Computational hardware and algorithms have evolved to the point where they present a compelling alternative to the traditional experiment-based approach to materials research and development. This course will cover the core methods used to simulate matter at the atomic scale, and will offer hands-on experience with a number of research-caliber simulation codes on multi-processor clusters. A variety of applications will be highlighted, ranging from the mechanical properties of solids to the discovery of new materials for energy storage.

Syllabus:

1. Preliminaries: Structure of matter and Inter-atomic potentials
2. Molecular dynamics
3. Monte Carlo methods
5. Transition state theory
6. Accelerated dynamics and multi-scale modeling

Instructor: Prof. Don Siegel, Mechanical Engineering Dept.
For additional information: djsiege@umich.edu