Rural Burials

Figure 9
Figure 10
Non-Ceramic Grave Goods

Figure 11
Figure 12

Copan: Principal Components 1 & 2
Figure 13

Copan: Principal Components 3 & 4
Table 13. Reliability Analysis of Mortuary Data.

<table>
<thead>
<tr>
<th>Variable Type</th>
<th>Variable</th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Deleted</th>
<th>Corrected Item Total Correlation</th>
<th>Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grave Type</td>
<td>Grave Type</td>
<td>3.3085</td>
<td>3.6399</td>
<td>.4569</td>
<td>.7299</td>
</tr>
<tr>
<td>Principal Grave Goods</td>
<td>Ornaments</td>
<td>3.4819</td>
<td>3.6207</td>
<td>.4574</td>
<td>.7294</td>
</tr>
<tr>
<td></td>
<td>Fine Ceramics</td>
<td>3.5426</td>
<td>3.8932</td>
<td>.4804</td>
<td>.7395</td>
</tr>
<tr>
<td></td>
<td>Jade</td>
<td>3.5453</td>
<td>3.8725</td>
<td>.3586</td>
<td>.7408</td>
</tr>
<tr>
<td></td>
<td>Ceremonial Ceramics</td>
<td>3.5566</td>
<td>3.9248</td>
<td>.4281</td>
<td>.7418</td>
</tr>
<tr>
<td>Location and Context</td>
<td>Structure Fill Context</td>
<td>3.2093</td>
<td>2.9639</td>
<td>.5408</td>
<td>.7189</td>
</tr>
<tr>
<td></td>
<td>Non-Midden Context</td>
<td>2.7660</td>
<td>3.2589</td>
<td>.5090</td>
<td>.7204</td>
</tr>
<tr>
<td></td>
<td>Structure Location</td>
<td>3.1810</td>
<td>2.9730</td>
<td>.5243</td>
<td>.7221</td>
</tr>
<tr>
<td></td>
<td>Non-Rear Location</td>
<td>2.7984</td>
<td>3.2148</td>
<td>.4970</td>
<td>.7223</td>
</tr>
<tr>
<td>Age</td>
<td>Age</td>
<td>3.1397</td>
<td>3.6284</td>
<td>.2924</td>
<td>.7446</td>
</tr>
<tr>
<td>Lesser Grave Goods</td>
<td>Utilitarian Items</td>
<td>3.5264</td>
<td>3.9081</td>
<td>.2583</td>
<td>.7452</td>
</tr>
<tr>
<td></td>
<td>Effigy Representation</td>
<td>3.5251</td>
<td>3.8042</td>
<td>.2499</td>
<td>.7458</td>
</tr>
<tr>
<td></td>
<td>Glyph Representation</td>
<td>3.5797</td>
<td>3.9943</td>
<td>.2514</td>
<td>.7474</td>
</tr>
<tr>
<td></td>
<td>Imported Ceramics</td>
<td>3.5764</td>
<td>4.0402</td>
<td>.2396</td>
<td>.7494</td>
</tr>
<tr>
<td></td>
<td>Stone</td>
<td>3.5765</td>
<td>4.0413</td>
<td>.1935</td>
<td>.7499</td>
</tr>
<tr>
<td></td>
<td>Shell</td>
<td>3.5757</td>
<td>4.0401</td>
<td>.1805</td>
<td>.7500</td>
</tr>
<tr>
<td></td>
<td>Bone</td>
<td>3.5632</td>
<td>4.0157</td>
<td>.1500</td>
<td>.7504</td>
</tr>
<tr>
<td></td>
<td>Obsidian</td>
<td>3.5755</td>
<td>4.0409</td>
<td>.1466</td>
<td>.7507</td>
</tr>
</tbody>
</table>

\[\text{Alpha} = .7507; n = 494\]

Figure 14
Burials Ordered by Mean Mortuary Score

Trend Trumpers
n = 43

Trend Setters
n = 505

Trend Trailers
n = 75

Trend Line
R^2 = 0.9503

Figure 15
Teotihuacan

Satellite View and Central Plan

Figure 16
Teotihuacan

- Middle Horizon
- 200 – 750 A.D.
- Urban zones encompassed 20 km²
- Peak population ca. 600 A.D. was possibly as high as 200,000 persons.
- Abandoned between 600 and 750 A.D.
Residential units

- Apartment compounds became the standard type of residential unit
- Housed farmers and craftsmen
- Clusters of crafts were associated with different neighborhoods
Millon hierarchy

- Postulated at least six status levels
 - Ruling elite
 - Ciudadela compound
 - Priests and administrators
 - Green compound near Ciudadela
 - At least three intermediate levels
 - Lowest status
 - Occupants of small unsurfaced adobe structures
Intermediate Group

- Based on architectural components
 - Close to “Street of the Dead”
 - Large painted mural rooms
 - Construction techniques
 - Large space allocated to temples and patios
- High intermediate
 - Zacualpa Palace
- Middle intermediate
 - Teopancaxco residential group
- Lower intermediate
 - Xolalpan residential group
Teotihuacan: Reliability Analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Correlation</th>
<th>Alpha if deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact</td>
<td>0.8709</td>
<td>0.6915</td>
</tr>
<tr>
<td>Bone</td>
<td>0.3116</td>
<td>0.7667</td>
</tr>
<tr>
<td>Ceramics</td>
<td>0.6467</td>
<td>0.7376</td>
</tr>
<tr>
<td>Faunal</td>
<td>0.2229</td>
<td>0.7735</td>
</tr>
<tr>
<td>Fire</td>
<td>0.3016</td>
<td>0.7700</td>
</tr>
<tr>
<td>Grave Type</td>
<td>0.3240</td>
<td>0.7652</td>
</tr>
<tr>
<td>Jadeite</td>
<td>0.4801</td>
<td>0.7530</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Correlation</th>
<th>Alpha if deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mica</td>
<td>0.3674</td>
<td>0.7617</td>
</tr>
<tr>
<td>Obsidian</td>
<td>0.5125</td>
<td>0.7504</td>
</tr>
<tr>
<td>Other artifacts</td>
<td>0.5323</td>
<td>0.7482</td>
</tr>
<tr>
<td>Pigment</td>
<td>0.2376</td>
<td>0.7740</td>
</tr>
<tr>
<td>Shell</td>
<td>0.4711</td>
<td>0.7541</td>
</tr>
<tr>
<td>Site Type</td>
<td>0.1416</td>
<td>0.7757</td>
</tr>
<tr>
<td>Textiles</td>
<td>0.2130</td>
<td>0.7742</td>
</tr>
</tbody>
</table>
Teotihuacan: Mortuary Scores

Figure 24
Chiapa de Corzo

- Located 10 miles east of Tuxtla Gutiérrez, Chiapas.
- Source
Chiapa de Corzo chronology

- 168 human burials excavated
- Occupation from
 - Early Preclassic (ca. 1400 B.C.)
 - Late Classic (ca. A.D. 950)
Chiapa de Corzo: Age by Grave Type Counts

Figure 27
Chiapa de Corzo: PCA

Figure 28
Chiapa de Corzo: Reliability

<table>
<thead>
<tr>
<th>Variable</th>
<th>Correlation</th>
<th>Alpha if deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.1946</td>
<td>0.4098</td>
</tr>
<tr>
<td>Grave</td>
<td>0.5887</td>
<td>0.3544</td>
</tr>
<tr>
<td>Jade</td>
<td>0.378</td>
<td>0.4065</td>
</tr>
<tr>
<td>Obsidian</td>
<td>0.3234</td>
<td>0.4251</td>
</tr>
<tr>
<td>Phase</td>
<td>0.3622</td>
<td>0.3924</td>
</tr>
<tr>
<td>Shell</td>
<td>0.3426</td>
<td>0.4112</td>
</tr>
<tr>
<td>South</td>
<td>0.2082</td>
<td>0.4283</td>
</tr>
<tr>
<td>Period</td>
<td>0.1755</td>
<td>0.4209</td>
</tr>
<tr>
<td>Ceramic</td>
<td>0.2788</td>
<td>0.5171</td>
</tr>
</tbody>
</table>
Chiapa de Corzo: Mortuary Scores

Figure 30
Coffin Craftsman: Ghana